1
|
Wang Y, Cao T, Liu Q, Xuan B, Mu Z, Zhao J. Stochastic processes driving cyanobacterial temporal succession in response to typhoons in a coastal reservoir. WATER RESEARCH 2024; 267:122480. [PMID: 39316959 DOI: 10.1016/j.watres.2024.122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Typhoons associated with heavy rainfall events, potentially triggering harmful algal blooms (cyanoHABs) dominated by cyanobacteria in coastal reservoirs. These blooms deteriorate water quality and produce toxins, posing a threat to aquatic ecosystems. However, the ecological mechanisms driving cyanobacteria communities in response to typhoons remain unclear. To address this gap, we investigated a coastal reservoir with high-frequency sampling during two typhoon seasons. We employed comprehensive statistical methods under neutral and evolutionary theories to analyze environmental dynamics and cyanobacterial genus succession. Our findings revealed a significant increase in nutrient loads following typhoons, with concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia-nitrogen (NH4+-N) rising from 0.4 mg/L to 1.0 mg/L, 0.02 mg/L to 0.63 mg/L, and 0.03 mg/L to 0.26 mg/L, respectively. These changes coincided with fluctuations in other physicochemical parameters under changing hydrometeorological conditions. Despite significant environmental disturbances, the cyanobacterial community exhibited a remarkable recovery within 15-25 days following the typhoons. This recovery progressed through four distinct successional phases, with a notable shift in community composition from Raphidiopsis and Pseudoanabaena to Aphanocapsa, subsequently replaced by Raphidiopsis and Microcystis, before reverting to the pre-typhoon community structure. During the entire successional phase, the availability of TN and the TN/TP ratio played a dominant role, as indicated by PLS-PM analysis (total effects = -0.6; p < 0.05). Pre-typhoon, environmental factors primarily influenced community structure (54 %) based on modified stochasticity ratio. However, following the typhoons, stochastic fluctuations took precedence (71 %-91 %). The rapid recovery of cyanobacterial communities and the shift in driving mechanisms from deterministic to stochastic processes underscore the complex ecological responses to typhoon events. This study provides essential insights for biodiversity preservation and ecosystem restoration, emphasizing the need to consider both stochastic and deterministic processes in ecological management strategies.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Tianzheng Cao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China; Key Laboratory of Water Safety for Beijing-Tianjin-Hebei Region of Ministry of Water Resources, Beijing 100038, PR China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower research, Beijing 100038, PR China
| | - Qingqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Boyu Xuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhengyuan Mu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Jian Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
2
|
Orr JA, Macaulay SJ, Mordente A, Burgess B, Albini D, Hunn JG, Restrepo-Sulez K, Wilson R, Schechner A, Robertson AM, Lee B, Stuparyk BR, Singh D, O'Loughlin I, Piggott JJ, Zhu J, Dinh KV, Archer LC, Penk M, Vu MTT, Juvigny-Khenafou NPD, Zhang P, Sanders P, Schäfer RB, Vinebrooke RD, Hilt S, Reed T, Jackson MC. Studying interactions among anthropogenic stressors in freshwater ecosystems: A systematic review of 2396 multiple-stressor experiments. Ecol Lett 2024; 27:e14463. [PMID: 38924275 DOI: 10.1111/ele.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.
Collapse
Affiliation(s)
- James A Orr
- Department of Biology, University of Oxford, Oxford, UK
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Benjamin Burgess
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Dania Albini
- Department of Biology, University of Oxford, Oxford, UK
| | - Julia G Hunn
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Ramesh Wilson
- Department of Biology, University of Oxford, Oxford, UK
| | - Anne Schechner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Ruumi ApS, Svendborg, Denmark
| | - Aoife M Robertson
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Bethany Lee
- Department of Biology, University of Oxford, Oxford, UK
| | - Blake R Stuparyk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Delezia Singh
- Natural Resources Institute, University of Manitoba, Winnipeg, Canada
| | | | - Jeremy J Piggott
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jiangqiu Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Khuong V Dinh
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Louise C Archer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Marcin Penk
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Minh Thi Thuy Vu
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Noël P D Juvigny-Khenafou
- Institute of Aquaculture, University of Stirling, Scotland, UK
- Institute of Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Ralf B Schäfer
- Research Center One Health Ruhr, University Alliance Ruhr
- Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Rolf D Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sabine Hilt
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Thomas Reed
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | | |
Collapse
|
3
|
Jorge JS, Santos RL, de Sena Monte O, Freire EMX, Caliman A. The Arrow Macambira (Encholirium spectabile: Bromeliaceae) as an Important Habitat for the Arthropod Fauna in Rocky Outcrops of the Brazilian Semi-Arid Region. NEOTROPICAL ENTOMOLOGY 2024; 53:568-577. [PMID: 38687426 DOI: 10.1007/s13744-024-01145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024]
Abstract
Bromeliads play a vital role in preserving biodiversity in the Neotropical region. To understand their impact on arthropod diversity in Brazil's semi-arid region, we studied the rupicolous bromeliad Encholirium spectabile. From 2011 to 2018, we observed the arthropod fauna in E. spectabile clumps, documenting the associated taxa, their abundance, and interactions. We also investigated how seasonality affects arthropod richness and composition during the dry and rainy seasons. Over the observation period, 15 orders and 57 arthropod families were recorded in association with E. spectabile. Insecta dominated, followed by predatory chelicerates. Eight usage categories were identified, with Shelter being the most prevalent, followed by Predators, Nesters, and Nectarivores. Significant differences in taxonomic richness were noted between rainy and dry seasons, with the rainy season exhibiting higher diversity. Seasonal variation was also observed in species composition. Clumps of E. spectabile emerged as crucial habitats for surrounding arthropod fauna. This research underscores the importance of non-phylotelm bromeliads, particularly in high abiotic stress environments like semi-arid regions. The taxonomic diversity observed aligns with findings from diverse environments, shedding light on the relevance of E. spectabile for associated arthropod fauna. These results prompt further exploration of non-phylotelm bromeliads in semi-arid settings, providing a fresh perspective on their significance in shaping arthropod communities.
Collapse
Affiliation(s)
- Jaqueiuto S Jorge
- Departament of Ecology, Federal University of Rio Grande Do Norte, Natal, Brazil.
- Postgraduate Program in Ecology, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil.
| | - Roberto Lima Santos
- Departament of Botanic and Zoology, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil
| | - Otávio de Sena Monte
- Departament of Ecology, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Eliza Maria X Freire
- Departament of Botanic and Zoology, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil
| | - Adriano Caliman
- Departament of Ecology, Federal University of Rio Grande Do Norte, Natal, Brazil
- Postgraduate Program in Ecology, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil
| |
Collapse
|
4
|
Séguigne M, Leroy C, Carrias JF, Corbara B, Lafont Rapnouil T, Céréghino R. Interactive effects of drought and deforestation on multitrophic communities and aquatic ecosystem functions in the Neotropics-a test using tank bromeliads. PeerJ 2024; 12:e17346. [PMID: 38737739 PMCID: PMC11088369 DOI: 10.7717/peerj.17346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background Together with the intensification of dry seasons in Neotropical regions, increasing deforestation is expected to exacerbate species extinctions, something that could lead to dramatic shifts in multitrophic communities and ecosystem functions. Recent studies suggest that the effects of habitat loss are greater where precipitation has decreased. Yet, experimental studies of the pure and interactive effects of drought and deforestation at ecosystem level remain scarce. Methods Here, we used rainshelters and transplantation from rainforest to open areas of natural microcosms (the aquatic ecosystem and microbial-faunal food web found within the rainwater-filled leaves of tank bromeliads) to emulate drought and deforestation in a full factorial experimental design. We analysed the pure and interactive effects of our treatments on functional community structure (including microorganisms, detritivore and predatory invertebrates), and on leaf litter decomposition in tank bromeliad ecosystems. Results Drought or deforestation alone had a moderate impact on biomass at the various trophic level, but did not eliminate species. However, their interaction synergistically reduced the biomass of all invertebrate functional groups and bacteria. Predators were the most impacted trophic group as they were totally eliminated, while detritivore biomass was reduced by about 95%. Fungal biomass was either unaffected or boosted by our treatments. Decomposition was essentially driven by microbial activity, and did not change across treatments involving deforestation and/or drought. Conclusions Our results suggest that highly resistant microorganisms such as fungi (plus a few detritivores) maintain key ecosystem functions in the face of drought and habitat change. We conclude that habitat destruction compounds the problems of climate change, that the impacts of the two phenomena on food webs are mutually reinforcing, and that the stability of ecosystem functions depends on the resistance of a core group of organisms. Assuming that taking global action is more challenging than taking local-regional actions, policy-makers should be encouraged to implement environmental action plans that will halt habitat destruction, to dampen any detrimental interactive effect with the impacts of global climate change.
Collapse
Affiliation(s)
- Marie Séguigne
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3—Paul Sabatier (UT3), Toulouse, France
| | - Céline Leroy
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Campus agronomique, Kourou, France
| | - Jean-François Carrias
- Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, CNRS, F-63000, Clermont-Ferrand, France
| | - Bruno Corbara
- Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, CNRS, F-63000, Clermont-Ferrand, France
| | - Tristan Lafont Rapnouil
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3—Paul Sabatier (UT3), Toulouse, France
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Campus agronomique, Kourou, France
| | - Régis Céréghino
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3—Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
5
|
Nash LN, Kratina P, Recalde FC, Jones JI, Izzo T, Romero GQ. Tropical and temperate differences in the trophic structure and aquatic prey use of riparian predators. Ecol Lett 2023; 26:2122-2134. [PMID: 37807844 DOI: 10.1111/ele.14322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
The influence of aquatic resource-inputs on terrestrial communities is poorly understood, particularly in the tropics. We used stable isotope analysis of carbon and nitrogen to trace aquatic prey use and quantify the impact on trophic structure in 240 riparian arthropod communities in tropical and temperate forests. Riparian predators consumed more aquatic prey and were more trophically diverse in the tropics than temperate regions, indicating tropical riparian communities are both more reliant on and impacted by aquatic resources than temperate communities. This suggests they are more vulnerable to disruption of aquatic-terrestrial linkages. Although aquatic resource use declined strongly with distance from water, we observed no correlated change in trophic structure, suggesting trophic flexibility to changing resource availability within riparian predator communities in both tropical and temperate regions. Our findings highlight the importance of aquatic resources for riparian communities, especially in the tropics, but suggest distance from water is less important than resource diversity in maintaining terrestrial trophic structure.
Collapse
Affiliation(s)
- Liam N Nash
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Fátima C Recalde
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - John Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Thiago Izzo
- Laboratório de Ecologia de Comunidades, Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Mato Grosso, Brazil
| | - Gustavo Q Romero
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
6
|
Qin T, Liu S, Li W, Xu S, Lu J, Lv Z, Abebe SA. Porous fiber materials can alleviate the risk of farmland drought and flooding disasters and prompt crop growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1201879. [PMID: 37900755 PMCID: PMC10602813 DOI: 10.3389/fpls.2023.1201879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/17/2023] [Indexed: 10/31/2023]
Abstract
Floods and droughts on farmland seriously damage agricultural production. Porous fiber materials (PFM) made from mineral rocks have high porosity, permeability, and water retention and are utilized widely in green roofs and agricultural production. Therefore, studying the impact of PFM on the improvement of farmland is of great importance for soil and water conservation. We set 64 extreme rainfalls to analyze the impact of PFM on soil water content (SWC), runoff, nutrient loss, microorganism, and plant growth. The results showed that PFM can effectively reduce runoff and improve soil water distribution, and enhance the soil water holding capacity. Furthermore, PFM reduced the loss of nitrogen and phosphorus by 18.3% to 97% in the runoff, and the soil erosion of summer corn was more strongly influenced by lower vegetation cover, compared with winter wheat. Finally, when PFM was buried in the soil, the wheat yield increased by -6.7%-20.4%, but the corn yield in some PFM groups decreased by 5.1% to 42.5% under short-duration irrigation conditions. Our study emphasizes that the effectiveness of PFM depends mainly on the following: First, PFM with high porosity can increase soil water holding capacity and timely replenish the water lost from the surrounding soil. Second, PFM with high permeability can increase infiltration during rainfall and decrease runoff and nutrient loss, reducing the risk of farmland flooding and pollution. Finally, PFM consists of gold ions and alkali metal oxides, which can stabilize agglomerates and improve soil enzyme activity, thereby increasing the relative abundance of some microbial strains and promoting crop growth. However, when the rainfall amount was low or PFM volume was large, PFM could not store water sufficiently during rainfall, which seriously reduced the maximum saturated moisture content and water absorption performance. Meanwhile, the PFM could not release water in time and replenish the soil water deficit, which increased drought risk. In conclusion, the appropriate volume of PFM and irrigation system may enhance soil water storage capacity, minimize agricultural pollution, and promote crop production.
Collapse
Affiliation(s)
- Tianling Qin
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Shanshan Liu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Wei Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Shu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Jie Lu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Zhenyu Lv
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Sintayehu A Abebe
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- Hydraulic and Water Resources Engineering Department, Debre Markos University Institute of Technology, Debre Markos, Ethiopia
| |
Collapse
|
7
|
Van Stan JT, Allen ST, Aubrey DP, Berry ZC, Biddick M, Coenders-Gerrits MAMJ, Giordani P, Gotsch SG, Gutmann ED, Kuzyakov Y, Magyar D, Mella VSA, Mueller KE, Ponette-González AG, Porada P, Rosenfeld CE, Simmons J, Sridhar KR, Stubbins A, Swanson T. Shower thoughts: why scientists should spend more time in the rain. Bioscience 2023; 73:441-452. [PMID: 37397836 PMCID: PMC10308363 DOI: 10.1093/biosci/biad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/04/2023] Open
Abstract
Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists' human sensory and cognitive systems during storms.
Collapse
Affiliation(s)
| | - Scott T Allen
- Department of Natural Resources and Environmental Science at the University of Nevada-Reno, Reno, Nevada, United States
| | - Douglas P Aubrey
- Savannah River Ecology Lab and with the Warnell School of Forestry at the University of Georgia, Athens, Georgia, United States
| | - Z Carter Berry
- Department of Biology at Wake Forest University, Winston-Salem, North Carolina, United States
| | - Matthew Biddick
- Terrestrial Ecology Research Group at the Technical University of Munich, Freising, Germany
| | | | - Paolo Giordani
- Dipartimento di Farmacia at the University of Genoa, Genoa, Italy
| | - Sybil G Gotsch
- Department of Forestry and Natural Resources at the University of Kentucky, Lexington, Kentucky, United States
| | - Ethan D Gutmann
- Research Applications Laboratory, at the National Center for Atmospheric Research, Boulder, Colorado, United States
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Systems, Agricultural Soil Science, at Georg-August-Universität, Göttingen, Germany
- Peoples Friendship University of Russia, Moscow, Russia
| | - Donát Magyar
- National Public Health Center, Budapest, Hungary
| | - Valentina S A Mella
- Sydney School of Veterinary Science, at the University of Sydney, Sydney, New South Wales, Australia
| | - Kevin E Mueller
- Department of Biological, Geological, and Environmental Sciences at Cleveland State University, Cleveland, Ohio, United States
| | - Alexandra G Ponette-González
- Department of City and Metropolitan Planning and with the Natural History Museum of Utah at the University of Utah, Salt Lake City, Utah, United States
| | - Philipp Porada
- Department of Biology at Universität Hamburg, Hamburg, Germany
| | - Carla E Rosenfeld
- Department of Minerals and Earth Sciences at the Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, United States
| | - Jack Simmons
- Department of Philosophy and Religious Studies at Georgia Southern University, Statesboro, Georgia, United States
| | - Kandikere R Sridhar
- Department of Biosciences at Mangalore University, Konaje, Mangaluru, Karnataka, India
| | - Aron Stubbins
- Departments of Marine and Environmental Science, Civil and Environmental Engineering, and Chemistry and Chemical Biology at Northeastern University, Boston, Massachusetts, United States
| | | |
Collapse
|
8
|
Gentilin-Avanci C, Pinha GD, Ratz Scoarize MM, Petsch DK, Benedito E. Warming water and leaf litter quality but not plant origin drive decomposition and fungal diversity in an experiment. Fungal Biol 2022; 126:631-639. [DOI: 10.1016/j.funbio.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
|
9
|
Ruiz T, Carrias JF, Bonhomme C, Farjalla VF, Jassey VEJ, Leflaive J, Compin A, Leroy C, Corbara B, Srivastava DS, Céréghino R. Asynchronous recovery of predators and prey conditions resilience to drought in a neotropical ecosystem. Sci Rep 2022; 12:8392. [PMID: 35589855 PMCID: PMC9120075 DOI: 10.1038/s41598-022-12537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
The predicted increase in the intensity and frequency of drought events associated with global climate change will impose severe hydrological stress to freshwater ecosystems, potentially altering their structure and function. Unlike freshwater communities' direct response to drought, their post-drought recovery capacities remain understudied despite being an essential component driving ecosystem resilience. Here we used tank bromeliad as model ecosystem to emulate droughts of different duration and then assess the recovery capacities of ecosystem structure and function. We followed macroinvertebrate predator and prey biomass to characterize the recovery dynamics of trophic structure (i.e. predator-prey biomass ratio) during the post-drought rewetting phase. We showed that drought significantly affects the trophic structure of macroinvertebrates by reducing the predator-prey biomass ratio. The asynchronous recovery of predator and prey biomass appeared as a critical driver of the post-drought recovery trajectory of trophic structure. Litter decomposition rate, which is an essential ecosystem function, remained stable after drought events, indicating the presence of compensatory effects between detritivores biomass and detritivores feeding activity. We conclude that, in a context of global change, the asynchrony in post-drought recovery of different trophic levels may impact the overall drought resilience of small freshwater ecosystems in a more complex way than expected.
Collapse
Affiliation(s)
- Thomas Ruiz
- Laboratoire Microorganismes, Génome Et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Jean-François Carrias
- Laboratoire Microorganismes, Génome Et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Camille Bonhomme
- Departamento de Ecología, Instituto de Biologia, Universidade Federal Do Rio de Janeiro (UFRJ), Ilha Do Fundão, Rio de Janeiro, Brazil.,AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Vinicius F Farjalla
- Departamento de Ecología, Instituto de Biologia, Universidade Federal Do Rio de Janeiro (UFRJ), Ilha Do Fundão, Rio de Janeiro, Brazil
| | - Vincent E J Jassey
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| | - Joséphine Leflaive
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| | - Arthur Compin
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| | - Céline Leroy
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.,ECOFOG, CNRS, CIRAD, INRAE, Université Des Antilles, Université de Guyane, Kourou, France
| | - Bruno Corbara
- Laboratoire Microorganismes, Génome Et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Diane S Srivastava
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Régis Céréghino
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
10
|
Moi DA, Teixeira-de-Mello F. Cascading impacts of urbanization on multitrophic richness and biomass stock in neotropical streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151398. [PMID: 34742800 DOI: 10.1016/j.scitotenv.2021.151398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The conversion of natural streams to urbanized systems with the intention of supplying the cities' water demand causes species loss across many trophic groups, with negative consequences for ecosystem functioning. High levels of watershed urbanization cause environmental changes through water quality deterioration and loss of habitat heterogeneity. However, it remains unclear how environmental changes resulting from urbanization affect the diversity of multiple trophic groups and ecosystem functions, such as biomass stock in streams. Here, using a dataset from Neotropical streams, we investigate the cascading effects of urbanization (via impoverishment of water quality and habitat heterogeneity) on richness of multiple trophic groups of fish, and their consequences to biomass stock of streams. The increase in urbanization decreased the richness and standing biomass of carnivores, omnivores, and detritivores across streams. Urbanization also decreased habitat heterogeneity and water quality, which driver a huge cascading decrease in the richness of carnivores, omnivores, and detritivores, and ultimately reduced the whole-community standing biomass. Our analysis revealed that urbanization expansion induces a cascading reduction of multitrophic diversity and standing biomass in Neotropical streams. Therefore, the predicted increase in urbanization in the coming decades should impacts the richness of multiple trophic levels, with potential negative consequences to ecosystem functioning of streams.
Collapse
Affiliation(s)
- Dieison André Moi
- Department of Biology, Graduate Program in Ecology of Inland Waters, Nupelia, University of Maringá, Av. Colombo 5790, Bloco H90, Jd. Universitário, Maringá, PR 87020-900, Brazil.
| | - Franco Teixeira-de-Mello
- Departamento de Ecología y Gestión Ambiental CURE, Universidad de la República, Tacuarembó s/n, Maldonado, Uruguay.
| |
Collapse
|
11
|
Gao X, Lv M, Liu Y, Sun B. Precipitation projection over Daqing River Basin (North China) considering the evolution of dependence structures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5415-5430. [PMID: 34417694 PMCID: PMC8379070 DOI: 10.1007/s11356-021-16066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Understanding dynamic future changes in precipitation can provide prior information for nonpoint source pollution simulations under global warming. However, the evolution of the dependence structure and the unevenness characteristics of precipitation are rarely considered. This study applied a two-stage bias correction to daily precipitation and max/min temperature data in the Daqing River Basin (DQRB) with the HadGEM3-RA climate model. Validated from 1981 to 2015, future scenarios under two emission paths covering 2031-2065 and 2066-2100 were projected to assess variations in both the amount and unevenness of precipitation. The results suggested that, overall, the two-stage bias correction could reproduce the marginal distributions of variables and the evolution process of the dependence structure. In the future, the amount of precipitation in the plains is expected to increase more than that in the mountains, while precipitation unevenness, as measured by relative entropy, shows a slight increase in the mountains and a decrease in the plains, with enhanced seasonality. Conditioned on rising temperatures, high-/low-intensity precipitation tends to intensify/weaken precipitation unevenness. Additionally, the potential application of the bias correction method used herein and the possible impacts of uneven precipitation on nonpoint source pollution are given for further analyses. This study can provide useful information for future nonpoint source pollution simulations in the DQRB.
Collapse
Affiliation(s)
- Xueping Gao
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, China
| | - Mingcong Lv
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, China
| | - Yinzhu Liu
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, China.
| | - Bowen Sun
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
12
|
Disentangling the Effects of Tree and Soil Properties on the Water Uptake of a Waterlogging Tolerant Tree in the Yangtze River Delta, China. FORESTS 2021. [DOI: 10.3390/f12111547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Waterlogging tolerant tree species exert a critical role in forest preservation and the associated water conservation in flood prone areas. Clarifying the patterns and drivers of water uptake by waterlogging tolerant trees is crucial for forest management in flood-prone areas, especially in the scenario of precipitation changes in the estuary delta. Here, we uploaded the values of δD and δ18O obtained from soil and xylem waters to a Bayesian mixed model (MixSIAR) to determine the water use pattern of Taxodium distichum, a waterlogging tolerant tree, following different magnitudes of rainfall events in three sites of the Yangtze River Delta, China. We further conducted variation partitioning analysis and a random forest model to discern the dominant factor driving plant water uptake. Our results indicated that T. distichum mainly absorbed soil water from shallow soil layers (0–40 cm, 43.63%–74.70%), while the percentage of water uptake from deep soil layers was lower in the Yangtze River Delta (60–100 cm, 13.43%–35.90%), whether in light, moderate, or heavy rainfall conditions. Furthermore, our results demonstrated that tree traits, such as fine root biomass, are dominantly driving plant water uptake. These findings imply that waterlogging tolerant tree species could increase the percentage of water uptake from shallow soils by changing their plant attributes, which would effectively improve the water conservation of forests in the estuary delta.
Collapse
|
13
|
Srivastava DS, Coristine L, Angert AL, Bontrager M, Amundrud SL, Williams JL, Yeung ACY, Zwaan DR, Thompson PL, Aitken SN, Sunday JM, O'Connor MI, Whitton J, Brown NEM, MacLeod CD, Parfrey LW, Bernhardt JR, Carrillo J, Harley CDG, Martone PT, Freeman BG, Tseng M, Donner SD. Wildcards in climate change biology. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Ospina‐Bautista F, Srivastava DS, González AL, Sparks JP, Realpe E. Predators override rainfall effects on tropical food webs. Biotropica 2021. [DOI: 10.1111/btp.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabiola Ospina‐Bautista
- Departamento de Ciencias Biológicas Universidad de Los Andes Bogotá Colombia
- Departamento de Ciencias Biológicas Universidad de Caldas Manizales Colombia
| | - Diane S. Srivastava
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Angélica L. González
- Department of Biology & Center for Computational and Integrative Biology Rutgers The State University of NJ Camden NJ USA
| | - Jed P. Sparks
- Department of Ecology and Evolutionary biology Cornell University Ithaca NY USA
| | - Emilio Realpe
- Departamento de Ciencias Biológicas Universidad de Los Andes Bogotá Colombia
| |
Collapse
|
15
|
Moi DA, Alves DC, Figueiredo BRS, Antiqueira PAP, Teixeira de Mello F, Jeppesen E, Romero GQ, Mormul RP, Bonecker CC. Non-native fishes homogenize native fish communities and reduce ecosystem multifunctionality in tropical lakes over 16 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144524. [PMID: 33482541 DOI: 10.1016/j.scitotenv.2020.144524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Non-native species are considered a major global threat to biodiversity, and their expansion to new ecosystems has recently increased. However, the effect of non-native species on ecosystem functioning is poorly understood, especially in hyperdiverse tropical ecosystems of which long-term studies are scarce. We analyzed the relationship between richness, biomass, and β-diversity of non-native and native fishes during 16 years in five hyperdiverse tropical shallow lakes. We further elucidated how an observed increase in the proportion of richness, biomass, and β-diversity of non-native over native fishes affect crucial multifunctional processes of lakes (decomposition, productivity). We found a general positive relationship between the richness and biomass of non-native and native fishes. However, the slope of this relationship decreased continuously with time, displaying an increase in non-native species richness and a decrease in native species richness over time. We also detected a negative relationship between the β-diversity of non-native and native fishes over time. Moreover, the increase in the non-native:native ratio of species richness, biomass, and β-diversity over time decreased ecosystem multifunctionality. Our results suggest that non-native fishes caused a homogenization of the native fish species over time, resulting in impoverishment of ecosystem multifunctionality; in part because non-native fishes are less productive than native ones. Therefore, focus on long-term effects and use of multiple biodiversity facets (α- and β-diversity) are crucial to make reliable predictions of the effects of non-native fish species on native fishes and ecosystem functioning.
Collapse
Affiliation(s)
- Dieison André Moi
- Department of Biology, Graduate Program in Ecology of Inland Waters, Nupelia, University of Maringá, Jd. Universitário, Maringá, PR 87020-900, Brazil.
| | - Diego Corrêa Alves
- Department of Biology, Graduate Program in Ecology of Inland Waters, Nupelia, University of Maringá, Jd. Universitário, Maringá, PR 87020-900, Brazil
| | | | - Pablo Augusto Poleto Antiqueira
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Franco Teixeira de Mello
- Departamento de Ecología y Gestión Ambiental CURE, Universidad de la República, Tacuarembó s/n, Maldonado, Uruguay
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Gustavo Quevedo Romero
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Roger Paulo Mormul
- Department of Biology, Graduate Program in Ecology of Inland Waters, Nupelia, University of Maringá, Jd. Universitário, Maringá, PR 87020-900, Brazil
| | - Claudia Costa Bonecker
- Department of Biology, Graduate Program in Ecology of Inland Waters, Nupelia, University of Maringá, Jd. Universitário, Maringá, PR 87020-900, Brazil
| |
Collapse
|
16
|
Bruna EM, Chazdon R, Errington TM, Nosek BA. A proposal to advance theory and promote collaboration in tropical biology by supporting replications. Biotropica 2021. [DOI: 10.1111/btp.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emilio M. Bruna
- Department of Wildlife Ecology and Conservation University of Florida Gainesville FL USA
- Center for Latin American Studies University of Florida Gainesville FL USA
| | - Robin Chazdon
- Association for Tropical Biology and Conservation Gainesville FL USA
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| | | | - Brian A. Nosek
- Center for Open Science Charlottesville VA USA
- University of Virginia Charlottesville VA USA
| |
Collapse
|
17
|
Bonhomme C, Céréghino R, Carrias JF, Compin A, Corbara B, Jassey VEJ, Leflaive J, Farjalla VF, Marino NAC, Rota T, Srivastava DS, Leroy C. In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a Neotropical ecosystem. J Anim Ecol 2020; 90:2015-2026. [PMID: 33232512 DOI: 10.1111/1365-2656.13392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/11/2020] [Indexed: 12/01/2022]
Abstract
While future climate scenarios predict declines in precipitations in many regions of the world, little is known of the mechanisms underlying community resilience to prolonged dry seasons, especially in 'naïve' Neotropical rainforests. Predictions of community resilience to intensifying drought are complicated by the fact that the underlying mechanisms are mediated by species' tolerance and resistance traits, as well as rescue through dispersal from source patches. We examined the contribution of in situ tolerance-resistance and immigration to community resilience, following drought events that ranged from the ambient norm to IPCC scenarios and extreme events. We used rainshelters above rainwater-filled bromeliads of French Guiana to emulate a gradient of drought intensity (from 1 to 3.6 times the current number of consecutive days without rainfall), and we analysed the post-drought dynamics of the taxonomic and functional community structure of aquatic invertebrates to these treatments when immigration is excluded (by netting bromeliads) or permitted (no nets). Drought intensity negatively affected invertebrate community resistance, but had a positive influence on community recovery during the post-drought phase. After droughts of 1 to 1.4 times the current intensities, the overall invertebrate abundance recovered within invertebrate life cycle durations (up to 2 months). Shifts in taxonomic composition were more important after longer droughts, but overall, community composition showed recovery towards baseline states. The non-random patterns of changes in functional community structure indicated that deterministic processes like environmental filtering of traits drive community re-assembly patterns after a drought event. Community resilience mostly relied on in situ tolerance-resistance traits. A rescue effect of immigration after a drought event was weak and mostly apparent under extreme droughts. Under climate change scenarios of drought intensification in Neotropical regions, community and ecosystem resilience could primarily depend on the persistence of suitable habitats and on the resistance traits of species, while metacommunity dynamics could make a minor contribution to ecosystem recovery. Climate change adaptation should thus aim at identifying and preserving local conditions that foster in situ resistance and the buffering effects of habitat features.
Collapse
Affiliation(s)
- Camille Bonhomme
- Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundão, Rio de Janeiro, Brazil.,AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | | | - Arthur Compin
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Bruno Corbara
- LMGE, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Vincent E J Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Joséphine Leflaive
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Vinicius F Farjalla
- Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundão, Rio de Janeiro, Brazil
| | - Nicholas A C Marino
- Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundão, Rio de Janeiro, Brazil
| | - Thibaut Rota
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Diane S Srivastava
- Departmennt of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Céline Leroy
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.,ECOFOG, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| |
Collapse
|