1
|
Li J, Sun W, Cao Y, Wu J, Duan L, Zhang M, Luo X, Deng Q, Peng Z, Mou X, Li W, Wang P. Increased temperature enhances microbial-mediated lignin decomposition in river sediment. MICROBIOME 2025; 13:89. [PMID: 40170118 PMCID: PMC11959967 DOI: 10.1186/s40168-025-02076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/04/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Lignin, as the most abundant recalcitrant organic carbon in terrestrial ecosystems, plays a crucial role in the Earth's carbon cycle. After lignin entering aquatic environments, portion of it tends to accumulate in sediments, forming a stable carbon relatively reservoir. However, the increasing temperature caused by human activities may impact microbial-mediated lignin decomposition, thereby affecting sedimentary carbon reservoirs. Therefore, revealing how temperature affects microbial-mediated lignin decomposition in river sediment, a topic that remains elusive, is essential for comprehending the feedbacks between river carbon reservoirs and climate. To address this, we conducted stable isotope probing of river surface sediment using 13C-lignin and 13C-vanillin, and utilized a series of techniques, including CO2 production analysis, 16S rRNA gene amplicon sequencing, metagenomics, and metatranscriptomics, to identify the lignin-decomposing microbes and the effects of temperature on microbial-mediated lignin decomposition. RESULTS We found that elevated temperatures not only increased the total sediment respiration (total CO2) and the CO2 emissions from lignin/vanillin decomposition, but also enhanced priming effects. The 13C-labled taxa, including Burkholderiales, Sphingomonadales, and Pseudomonadales, were identified as the main potential lignin/vanillin decomposers, and their abundances and activity significantly increased as temperature increased. Furthermore, we observed that increasing temperature significantly increased the activity of lignin decomposing pathways, including β-aryl ether fragments and 4,5-PDOG pathway. Additionally, as temperature increases, the transcriptional abundances of other carbon cycling related genes, such as pulA (starch decomposition) and xyla (hemicellulose decomposition), also exhibited increasing trends. Overall, our study elucidated the potential lignin-decomposing microbes and pathways in river sediment and their responses to temperature increasing. CONCLUSIONS Our study demonstrated that the temperature increasing can increase the rate of lignin/vanillin decomposition via affecting the activity of lignin-decomposing microbes. This finding indicates that the ongoing intensification of global warming may enhance the decomposition of recalcitrant organic carbon in river sediment, thereby impacting global carbon cycling. Video Abstract.
Collapse
Affiliation(s)
- Jialing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Environmental Science and Engineering, School of Life Sciences, School of Ecology, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Weimin Sun
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yingjie Cao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Environmental Science and Engineering, School of Life Sciences, School of Ecology, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jiaxue Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Environmental Science and Engineering, School of Life Sciences, School of Ecology, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Environmental Science and Engineering, School of Life Sciences, School of Ecology, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Miaomiao Zhang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoqing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Environmental Science and Engineering, School of Life Sciences, School of Ecology, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Qiqi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Environmental Science and Engineering, School of Life Sciences, School of Ecology, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Ziqi Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Environmental Science and Engineering, School of Life Sciences, School of Ecology, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Wenjun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Environmental Science and Engineering, School of Life Sciences, School of Ecology, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Environmental Science and Engineering, School of Life Sciences, School of Ecology, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Tang W, Da F, Tracey JC, Intrator N, Kunes MA, Lee JA, Wan XS, Jayakumar A, Friedrichs MAM, Ward BB. Nutrient management offsets the effect of deoxygenation and warming on nitrous oxide emissions in a large US estuary. SCIENCE ADVANCES 2024; 10:eadq5014. [PMID: 39705350 DOI: 10.1126/sciadv.adq5014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
Many estuaries experience eutrophication, deoxygenation and warming, with potential impacts on greenhouse gas emissions. However, the response of N2O production to these changes is poorly constrained. Here we applied nitrogen isotope tracer incubations to measure N2O production under experimentally manipulated changes in oxygen and temperature in the Chesapeake Bay-the largest estuary in the United States. N2O production more than doubled from nitrification and increased exponentially from denitrification when O2 was decreased from >20 to <5 micromolar. Raising temperature from 15° to 35°C increased N2O production 2- to 10-fold. Developing a biogeochemical model by incorporating these responses, N2O emissions from the Chesapeake Bay were estimated to decrease from 157 to 140 Mg N year-1 from 1986 to 2016 and further to 124 Mg N year-1 in 2050. Although deoxygenation and warming stimulate N2O production, the modeled decrease in N2O emissions, attributed to decreased nutrient inputs, indicates the importance of nutrient management in curbing greenhouse gas emissions, potentially mitigating climate change.
Collapse
Affiliation(s)
- Weiyi Tang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Fei Da
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - John C Tracey
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Naomi Intrator
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Moriah A Kunes
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Jenna A Lee
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Xianhui Sean Wan
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Amal Jayakumar
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | | | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Han LL, Ge L, Tan E, Zou W, Tian L, Li P, Xu MN, Kao SJ. Model the evolutionary pattern of N species and pool size in groundwater continuum by utilizing measured source and sink rates of nitrate and ammonium. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136046. [PMID: 39393322 DOI: 10.1016/j.jhazmat.2024.136046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Nitrate and ammonium are primary nitrogen (N) contaminants in groundwater and effective restoration strategies depend on understanding the interactions of N transformation processes along redox gradients. Utilizing the 15N tracing technique, we assess nitrate removal rates, focusing on denitrification and anammox in a N-rich groundwater of the Hetao Basin, a typical semiarid region in western China. Results showed that N removal rate (0.36-22.01 µM N d-1) was composed mainly of denitrification (73 ± 18 %), with rates increasing from upstream oxidizing environment to downstream reducing areas. In reducing downstream, both denitrification and anammox adhered to substrate-driven Michaelis-Menten kinetics. Integrating data on all source and sink rates of nitrate and ammonium pools (denitrification, anammox, dissimilatory nitrate reduction ammonia, nitrification, mineralization), we constructed a N-transfer-dynamics model based on chemical stoichiometry. This model effectively captured the observed spatial N transfer patterns and highlighted that the balance of oxidants and biodegradable organic N inputs influences N species retention and removal in groundwater. Our combined experimental and modeling approach underscores the importance of reducing organic N and/or adding oxidants to mitigate groundwater N pollution. These findings provide crucial insights for optimizing high N groundwater remediation strategies and potentially inform for wastewater management practices.
Collapse
Affiliation(s)
- Li-Li Han
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lianghao Ge
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ehui Tan
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China
| | - Wenbin Zou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Li Tian
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Min Nina Xu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China.
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Mao TQ, Zhang Y, Ou YF, Li XF, Zheng YL, Liang X, Liu M, Hou LJ, Dong HP. Temperature differentially regulates estuarine microbial N 2O production along a salinity gradient. WATER RESEARCH 2024; 267:122454. [PMID: 39293343 DOI: 10.1016/j.watres.2024.122454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming.
Collapse
Affiliation(s)
- Tie-Qiang Mao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yong Zhang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou 350117, China
| | - Ya-Fei Ou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiao-Fei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yan-Ling Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Zhou J, Zheng Y, Hou L, Qi L, Mao T, Yin G, Liu M. Nitrogen input modulates the effects of coastal acidification on nitrification and associated N 2O emission. WATER RESEARCH 2024; 261:122041. [PMID: 38972235 DOI: 10.1016/j.watres.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Acidification of coastal waters, synergistically driven by increasing atmospheric carbon dioxide (CO2) and intensive land-derived nutrient inputs, exerts significant stresses on the biogeochemical cycles of coastal ecosystem. However, the combined effects of anthropogenic nitrogen (N) inputs and aquatic acidification on nitrification, a critical process of N cycling, remains unclear in estuarine and coastal ecosystems. Here, we showed that increased loading of ammonium (NH4+) in estuarine and coastal waters alleviated the inhibitory effect of acidification on nitrification rates but intensified the production of the potent greenhouse gas nitrous oxide (N2O), thus accelerating global climate change. Metatranscriptomes and natural N2O isotopic signatures further suggested that the enhanced emission of N2O may mainly source from hydroxylamine (NH2OH) oxidation rather than from nitrite (NO2-) reduction pathway of nitrifying microbes. This study elucidates how anthropogenic N inputs regulate the effects of coastal acidification on nitrification and associated N2O emissions, thereby enhancing our ability to predict the feedbacks of estuarine and coastal ecosystems to climate change and human perturbations.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Tieqiang Mao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| |
Collapse
|
6
|
Yang S, Deng Y, Shu J, Luo X, Peng X, Pan K, Jiang H. Nitrate budget of a terrestrial-to-marine continuum in South China: Insights from isotopes and a Markov chain Monte Carlo model. MARINE POLLUTION BULLETIN 2024; 199:116000. [PMID: 38171166 DOI: 10.1016/j.marpolbul.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Anthropogenic nitrate (NO3-) production has been increasing and is exported to the ocean via river networks, causing eutrophication and ecological damage. While studies have focused on river NO3- pollution, what has been lacking is the quantification of the sources of NO3- in coastal rivers. This study applied the dual isotopes (δ15N/δ18O-NO3-) to quantify the sources and their fluxes of NO3- in two inflow rivers of the Qinzhou Bay. By adding our results to the NO3- source apportionment in Qinzhou Bay, we, for the first time, established the NO3- budgets of the terrestrial-to-marine continuum in both high- and low-flow seasons. We quantitatively showed the direct and indirect roles (e.g., the stimulation of nitrification by sewage ammonium-NH4+) of terrestrial sources in driving the high NO3- loading in the estuary. The results highlighted the necessity to consider coastal rivers and estuary as a whole, which could shed light on the effective reduction of NO3- pollution in coastal environments.
Collapse
Affiliation(s)
- Shaomei Yang
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Yan Deng
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Junlin Shu
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Xin Luo
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Xiaoyan Peng
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
7
|
Chen M, Jiang S, Han A, Yang M, Tkalich P, Liu M. Bunkering for change: Knowledge preparedness on the environmental aspect of ammonia as a marine fuel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167677. [PMID: 37832674 DOI: 10.1016/j.scitotenv.2023.167677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Nitrogen cycling is essential to ecosystem functioning and the overall health of our planet. Ammonia, a nitrogen-containing product, as well as a nutrient, is promoted as a low-carbon fuel for the maritime sector, with spectacular production increase in plan. Similar to any other widespread fuels in the past, it is paramount to be prepared for the potential environmental impact of ammonia fuel. Here, through our preliminary calculations using literature data, we suggest that the amount of ammonia to be produced to fulfil the maritime energy need by 2050 may entail large alterations in global nitrogen cycling. Currently, the literature based on limited known cases of ammonia excess is insufficient to quantify the environmental impacts caused by the probable increase in bunkering ammonia release at global scale. With a few knowledge gaps identified, we call on the marine science community to investigate the potential environmental impact related to substantial ammonia excess, contributing new knowledge to a more environmentally sustainable future.
Collapse
Affiliation(s)
- Mengli Chen
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore.
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Aiqin Han
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Mengyao Yang
- Maritime Energy & Sustainable Development Centre of Excellence, Nanyang Technological University, Singapore 639798, Singapore
| | - Pavel Tkalich
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
| | - Ming Liu
- Maritime Energy & Sustainable Development Centre of Excellence, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
8
|
Liu B, Qi L, Zheng Y, Zhang C, Zhou J, An Z, Wang B, Lin Z, Yao C, Wang Y, Yin G, Dong H, Li X, Liang X, Han P, Liu M, Zhang G, Cui Y, Hou L. Four years of climate warming reduced dark carbon fixation in coastal wetlands. THE ISME JOURNAL 2024; 18:wrae138. [PMID: 39052319 PMCID: PMC11308615 DOI: 10.1093/ismejo/wrae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Dark carbon fixation (DCF), conducted mainly by chemoautotrophs, contributes greatly to primary production and the global carbon budget. Understanding the response of DCF process to climate warming in coastal wetlands is of great significance for model optimization and climate change prediction. Here, based on a 4-yr field warming experiment (average annual temperature increase of 1.5°C), DCF rates were observed to be significantly inhibited by warming in coastal wetlands (average annual DCF decline of 21.6%, and estimated annual loss of 0.08-1.5 Tg C yr-1 in global coastal marshes), thus causing a positive climate feedback. Under climate warming, chemoautotrophic microbial abundance and biodiversity, which were jointly affected by environmental changes such as soil organic carbon and water content, were recognized as significant drivers directly affecting DCF rates. Metagenomic analysis further revealed that climate warming may alter the pattern of DCF carbon sequestration pathways in coastal wetlands, increasing the relative importance of the 3-hydroxypropionate/4-hydroxybutyrate cycle, whereas the relative importance of the dominant chemoautotrophic carbon fixation pathways (Calvin-Benson-Bassham cycle and W-L pathway) may decrease due to warming stress. Collectively, our work uncovers the feedback mechanism of microbially mediated DCF to climate warming in coastal wetlands, and emphasizes a decrease in carbon sequestration through DCF activities in this globally important ecosystem under a warming climate.
Collapse
Affiliation(s)
- Bolin Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lin Qi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chao Zhang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Bin Wang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhuke Lin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Cheng Yao
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yixuan Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ping Han
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guosen Zhang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ying Cui
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
9
|
Teng Z, Lin X. Sediment nitrates reduction processes affected by non-native Sonneratia apetala plantation in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167523. [PMID: 37788768 DOI: 10.1016/j.scitotenv.2023.167523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Numerous studies have highlighted the importance of nitrates (NOx-) reduction processes in estuarine and coastal ecosystems over the past decades. However, the biotic and abiotic factors sediment NOx- reduction processes in mangrove of varying ages are still not fully understood. Here, we investigated the dynamics of sediment NOx- reduction processes and associated gene abundances in mangroves of different ages (including 0-year unvegetated mudflats, 10 and 20-years Sonneratia apetala, as well as >40 years of mature native Kandelia obovate) on the Qi'ao Island using 15N stable-isotope pairing techniques and quantitative PCR. The denitrification (2.64-11.30 nmol g-1 h-1), anammox (0.06-0.83 nmol g-1 h-1), and dissimilatory nitrate reduction to ammonium (DNRA, 0.58-16.34 nmol g-1 h-1) rates varied spatially and seasonally, but their contributions to the total NOx- reduction (DEN%, ANA%, and DNRA%), associated gene abundance (nirS, anammox 16S rRNA, and nrfA), and organic matter only varied spatially. Organic matter and microbial abundances are the dominating factors controlling N loss and retention. Without considering confounding factors, mangroves conservation and restoration significantly increased DNRA rates, NIRI (DNRA/(denitrification + anammox)), organic matter content, and microbial abundances (p < 0.05 for all), but reduced N loss rates. Mangroves conservation and restoration are estimated to have increased sediment N retention (~931.81 t N yr-1) and reduced N loss (~481.32 t N yr-1) in coastal wetlands of China over the past 40 years (1980-2020). Overall, our results indicate that mangrove restoration and conservation can significantly increase sediment N retention due to the rapid biomass accumulation, and it can provide more nutrients for mangrove and microorganism growth, thus creating a virtuous cycle in these N-limited ecosystems.
Collapse
Affiliation(s)
- Zhenzhen Teng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianbiao Lin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
Thangaraj S, Kim HR, Heo JM, Son S, Ryu J, Park JW, Kim JH, Kim SY, Jung HK, Kim IN. Unraveling prokaryotic diversity distribution and functional pattern on nitrogen and methane cycling in the subtropical Western North Pacific Ocean. MARINE POLLUTION BULLETIN 2023; 196:115569. [PMID: 37922593 DOI: 10.1016/j.marpolbul.2023.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023]
Abstract
Prokaryotes play an important role in marine nitrogen and methane cycles. However, their community changes and metabolic modifications to the concurrent impact of ocean warming (OW), acidification (OA), deoxygenation (OD), and anthropogenic‑nitrogen-deposition (AND) from the surface to the deep ocean remains unknown. We examined here the amplicon sequencing approach across the surface (0-200 m; SL), intermediate (200-1000 m; IL), and deep layers (1000-2200 m; DL), and characterized the simultaneous impacts of OW, OA, OD, and AND on the Western North Pacific Ocean prokaryotic changes and their functional pattern in nitrogen and methane cycles. Results showed that SL possesses higher ammonium oxidation community/metabolic composition assumably the reason for excess nitrogen input from AND and modification of their kinetic properties to OW adaptation. Expanding OD at IL showed hypoxic conditions in the oxygen minimum layer, inducing higher microbial respiration that elevates the dimerization of nitrification genes for higher nitrous oxide production. The aerobic methane-oxidation composition was dominant in SL presumably the reason for adjustment in prokaryotic optimal temperature to OW, while anaerobic oxidation composition was dominant at IL due to the evolutionary changes coupling with higher nitrification. Our findings refocus on climate-change impacts on the open ocean ecosystem from the surface to the deep-environment integrating climate-drivers as key factors for higher nitrous-oxide and methane emissions.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- Department of Marine Science, Incheon National University, Incheon, South Korea; Freddy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel; Interuniversity Institute for Marine Sciences, Eilat, Israel; Department of Physiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hyo-Ryeon Kim
- Department of Marine Science, Incheon National University, Incheon, South Korea
| | - Jang-Mu Heo
- Department of Marine Science, Incheon National University, Incheon, South Korea
| | - Seunghyun Son
- Cooperative Institute for Satellite Earth System Studies (CISESS) / Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, USA
| | - Jongseong Ryu
- Department of Marine Biotechnology, Anyang University, Incheon, South Korea
| | - Jong-Woo Park
- Tidal Flat Research Center, National Institute of Fisheries Science, Gunsan, South Korea
| | - Ju-Hyoung Kim
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan, South Korea
| | - Seo-Young Kim
- Department of Marine Science, Incheon National University, Incheon, South Korea
| | - Hae-Kun Jung
- Environment and Fisheries Resources Research Division, East Sea Fisheries Institute, National Institute of Fisheries Science, Gangneung, South Korea
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon, South Korea.
| |
Collapse
|
11
|
Liu J, Ge X, Ding H, Yang S, Sun Y, Li Y, Ji X, Li Y, Lu A. Effect of Photoreduction of Semiconducting Iron Mineral-Goethite on Microbial Community in the Marine Euphotic Zone. Front Microbiol 2022; 13:846441. [PMID: 35479644 PMCID: PMC9037543 DOI: 10.3389/fmicb.2022.846441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Marine euphotic zone is the pivotal region for interplay of light-mineral-microorganism and elements cycle, in which semiconducting minerals exist widely and iron-bearing goethite is a typical and widespread one. In this work, we have conducted in-depth researches on the effect of ferrous [Fe(II)] ions dissolved by photoreduction of goethite on microbial community structure and diversity. The mineral phase, structure and morphology of synthesized goethite were characterized by Raman, X-ray diffraction (XRD), energy disperse spectroscopy (EDS), environmental scanning electron microscope (ESEM), and atomic force microscope (AFM). Photoelectrochemical measurements tested photoelectric response and redox activity of goethite, having proved its significant property of photoelectric response with 44.11% increment of the average photocurrent density relative to the dark current density. The photoreduction experiments of goethite were conducted under light condition in simulated seawater. It has suggested the photoreduction of goethite could occur and Fe(III) was reduced to Fe(II). The dissolved Fe(II) from the photoreduction of goethite under light condition was nearly 11 times than that group without light after a 10-day reaction. Furthermore, results of microbial community sequencing analysis indicated that dissolved Fe(II) could affect the structure and regulate the decrease of microbial community diversity. The emergence of dominant bacteria associated with iron oxidation and transport protein has suggested their obvious selectivity and adaptability in the environment with adding dissolved Fe(II). This work revealed the photoreduction process of semiconducting goethite was remarkable, giving rise to a non-negligible dissolved Fe(II) and its selective effect on the structure, diversity, as well as the function of microbial community. This light-induced interaction between minerals and microorganisms may also further regulate correlative metabolic pathways of carbon cycle in the marine euphotic zone.
Collapse
Affiliation(s)
| | | | - Hongrui Ding
- Beijing Key Laboratory of Mineral Environmental Function, The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| | | | | | | | | | | | - Anhuai Lu
- Beijing Key Laboratory of Mineral Environmental Function, The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| |
Collapse
|
12
|
The marine nitrogen cycle: new developments and global change. Nat Rev Microbiol 2022; 20:401-414. [PMID: 35132241 DOI: 10.1038/s41579-022-00687-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/25/2022]
Abstract
The ocean is home to a diverse and metabolically versatile microbial community that performs the complex biochemical transformations that drive the nitrogen cycle, including nitrogen fixation, assimilation, nitrification and nitrogen loss processes. In this Review, we discuss the wealth of new ocean nitrogen cycle research in disciplines from metaproteomics to global biogeochemical modelling and in environments from productive estuaries to the abyssal deep sea. Influential recent discoveries include new microbial functional groups, novel metabolic pathways, original conceptual perspectives and ground-breaking analytical capabilities. These emerging research directions are already contributing to urgent efforts to address the primary challenge facing marine microbiologists today: the unprecedented onslaught of anthropogenic environmental change on marine ecosystems. Ocean warming, acidification, nutrient enrichment and seawater stratification have major effects on the microbial nitrogen cycle, but widespread ocean deoxygenation is perhaps the most consequential for the microorganisms involved in both aerobic and anaerobic nitrogen transformation pathways. In turn, these changes feed back to the global cycles of greenhouse gases such as carbon dioxide and nitrous oxide. At a time when our species casts a lengthening shadow across all marine ecosystems, timely new advances offer us unique opportunities to understand and better predict human impacts on nitrogen biogeochemistry in the changing ocean of the Anthropocene.
Collapse
|
13
|
Abstract
A small subset of marine microbial enzymes and surface transporters have a disproportionately important influence on the cycling of carbon and nutrients in the global ocean. As a result, they largely determine marine biological productivity and have been the focus of considerable research attention from microbial oceanographers. Like all biological catalysts, the activity of these keystone biomolecules is subject to control by temperature and pH, leaving the crucial ecosystem functions they support potentially vulnerable to anthropogenic environmental change. We summarize and discuss both consensus and conflicting evidence on the effects of sea surface warming and ocean acidification for five of these critical enzymes [carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), nitrogenase, nitrate reductase, and ammonia monooxygenase] and one important transporter (proteorhodopsin). Finally, we forecast how the responses of these few but essential biocatalysts to ongoing global change processes may ultimately help to shape the microbial communities and biogeochemical cycles of the future greenhouse ocean.
Collapse
Affiliation(s)
- David A Hutchins
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA;
| | - Sergio A Sañudo-Wilhelmy
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA;
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA;
| |
Collapse
|
14
|
Zhang M, Han F, Li Y, Liu Z, Chen H, Li Z, Li Q, Zhou W. Nitrogen recovery by a halophilic ammonium-assimilating microbiome: A new strategy for saline wastewater treatment. WATER RESEARCH 2021; 207:117832. [PMID: 34781183 DOI: 10.1016/j.watres.2021.117832] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/15/2021] [Accepted: 10/31/2021] [Indexed: 05/12/2023]
Abstract
Wastewater with high salinity is one of the major challenges for conventional wastewater treatment. Although nitrogen management is vital for wastewater treatment, efficient strategies for nitrogen recovery and removal from saline wastewater remain challenging. Here we propose microbial ammonium assimilation to achieve efficient nitrogen removal and recovery into biomass from saline wastewater without gaseous nitrogen release opposite to the conventional wastewater treatment, . We find one marine bacterium Psychrobacter aquimaris A4N01 with the ability to form sedimentary granular biofilms that can be engineered to construct an efficient ammonium-assimilating microbiome followed the bottom-up design. We demonstrate that the microbiome removes ammonium through assimilation without reactive nitrogen intermediates and gaseous nitrogen emission, according to the functional gene abundance and nitrogen balance. More than 80% of ammonium, total nitrogen and total phosphorus are removed and recovered into biomass, with more than 98% of COD removed from saline wastewater. As one prototypic microbe to form ammonium-assimilating biofilms, Psychrobacter aquimaris A4N01 plays key role in nutrient metabolism and microbiome construction. We stress that ammonium assimilation with a clear and short pathway is a promising method in future saline wastewater treatment and sustainable nitrogen management.
Collapse
Affiliation(s)
- Mengru Zhang
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Fei Han
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Yuke Li
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Zhe Liu
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Hao Chen
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Zhe Li
- School of Civil Engineering, Shandong University, 250061 Jinan, China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, 250061 Jinan, China.
| |
Collapse
|