1
|
Zhang Y, Zeng X, Du W, Zhang Z, Xia Y, Song J, Fu J, Zhang S, Zhong Y, Tian Y, Gong Y, Yue S, Zheng Y, Bao X, Zhang Y, Zhang Q, Liu X. All-Optical and Ultrafast Control of High-Order Exciton-Polariton Orbital Modes. NANO LETTERS 2025; 25:8352-8359. [PMID: 40349216 DOI: 10.1021/acs.nanolett.5c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Exciton-polaritons flows within closed quantum circuits can spontaneously form phase-locked modes that carry orbital angular momentum (OAM). With its infinite set of angular momentum quantum numbers (ℏ), high-order OAM represents a transformative solution to the bandwidth bottleneck in multiplexed optical communication. However, its practical application is hindered by the limited choice of materials which in general requires cryogenic temperatures and the reliance on mechanical switching. In this work, we achieve stable and high-order (up to order of 33) OAM modes by constructing a closed quantum circuit using the halide perovskite microcavities at room temperature. By controlling the spatial and temporal symmetry of the closed quantum circuits using another laser pulse, we achieve significant tuning OAM of EP flows from 8ℏ to 12ℏ. Our work demonstrates all-optical and ultrafast control of high-order OAM using exciton-polariton condensates in perovskite microcavities that would have important applications in high-throughput optical communications.
Collapse
Affiliation(s)
- Yuyang Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zeng
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Nankai University, 300350, Tianjin, China
| | - Wenna Du
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyong Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuexing Xia
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiepeng Song
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jianhui Fu
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Zhang
- School of Physics and Electronic Information, Weifang University, Weifang, 261061, China
| | - Yangguang Zhong
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yubo Tian
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyang Gong
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Yue
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Zheng
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaotian Bao
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yutong Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xinfeng Liu
- National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Cai Y, Yan S, Lin YJ, Lin T, Qiu L, Pan X, Wang W. Quantum Wells in Magnesium-Manganese Bimetallic Antiperovskites for High Luminescence. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16987-16997. [PMID: 40062984 DOI: 10.1021/acsami.4c18047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Perovskite has attracted extensive attention in the realm of photovoltaic and light-emitting diodes (LEDs) on account of its outstanding photoelectric properties. Perovskite-type quantum wells (QW) have been developed for high-efficiency perovskite-type LEDs. However, there are few reports on the in situ quantum well structure formed by a bimetallic antiperovskite and its properties. In this work, we report a double/bimetallic antiperovskite composed of magnesium and manganese. It is an in situ homogeneous junction composed of a p-type manganese well layer and an n-type magnesium barrier layer, which promotes the recombination of carriers and increases the luminous efficiency. The in situ quantum wells enable the green antiperovskite LED to have a maximum external quantum efficiency reaching 20.2% and a maximum luminance as high as 19000 cd m-2. These research results provide the chance to produce high-performance LEDs based on an in situ quantum well structure. Meanwhile, the strategy developed in this work is helpful for the design of other highly luminescent lead-free materials.
Collapse
Affiliation(s)
- Yangyang Cai
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Siyu Yan
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Advanced Materials Laboratory, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Tingting Lin
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiaoyong Pan
- School of Material & Science Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Weizhi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
Shi Y, Deng X, Gan Y, Xu L, Zhang Q, Xiong Q. Ten Years of Perovskite Lasers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413559. [PMID: 39828626 DOI: 10.1002/adma.202413559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Indexed: 01/22/2025]
Abstract
Over the past decade, semiconducting halide perovskite lasers have emerged as a transformative platform in optoelectronics, owing to unique properties such as high photoluminescence quantum yields, tunable bandgaps, and low-cost fabrication processes. This review systematically examines the advancements in halide perovskite lasers, covering diverse laser architectures, such as whispering gallery mode, Fabry-Pérot, plasmonic, bound states in the continuum (BIC), quantum dot, and polariton lasers. The mechanisms of optical gain, the role of material engineering in optimizing lasing performance, and the challenges associated with continuous-wave (CW) pumping and electrically driven lasing are discussed. Furthermore, recent progress in improving the stability and scalability of perovskite lasers, essential for their integration into practical applications in displays, optical communications, sensing, and integrated photonics is highlighted. Finally, future research directions are discussed, emphasizing the potential of perovskite lasers to revolutionize various technological domains by enabling the development of next-generation photonic devices.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P.R. China
| | - Xinyi Deng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Yusong Gan
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P.R. China
| | - Luobing Xu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P.R. China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P.R. China
- Frontier Science Center for Quantum Information, Beijing, 100084, P.R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P.R. China
| |
Collapse
|
4
|
Wang S, Zhang Y, Halasyamani PS, Mitzi DB. Chirality and Solvent Coassist the Structural Evolution of Hybrid Manganese Chlorides with Second-Harmonic-Generation Response. Inorg Chem 2024; 63:16121-16127. [PMID: 39155446 DOI: 10.1021/acs.inorgchem.4c02588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Chiral hybrid metal halides have shown great potential in optoelectronics, including for spin splitting, circularly polarized luminescence, and nonlinear-optical properties. However, despite their inherent inversion symmetry breaking, studies on second harmonic generation (SHG) of chiral hybrid manganese(II) halides remain relatively rare. Here, we report a series of structurally diverse hybrid manganese(II) chlorides: (Rac-MBA)2[MnCl4(H2O)2] (1), (S-MBA)2[MnCl4(H2O)2] (2), (S-MBA)2[Mn2Cl6(H2O)4] (3), and (S-MBA)[MnCl3(MeOH)] (4), where MBA = α-methylbenzylammonium, providing tunability of the coordination environment and structural dimensionality via fine control of the MBA cation chiral state and crystal preparation process, thereby enabling modulation of the SHG effects. Specifically, as the amount of methanol increases during the crystal preparation process, the structures of the chiral compounds vary from a 0D structure consisting of isolated octahedra to a 0D structure composed of octahedra dimers and to 1D chains of edge-sharing Mn-centered octahedra. In contrast, the structure of the racemic compound remains unchanged, independent of the crystal preparation pathway. The structural details, including the coordination environment, H-bonding, dimensionality, and lattice distortion, are described. The SHG response of the racemic compound derives only from the inorganic lattice, while the responses of the chiral compounds are attributed to the synergetic effect of the chiral cations and inorganic moieties.
Collapse
Affiliation(s)
- Sasa Wang
- Department of Mechanical Engineering and Materials Science and Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yujie Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - P Shiv Halasyamani
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science and Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
5
|
Zhao C, Guo J, Tao J, Chu J, Chen S, Xing G. Pulse-doubling perovskite nanowire lasers enabled by phonon-assisted multistep energy funneling. LIGHT, SCIENCE & APPLICATIONS 2024; 13:170. [PMID: 39019895 PMCID: PMC11255266 DOI: 10.1038/s41377-024-01494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 07/19/2024]
Abstract
Laser pulse multiplication from an optical gain medium has shown great potential in miniaturizing integrated optoelectronic devices. Perovskite multiple quantum wells (MQWs) structures have recently been recognized as an effective gain media capable of doubling laser pulses that do not rely on external optical equipment. Although the light amplifications enabled with pulse doubling are reported based on the perovskite MQWs thin films, the micro-nanolasers possessed a specific cavity for laser pulse multiplication and their corresponding intrinsic laser dynamics are still inadequate. Herein, a single-mode double-pulsed nanolaser from self-assembled perovskite MQWs nanowires is realized, exhibiting a pulse duration of 28 ps and pulse interval of 22 ps based on single femtosecond laser pulse excitation. It is established that the continuous energy building up within a certain timescale is essential for the multiple population inversion in the gain medium, which arises from the slowing carrier localization process owning to the stronger exciton-phonon coupling in the smaller-n QWs. Therefore, the double-pulsed lasing is achieved from one fast energy funnel process from the adjacent small-n QWs to gain active region and another slow process from the spatially separated ones. This report may shed new light on the intrinsic energy relaxation mechanism and boost the further development of perovskite multiple-pulse lasers.
Collapse
Affiliation(s)
- Chunhu Zhao
- Hunan Provincial Key Laboratory of Carbon Neutrality and Intelligent Energy, School of Resource & Environment, Hunan University of Technology and Business, 410205, Changsha, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
| | - Jia Guo
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macau, China
| | - Jiahua Tao
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China.
| | - Junhao Chu
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
| | - Shaoqiang Chen
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macau, China.
| |
Collapse
|
6
|
Liu J, Ma Q, Li R, Tang Y, Liu J, Feng X. Phase Control and Singlet Energy Transfer Enabled by Trimethylamine Modified Boron Dipyrromethene for Stable CsPbBr 3 Quantum Wells. Angew Chem Int Ed Engl 2024; 63:e202314092. [PMID: 38193569 DOI: 10.1002/anie.202314092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
The phase distribution and organic spacer cations play pivotal roles in determining the emission performance and stability of perovskite quantum wells (QWs). Here, we propose a universal molecular regulation strategy to tailor phase distribution and enhance the stability of CsPbBr3 QWs. The capability of sterically hindered ligands with formidable surface binding groups is underscored in directing CsPbBr3 growth and refining phase distribution. With trimethylamine modified boron dipyrromethene (BDP-TMA) ligand as a representative, the BDP-TMA driven can precisely control phase distribution and passivate defects of CsPbBr3 . Notably, BDP-TMA acts as a co-spacer organic entity in obtained BDP-TMA-CsPbBr3 , facilitating efficient singlet energy transfer and tailoring the luminescence to produce a distinctive bluish-white emission. The BDP-TMA-CsPbBr3 demonstrates significant phase stability under water exposure, light irradiation, and moderate temperature. Interestingly, BDP-TMA-CsPbBr3 exhibits the thermally-induced dynamic fluorescence control at elevated temperatures, which can be achieved feasible for advanced information encryption. This discovery paves the way for the exploration of perovskite QWs in applications like temperature sensing, anti-counterfeiting, and other advanced optical smart technologies.
Collapse
Affiliation(s)
- Jinli Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Qian Ma
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Ruicong Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiacheng Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xiaoxia Feng
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
7
|
He H, Xing Y, Cui Z, Qin S, Wen Z, Yang D, Xie H, Mei S, Zhang W, Guo R. Regulating Phase Distribution of Dion-Jacobson Perovskite Colloidal Multiple Quantum Wells Toward Highly Stable Deep-Blue Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305191. [PMID: 37752759 DOI: 10.1002/smll.202305191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Metal halide perovskite colloidal quantum wells (CQWs) hold great promise for modern photonics and optoelectronics. However, current studies focus on Ruddlesden-Popper (R-P) phase perovskite CQWs that contain bilayers of monovalent long-chain alkylamomoniums between the separated perovskite octahedra layers. The bilayers are packed back-to-back via weak van der Waals interaction, resulting in inferior charge carrier transport and easier decomposition of perovskite. This report first creates a new type of perovskite colloidal multiple QWs (CMQWs) in the form of Dion-Jacobson (D-J) structure by introducing an asymmetric diammonium cation. Furthermore, the phase distribution is optimized by the synergistic effect of valeric acid and zwitterionic lecithin, finally achieving pure deep-blue emission at 435 nm with narrow full width at half maximum. The diammonium layer in D-J perovskite CMQWs features extremely short width of only ≈0.6 nm, thereby contributing to more effective charge carrier transport and higher stability. Through the continuous photoluminescence (PL) measurement and corresponding theoretical calculation, the higher stability of D-J perovskite CMQWs than that of R-P structural CMQWs is confirmed. This work reveals the inherent superior stability of D-J structural CMQWs, which opens a new direction for fabricating stable perovskite optoelectronics.
Collapse
Affiliation(s)
- Haiyang He
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yifeng Xing
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Zhongjie Cui
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Shuaitao Qin
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhuoqi Wen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Dan Yang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Xihu District, Hangzhou City, Zhejiang, 310003, China
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, Zhejiang, 322000, China
- Zhongshan - Fudan Joint Innovation Center, Zhongshan, 528437, China
| |
Collapse
|
8
|
Wierzbowska M, Meléndez JJ. Exploring Epitaxial Structures for Electrically Pumped Perovskite Lasers: A Study of CsPb(Br,I) 3 Based on the Ab Initio Bethe-Salpeter Equation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:427. [PMID: 38255596 PMCID: PMC11154405 DOI: 10.3390/ma17020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Halide perovskites are widely used as components of electronic and optoelectronic devices such as solar cells, light-emitting diodes (LEDs), optically pumped lasers, field-effect transistors, photodetectors, and γ-detectors. Despite this wide range of applications, the construction of an electrically pumped perovskite laser remains challenging. In this paper, we numerically justify that mixing two perovskite compounds with different halide elements can lead to optical properties suitable for electrical pumping. As a reference, the chosen model material was CsPbBr3, whose performance as a part of lasers has been widely recognised, with some Br atoms substituted by I at specific sites. In particular, a strong enhancement of the low-energy absorption peaks has been obtained using the ab initio Bethe-Salpeter equation. Based on these results, we propose specific architectures of ordered doping that could be realised by epitaxial growth. Efficient light emission from the bottom of the conduction band is expected.
Collapse
Affiliation(s)
- Małgorzata Wierzbowska
- Institute of High Pressure Physics Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Juan J. Meléndez
- Department of Physics, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain;
- Institute for Advanced Scientific Computing of Extremadura (ICCAEx), Avda. de Elvas, s/n, 06006 Badajoz, Spain
| |
Collapse
|
9
|
Zhang L, Mei L, Wang K, Lv Y, Zhang S, Lian Y, Liu X, Ma Z, Xiao G, Liu Q, Zhai S, Zhang S, Liu G, Yuan L, Guo B, Chen Z, Wei K, Liu A, Yue S, Niu G, Pan X, Sun J, Hua Y, Wu WQ, Di D, Zhao B, Tian J, Wang Z, Yang Y, Chu L, Yuan M, Zeng H, Yip HL, Yan K, Xu W, Zhu L, Zhang W, Xing G, Gao F, Ding L. Advances in the Application of Perovskite Materials. NANO-MICRO LETTERS 2023; 15:177. [PMID: 37428261 PMCID: PMC10333173 DOI: 10.1007/s40820-023-01140-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023]
Abstract
Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.
Collapse
Affiliation(s)
- Lixiu Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Luyao Mei
- School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, 519082, People's Republic of China
| | - Kaiyang Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, People's Republic of China
| | - Yinhua Lv
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Shuai Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Yaxiao Lian
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaoke Liu
- Department of Physics, Linköping University, 58183, Linköping, Sweden
| | - Zhiwei Ma
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, People's Republic of China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, People's Republic of China
| | - Qiang Liu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Shuaibo Zhai
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Shengli Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Gengling Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ligang Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510000, People's Republic of China
| | - Bingbing Guo
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Ziming Chen
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Keyu Wei
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Aqiang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Shizhong Yue
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Guangda Niu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiyan Pan
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Sun
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Hua
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Wu-Qiang Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Dawei Di
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Baodan Zhao
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zhijie Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Yang Yang
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Liang Chu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Mingjian Yuan
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Haibo Zeng
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Keyou Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510000, People's Republic of China
| | - Wentao Xu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, People's Republic of China.
| | - Lu Zhu
- School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, 519082, People's Republic of China.
| | - Wenhua Zhang
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, People's Republic of China.
| | - Feng Gao
- Department of Physics, Linköping University, 58183, Linköping, Sweden.
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.
| |
Collapse
|
10
|
Zhang J, Qin J. Revealing Charge Transfer Dynamics in Methylammonium Lead Bromide Perovskites via Transient Photoluminescence Characterization. ACS APPLIED ENERGY MATERIALS 2022; 5:8084-8091. [PMID: 35935017 PMCID: PMC9344379 DOI: 10.1021/acsaem.2c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
It is an important but difficult issue to identify charge and energy transfer processes in materials where multiple band gaps coexist. Conventional methods using transient absorption and optoelectrical characterization based on devices could not provide a clear picture of transfer dynamics. According to the bimolecular and monomolecular nature of each process, the carrier dynamics is supposed to solve this issue. In this work, we established a novel, convenient and universal strategy based on the calculation of carrier dynamics to distinguish energy/charge transfer and reveal their transfer dynamics in methylammonium lead bromide (MAPbBr3) films with mixing wide-band gap small grains and narrow-band gap large grains. A highly efficient charge transfer process is confirmed with a high negative nonradiative bimolecular recombination coefficient of -2.12 × 10-7 cm-3 s-1, indicating that free carriers within small grains are efficiently transferred from small grains to large grains. As a result, emission from large grains becomes dominant when increasing the photoexcitation intensity. In addition, current-density-dependent electroluminescence results in emission only from large grains, further verifying the charge transfer process. Moreover, it is interesting to find that when decreasing the size of small grains, the charge transfer process is facilitated, leading to an increased nonradiative bimolecular recombination coefficient from -2.12 × 10-7 to -4.01 × 10-7 cm-3 s-1 in large grains. Our work provides a convenient strategy to identify and quantify energy and charge transfer in metal halide perovskites, which can be used to enrich our understanding of perovskite photophysics.
Collapse
Affiliation(s)
- Jia Zhang
- Biomolecular
and Organic Electronics, IFM, Linköping
University, Linköping 58183, Sweden
- Department
of Materials Science and Engineering, University
of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jiajun Qin
- Biomolecular
and Organic Electronics, IFM, Linköping
University, Linköping 58183, Sweden
| |
Collapse
|
11
|
Ebe H, Wang YK, Shinotsuka N, Cheng YH, Uwano M, Suzuki R, Dong Y, Ma D, Lee S, Chiba T, Sargent EH, Kido J. Energy Transfer between Size-Controlled CsPbI 3 Quantum Dots for Light-Emitting Diode Application. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17691-17697. [PMID: 35411769 DOI: 10.1021/acsami.2c03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perovskite quantum dots (PQDs) are applicable in light-emitting diodes (LEDs) owing to their color tunability, high color purity, and excellent photoluminescence quantum yield (PLQY) in the solution state. However, a PQD film obtained through nonradiative recombination by concentration quenching and the formation of surface defects exhibited a low PLQY. In this study, we focused on the energy transfer between PQDs with different energy gaps (Eg) to reduce nonradiative recombination in the film state and consequently achieve high device performance. We prepared size-controlled PQDs measuring 10.7 nm (large-size QD; LQD) and 7.9 nm (small-size QD; SQD) with different Eg values and observed a spectral overlap between SQD emission and LQD absorption. To investigate the Förster resonance energy transfer (FRET) from SQDs to LQDs, we prepared SQD-LQD mixed QDs (MQDs). The MQD film enhanced LQD emission and exhibited a higher PLQY (52%) with a longer PL decay time (7.4 ns) than those exhibited by the neat LQD film (38% and 6.2 ns). This energy transfer was determined to be FRET by photoluminescence excitation and PL decay times. Moreover, the external quantum efficiency of an MQD-based LED increased to 15%, indicating that the FRET process can enhance the PLQY of the film and LED efficiency.
Collapse
Affiliation(s)
- Hinako Ebe
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ya-Kun Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Narumi Shinotsuka
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yu-Hong Cheng
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Mizuho Uwano
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Rikuo Suzuki
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yitong Dong
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Dongxin Ma
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Seungjin Lee
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Takayuki Chiba
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Junji Kido
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
12
|
Wang C, Dai G, Wang J, Cui M, Yang Y, Yang S, Qin C, Chang S, Wu K, Liu Y, Zhong H. Low-Threshold Blue Quasi-2D Perovskite Laser through Domain Distribution Control. NANO LETTERS 2022; 22:1338-1344. [PMID: 35049298 DOI: 10.1021/acs.nanolett.1c04666] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quasi-2D perovskites, composed of self-organized quantum well structures, are emerging as gain materials for laser applications. Here we investigate the influence of domain distribution on the laser emission of CsPbCl1.5Br1.5-based quasi-2D perovskites. The use of 2,2-diphenylethylammonium bromide (DPEABr) as a ligand enables the formation of quasi-2D film with a large-n-dominated narrow domain distribution. Due to the reduced content of small-n domains, the incomplete energy transfer from small-n to large-n domains can be greatly addressed. Moreover, the photoinduced carriers can be concentrated on most of the large-n domains to reduce the local carrier density, thereby suppressing the Auger recombination. By controlling the domain distribution, we achieve blue amplified spontaneous emission and single-mode vertical-cavity surface-emitting lasing with low thresholds of 6.5 and 9.2 μJ cm-2, respectively. This work provides a guideline to design the domain distribution to realize low-threshold multicolor perovskite lasers.
Collapse
Affiliation(s)
- Chenhui Wang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Guang Dai
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- School of Science, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Minghuan Cui
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Sirui Yang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chaochao Qin
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Shuai Chang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Yufang Liu
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
13
|
Zhao X, Liu T, Loo YL. Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105849. [PMID: 34668250 DOI: 10.1002/adma.202105849] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Indexed: 05/20/2023]
Abstract
Perovskite solar cells (PSCs) have rapidly emerged as one of the hottest topics in the photovoltaics community owing to their high power-conversion efficiencies (PCE), and the promise to be produced at low cost. Among various PSCs, typical 3D perovskite-based solar cells deliver high PCE but they suffer from severe instability, which restricts their practical applications. In contrast to 3D perovskites, 2D perovskites that incorporate larger, less volatile, and generally more hydrophobic organic cations exhibit much improved thermal, chemical, and environmental stability. 2D perovskites can have different roles within a solar cell, either as the primary light absorber (2D PSCs), or as a capping layer atop a 3D perovskite absorbing layer (2D/3D PSCs). Tradeoffs between PCE and stability exist in both types of PSCs-2D PSCs are more stable but exhibit lower efficiency while 2D/3D PSCs deliver exciting efficiency but show relatively poor stability. To address this PCE/stability tradeoff, the challenges both the 2D and 2D/3D PSCs face are identified and select works the community has undertaken to overcome them are highlighted in this review. It is ended with several recommendations on how to further improve PSCs so their performance and stability can be commensurate with application requirements.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Tianran Liu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
14
|
Li Y, Shen L, Pun EYB, Lin H. All-inorganic perovskite quantum dots-based electrospun polyacrylonitrile fiber for ultra-sensitive trace-recording. NANOTECHNOLOGY 2021; 33:095708. [PMID: 34798625 DOI: 10.1088/1361-6528/ac3b83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
All-inorganic dual-phase CsPbBr3-Cs4PbBr6quantum dots (CPB QDs)-based polyacrylonitrile (PAN) fiber synthesized by supersaturated recrystallization and electrospinning technique possesses characteristics of homogeneous morphology, high crystallinity and solution sensitivity. Under 365 nm laser excitation, CPB@PAN fiber exhibits surprising trace-recording capability attributing to the splash-enhanced fluorescence (FL) performance with a narrow-band emission at 477-515 nm. In the process of ethanol anhydrous (EA) and water splashing, the CPB@PAN fiber presents conspicuous blue and green emission when contacting with EA and water, and maintains intense blue and green FL for more than 4 months. These experimental and theoretical findings provide a facile technology for the development of biological protection display, biotic detection and moisture-proof forewarning based on the trace-recording performance of CPB@PAN fiber.
Collapse
Affiliation(s)
- Yanyan Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Lifan Shen
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- College of Microelectronics and Key Laboratory of Optoelectronics Technology, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
15
|
Wang K, Liang J, Chen R, Gao Z, Zhang C, Yan Y, Yao J, Zhao YS. Geometry-Programmable Perovskite Microlaser Patterns for Two-Dimensional Optical Encryption. NANO LETTERS 2021; 21:6792-6799. [PMID: 34398615 DOI: 10.1021/acs.nanolett.1c01423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lasing signals with easily distinguishable readout and cavity-geometry-dependent output are emerging as novel cryptographic primitives for two-dimensional (2D) optical encryption, while their practical application is restricted by the challenge of integrating different lasing elements onto an identical 2D pattern. Herein, a lithographic template-confined crystallization approach was proposed to prepare large-scale perovskite microstructures with any desired geometries and locations, which enabled them to serve as 2D lasing patterns for reliable encryption and authentication. These prepatterned perovskite microstructures realized whispering-gallery-mode lasing and also demonstrated outstanding reproducibility of lasing actions. Benefiting from the feature of their cavity-geometry-dependent lasing thresholds, we achieved controllable laser output from different shaped elements, which was further utilized for the proof-of-concept demonstration of a cryptographic implementation. The remarkable lasing performance and feasible preparation of 2D microlaser patterns with customized geometries and locations provide us deep insights into the concepts and fabrication technologies for 2D optical encryption.
Collapse
Affiliation(s)
- Kang Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Liang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Chen
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenhua Gao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chuang Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongli Yan
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Sheng Zhao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Liu Z, Hu M, Du J, Shi T, Wang Z, Zhang Z, Hu Z, Zhan Z, Chen K, Liu W, Tang J, Zhang H, Leng Y, Li R. Subwavelength-Polarized Quasi-Two-Dimensional Perovskite Single-Mode Nanolaser. ACS NANO 2021; 15:6900-6908. [PMID: 33821615 DOI: 10.1021/acsnano.0c10647] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When approaching the subwavelength or deep subwavelength scale, there is a fundamental trade-off between the ultimate shrinking size and the performance for miniaturized lasers. Herein, to overcome this trade-off, we investigated the excitonic gain nature of quasi-two-dimensional (quasi-2D) perovskites and revealed that both singlet excitons and polarons would make nearly the entire contribution within ∼50 ps to a high net gain of 558 cm-1. Inspired by the gain characteristic, we successfully shrank the quasi-2D perovskites laser to the subwavelength scale using only a layer of ultraviolet glue and a glass substrate in the vertical dimension. In spite of the compact and simple cavity structure, single-mode lasing with a highly linear polarization degree of 81% and a quality factor of 1635 was achieved. The extremely short cavity, excellent lasing performance, and simple structure of the quasi-2D perovskite laser are expected to provide insights into next-generation integrated laser sources.
Collapse
Affiliation(s)
- Zhengzheng Liu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Manchen Hu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Juan Du
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongchao Shi
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Zeyu Zhang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Zhiping Hu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zijun Zhan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Keqiang Chen
- Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Zhang
- Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ruxin Li
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
17
|
Qian XY, Tang YY, Zhou W, Shen Y, Guo ML, Li YQ, Tang JX. Strategies to Improve Luminescence Efficiency and Stability of Blue Perovskite Light‐Emitting Devices. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Xiao-Yan Qian
- School of Physics and Electronic Science Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center East China Normal University Shanghai 200062 China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ying-Yi Tang
- School of Physics and Electronic Science Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center East China Normal University Shanghai 200062 China
| | - Wei Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yang Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ming-Lei Guo
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yan-Qing Li
- School of Physics and Electronic Science Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center East China Normal University Shanghai 200062 China
| | - Jian-Xin Tang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE) Macau University of Science and Technology Taipa 999078 Macau China
| |
Collapse
|
18
|
Zhang L, Zhang X, Lu G. Predictions of moiré excitons in twisted two-dimensional organic-inorganic halide perovskites. Chem Sci 2021; 12:6073-6080. [PMID: 33996003 PMCID: PMC8098687 DOI: 10.1039/d1sc00359c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent breakthrough in synthesizing arbitrary vertical heterostructures of Ruddlesden–Popper (RP) perovskites opens doors to myriad quantum optoelectronic applications. However, it is not clear whether moiré excitons and flat bands can be formed in such heterostructures. Here, we predict from first principles that twisted homobilayers of RP perovskite, MA2PbI4, can host moiré excitons and yield flat energy bands. The moiré excitons exhibit unique and hybridized characteristics with electrons confined in a single layer of a striped distribution while holes localized in both layers. Nearly flat valence bands can be formed in the bilayers with relatively large twist angles, thanks to the presence of hydrogen bonds that strengthen the interlayer coupling. External pressures can further increase the interlayer coupling, yielding more localized moiré excitons and flatter valence bands. Finally, electrostatic gating is predicted to tune the degree of hybridization, energy, position and localization of moiré excitons in twisted MA2PbI4 bilayers. Excitonic states in twisted MA2PbI4 bilayers were calculated by first-principles calculations.![]()
Collapse
Affiliation(s)
- Linghai Zhang
- Department of Physics and Astronomy, California State University Northridge California 91330-8268 USA
| | - Xu Zhang
- Department of Physics and Astronomy, California State University Northridge California 91330-8268 USA
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge California 91330-8268 USA
| |
Collapse
|
19
|
Jiang Y, Wei J, Yuan M. Energy-Funneling Process in Quasi-2D Perovskite Light-Emitting Diodes. J Phys Chem Lett 2021; 12:2593-2606. [PMID: 33689359 DOI: 10.1021/acs.jpclett.1c00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quasi-two-dimensional (quasi-2D) perovskites, demonstrating excellent radiative efficiency and facile processability, have been considered as next-generation materials for light-emitting applications. Quasi-2D perovskites with a unique energy-funneling process offer an approach to achieve not only high photoluminescence quantum yields at low excitation but also tunable emission induced by dielectric and quantum confinement. In this Perspective, we highlight the mechanism of the energy-funneling process and discuss the salient position of it in quasi-2D perovskite materials for light-emitting applications; we then present the significance of component and molecular engineering strategies for the energy-funneling process to meet the requirements of stable emission and display technologies. Considering present achievements, we also provide promising directions for future advancements of quasi-2D perovskite materials. We hope this Perspective can provide a new viewpoint for researchers to encourage the commercial progress of quasi-2D perovskites for light-emitting applications.
Collapse
Affiliation(s)
- Yuanzhi Jiang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071 Tianjin, P.R. China
| | - Junli Wei
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071 Tianjin, P.R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071 Tianjin, P.R. China
| |
Collapse
|
20
|
Recent Advances on Cyan‐Emitting (480 ≤
λ
≤ 520 nm) Metal Halide Perovskite Materials. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Pina JM, Parmar DH, Bappi G, Zhou C, Choubisa H, Vafaie M, Najarian AM, Bertens K, Sagar LK, Dong Y, Gao Y, Hoogland S, Saidaminov MI, Sargent EH. Deep-Blue Perovskite Single-Mode Lasing through Efficient Vapor-Assisted Chlorination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006697. [PMID: 33349998 DOI: 10.1002/adma.202006697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Metal halide perovskites have emerged as promising candidates for solution-processed laser gain materials, with impressive performance in the green and red spectral regions. Despite exciting progress, deep-blue-an important wavelength for laser applications-remains underexplored; indeed, cavity integration and single-mode lasing from large-bandgap perovskites have yet to be achieved. Here, a vapor-assisted chlorination strategy that enables synthesis of low-dimensional CsPbCl3 thin films exhibiting deep-blue emission is reported. Using this approach, high-quality perovskite thin films having a low surface roughness (RMS ≈ 1.3 nm) and efficient charge transfer properties are achieved. These enable us to document low-threshold amplified spontaneous emission. Levering the high quality of the gain medium, vertical-cavity surface-emitting lasers with a low lasing threshold of 6.5 µJ cm-2 are fabricated. This report of deep-blue perovskite single-mode lasing showcases the prospect of increasing the range of deep-blue laser sources.
Collapse
Affiliation(s)
- Joao M Pina
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Darshan H Parmar
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Golam Bappi
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Chun Zhou
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Hitarth Choubisa
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Maral Vafaie
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Amin M Najarian
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Koen Bertens
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Laxmi Kishore Sagar
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Yitong Dong
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Yuan Gao
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Sjoerd Hoogland
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Makhsud I Saidaminov
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| | - Edward H Sargent
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4, Canada
| |
Collapse
|
22
|
Ren C, Xiao S, Li J, Ma L, Chen R, Ye C, Gao Y, Su C, He T. Large Nonlinear Optical Activity of a Near-infrared-absorbing Bithiophene-based Polymer with a Head-to-head Linkage. Chem Asian J 2021; 16:309-314. [PMID: 33354915 DOI: 10.1002/asia.202001311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/17/2020] [Indexed: 12/20/2022]
Abstract
Although the production of near-infrared (NIR)-absorbing organic polymers with an excellent nonlinear optical (NLO) response is vital for various optoelectronic devices and photodynamic therapy, the molecular design and relevant photophysical investigation still remain challenging. In this work, large NLO activity is observed for an NIR-absorbing bithiophene-based polymer with a unique head-to-head linkage in the NIR region. The saturable absorption coefficient and modulation depth of the polymer are determined as ∼-3.5×105 cm GW-1 and ∼32.43%, respectively. Notably, the polymer exhibits an intrinsic nonlinear refraction index up to ∼-9.36 cm2 GW-1 , which is six orders of magnitude larger than that of CS2 . The maximum molar-mass normalized two-photon absorption cross-section (σ2 /M) of this polymer can be up to ∼14 GM at 1200 nm. Femtosecond transient absorption measurements reveal significant spectral overlap between the 2PA and excited state absorption in the 1000-1400 nm wavelength range and an efficient triplet quantum yield of ∼36.7%. The results of this study imply that this NIR-absorbing polymer is promising for relevant applications.
Collapse
Affiliation(s)
- Can Ren
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Shuyu Xiao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, P. R. China.,Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, 210023, Nanjing, P. R. China
| | - Junzi Li
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 518055, Shenzhen, P. R. China
| | - Chuanxiang Ye
- Shenzhen Institute of Information Technology, 518172, Shenzhen, P. R. China
| | - Yang Gao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Chenliang Su
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Tingchao He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, P. R. China.,Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, 210023, Nanjing, P. R. China
| |
Collapse
|