1
|
Hoffman PF. Ecosystem relocation on Snowball Earth: Polar-alpine ancestry of the extant surface biosphere? Proc Natl Acad Sci U S A 2025; 122:e2414059122. [PMID: 40324073 DOI: 10.1073/pnas.2414059122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Geological observations informed by climate dynamics imply that the oceans were 99.9% covered by light-blocking ice shelves during two discrete, self-reversing Snowball Earth epochs spanning a combined 60 to 70 Myr of the Cryogenian Period (720 to 635 Ma). The timescale for initial ice advances across the tropical oceans is ~300 y in an ice-atmosphere-ocean general circulation model in Cryogenian paleogeography. Areas of optically thin oceanic ice are usually invoked to account for fossil marine phototrophs, including macroscopic multicellular eukaryotes, before and after each Snowball, but different taxa. Ecosystem relocation is a scenario that does not require thin marine ice. Assume that long before Cryogenian Snowballs, diverse supra- and periglacial biomes were established in polar-alpine regions. When the Snowball onsets occurred, those biomes migrated in step with their ice margins to the equatorial zone of net sublimation. There, they prospered and evolved, their habitat areas expanded, and the cruelty of winter reduced. Nutrients were supplied by dust (loess) derived from cozonal ablative lands where surface winds were strong. When each Snowball finally ended, those biomes were mostly inundated by the meltwater-dominated and rapidly warming lid of a nutrient-rich but depauperate ocean. Some taxa returned to the mountaintops while others restocked the oceans. This ecosystem relocation scenario makes testable predictions. The lineages required for post-Cryogenian biotic radiations should be present in modern polar-alpine biomes. Legacies of polar-alpine ancestry should be found in the genomes of living organisms. Examples of such tests are highlighted herein.
Collapse
Affiliation(s)
- Paul F Hoffman
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
2
|
Rizzo C, Caruso G, Maimone G, Patrolecco L, Termine M, Bertolino M, Giannarelli S, Rappazzo AC, Elster J, Lena A, Papale M, Pescatore T, Rauseo J, Soldano R, Spataro F, Aspholm PE, Azzaro M, Lo Giudice A. Microbiome and pollutants in the freshwater sponges Ephydatia muelleri (Lieberkühn, 1856) and Spongilla lacustris (Linnaeus, 1758) from the sub-Arctic Pasvik river (Northern Fennoscandia). ENVIRONMENTAL RESEARCH 2025; 273:121126. [PMID: 39978622 DOI: 10.1016/j.envres.2025.121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Despite the ecosystem functions offered by sponges in freshwater habitats, fragmentary studies have targeted their microbiome and the bioaccumulation of legacy and emerging organic micropollutants, making it difficult to test hypotheses about sponge-microbe specificity and response to environmental factors and stressors. The sponge species Ephydatia muelleri and Spongilla lacustris, coexisting in two sites of the Pasvik River (northern Fennoscandia), were analyzed for persistent organic pollutant (POPs) and chemicals of emerging concern (CECs), along with quali-quantitative microbiological features. River water and sediment were similarly treated to establish if the obtained data were site- or sponge-specific. CECs mainly occurred in abiotic matrices, with trimethoprim and ciprofloxacin prevailing in water and sediment, respectively. Only ciprofloxacin and diclofenac were detected in sponges, with higher concentrations generally determined in S. lacustris than E. muelleri. Overall, POP concentrations were in the order polycyclic aromatic hydrocarbons > chlorobenzenes > polychlorobiphenyls > polychloronaphthalenes, with higher values in sponges with respect to abiotic matrices. Generally, POPs occurred at higher concentrations in S. lacustris than E. muelleri. Enzyme activity measurements displayed diverse trends across samples and sites, with E. muelleri displaying higher glycolytic activity than S. lacustris. Prokaryotic abundance in sponges generally exceeded that found in abiotic matrices. Proteobacteria, Planctomycetota, Actinobacteriota, Verrucomicrobiota, and Cyanobacteria predominated in sponge samples, with slight differences between sponge species and sampling sites, whereas Desulfobacterota and Acidobacterota were retrieved mostly in sediment samples. The sponge-associated bacterial communities appeared to be differently affected by pollutant concentration at the site level. Overall, this study highlights the ecological role of freshwater sponges, shedding light on their microbial associations, pollutant bioaccumulation, and potential as bioindicators of aquatic ecosystem health. The findings emphasize the importance of considering both microbial diversity and contaminant accumulation for a holistic understanding of the roles played by freshwater sponges in human-impacted environments.
Collapse
Affiliation(s)
- Carmen Rizzo
- Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy; Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Giovanna Maimone
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Marco Termine
- Dept. Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Marco Bertolino
- Department of the Earth, Environment and Life Science (DiSTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Stefania Giannarelli
- Dept. Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Alessandro Ciro Rappazzo
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; Cà Foscari University of Venice, Dorsoduro 3246, 30123, Venezia, Italy
| | - Josef Elster
- Institute of Botany, Czech Academy of Science, Třeboň, Czech Republic; Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alessio Lena
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; University of Messina, Department ChiBioFarAm, V.le Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Maria Papale
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Tanita Pescatore
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Rosamaria Soldano
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; University of Messina, Department ChiBioFarAm, V.le Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Francesca Spataro
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Paul Eric Aspholm
- Norwegian Institute of Bioeconomy Research (NIBIO) Svanhovd 23, 9925, Norway
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy.
| |
Collapse
|
3
|
Kim IV, Navarrete C, Grau-Bové X, Iglesias M, Elek A, Zolotarov G, Bykov NS, Montgomery SA, Ksiezopolska E, Cañas-Armenteros D, Soto-Angel JJ, Leys SP, Burkhardt P, Suga H, de Mendoza A, Marti-Renom MA, Sebé-Pedrós A. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature 2025:10.1038/s41586-025-08960-w. [PMID: 40335694 DOI: 10.1038/s41586-025-08960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
In bilaterian animals, gene regulation is shaped by a combination of linear and spatial regulatory information. Regulatory elements along the genome are integrated into gene regulatory landscapes through chromatin compartmentalization1,2, insulation of neighbouring genomic regions3,4 and chromatin looping that brings together distal cis-regulatory sequences5. However, the evolution of these regulatory features is unknown because the three-dimensional genome architecture of most animal lineages remains unexplored6,7. To trace the evolutionary origins of animal genome regulation, here we characterized the physical organization of the genome in non-bilaterian animals (sponges, ctenophores, placozoans and cnidarians)8,9 and their closest unicellular relatives (ichthyosporeans, filastereans and choanoflagellates)10 by combining high-resolution chromosome conformation capture11,12 with epigenomic marks and gene expression data. Our comparative analysis showed that chromatin looping is a conserved feature of genome architecture in ctenophores, placozoans and cnidarians. These sequence-determined distal contacts involve both promoter-enhancer and promoter-promoter interactions. By contrast, chromatin loops are absent in the unicellular relatives of animals. Our findings indicate that spatial genome regulation emerged early in animal evolution. This evolutionary innovation introduced regulatory complexity, ultimately facilitating the diversification of animal developmental programmes and cell type repertoires.
Collapse
Affiliation(s)
- Iana V Kim
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centre Nacional d'Anàlisis Genòmic (CNAG), Barcelona, Spain.
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marta Iglesias
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Grygoriy Zolotarov
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sean A Montgomery
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hiroshi Suga
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Alex de Mendoza
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, UK
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centre Nacional d'Anàlisis Genòmic (CNAG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
4
|
Leys SP, Grombacher L, Field D, Elliott GRD, Ho VR, Kahn AS, Reid PJ, Riesgo A, Lanna E, Bobkov Y, Ryan JF, Horton AL. A morphological cell atlas of the freshwater sponge Ephydatia muelleri with key insights from targeted single-cell transcriptomes. EvoDevo 2025; 16:1. [PMID: 39953556 PMCID: PMC11827373 DOI: 10.1186/s13227-025-00237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
How animal cell types, tissues, and regional body plans arose is a fundamental question in EvoDevo. Many current efforts attempt to link genetic information to the morphology of cells, tissues and regionalization of animal body plans using single-cell sequencing of cell populations. However, a lack of in-depth understanding of the morphology of non-bilaterian animals remains a considerable block to understanding the transitions between bilaterian and non-bilaterian cells and tissues. Sponges (Porifera), one of the earliest diverging animal phyla, pose a particular challenge to this endeavour, because their body plans lack mouths, gut, conventional muscle and nervous systems. With a goal to help bridge this gap, we have studied the morphology, behaviour and transcriptomics of cells and tissue types of an easily accessible and well-studied species of freshwater sponge, Ephydatia muelleri. New features described here include: a polarized external epithelium, a new contractile sieve cell that forms the entry to incurrent canals, motile cilia on apopyle cells at the exit of choanocyte chambers, and non-motile cilia on cells in excurrent canals and oscula. Imaging cells in vivo shows distinct behavioural characteristics of motile cells in the mesohyl. Transcriptomic phenotypes of three cell types (cystencytes, choanocytes and archaeocytes) captured live indicate that cell-type transcriptomes are distinct. Importantly, individual archaeocytes show a range of transcriptomic phenotypes which is supported by the distinct expression of different genes by subsets of this cell type. In contrast, all five choanocyte cells sampled live revealed highly uniform transcriptomes with significantly fewer genes expressed than in other cell types. Our study shows that sponges have tissues whose morphology and cell diversity are both functionally complex, but which together enable the sponge, like other metazoans, to sense and respond to stimuli.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Lauren Grombacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Daniel Field
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Glen R D Elliott
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Elliott Microscopy and Microanalysis Inc., Edmonton, AB, Canada
| | - Vanessa R Ho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Amanda S Kahn
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Moss Landing Marine Laboratories and San Jose State University, Moss Landing, CA, 95039, USA
| | - Pamela J Reid
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Ana Riesgo
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Emilio Lanna
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Universidade Federal da Bahia, Instituto de Biologia, Salvador, BA, Brazil
| | - Yuriy Bobkov
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
5
|
Koutsouveli V, Torres-Oliva M, Bayer T, Fuß J, Grossschmidt N, Marulanda-Gomez AM, Jensen N, Gill D, Schmitz RA, Pita L, Reusch TBH. The Chromosome-level Genome of the Ctenophore Mnemiopsis leidyi A. Agassiz, 1865 Reveals a Unique Immune Gene Repertoire. Genome Biol Evol 2025; 17:evaf006. [PMID: 39834228 PMCID: PMC11797021 DOI: 10.1093/gbe/evaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Ctenophora are basal marine metazoans, the sister group of all other animals. Mnemiopsis leidyi is one of the most successful invasive species worldwide with intense ecological and evolutionary research interest. Here, we generated a chromosome-level genome assembly of M. leidyi with a focus on its immune gene repertoire. The genome was 247.97 Mb, with N50 16.84 Mb, and 84.7% completeness. Its karyotype was 13 chromosomes. In this genome and that of two other ctenophores, Bolinopsis microptera and Hormiphora californensis, we detected a high number of protein domains related to potential immune receptors. Among those, proteins containing Toll/interleukin-1 (TIR2) domain, NACHT domain, Scavenger Receptor Cystein-Rich (SRCR) domain, or C-type Lectin domain (CTLD) were abundant and presented unique domain architectures in M. leidyi. M. leidyi seems to lack bona fide Toll-like Receptors, but it does possess a repertoire of 15 TIR2 domain-containing genes. Besides, we detected a bona fide NOD-like receptor and 38 NACHT domain-containing genes. In order to verify the function of those domain-containing genes, we exposed M. leidyi to the pathogen Vibrio coralliilyticus. Among the differentially expressed genes, we identified potential immune receptors, including four TIR2 domain-containing genes, all of which were upregulated in response to pathogen exposure. To conclude, many common immune receptor domains, highly conserved across metazoans, are already present in Ctenophora. These domains have large expansions and unique architectures in M. leidyi, findings consistent with the basal evolutionary position of this group, but still might have conserved functions in immunity and host-microbe interaction.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Division of Marine Ecology, Marine Symbioses Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Till Bayer
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Nora Grossschmidt
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Angela M Marulanda-Gomez
- Division of Marine Ecology, Marine Symbioses Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Nadin Jensen
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Diana Gill
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Lucía Pita
- Marine Biology and Oceanography, Marine Biogeochemistry, Atmosphere and Climate, Institut de Ciències del Mar–Spanish National Research Council (CSIC), Barcelona, Spain
| | - Thorsten B H Reusch
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
6
|
Ho VR, Goss GG, Leys SP. ATP and glutamate coordinate contractions in the freshwater sponge Ephydatia muelleri. J Exp Biol 2025; 228:JEB248010. [PMID: 39936310 PMCID: PMC11883242 DOI: 10.1242/jeb.248010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/20/2024] [Indexed: 02/13/2025]
Abstract
Sponges (phylum Porifera) are an early diverging animal lineage without nervous and muscular systems, and yet they are able to produce coordinated whole-body contractions in response to disturbances. Little is known about the underlying signalling mechanisms in coordinating such responses. Previous studies demonstrated that sponges respond specifically to chemicals such as l-glutamate and γ-amino-butyric acid (GABA), which trigger and prevent contractions, respectively. Genes for purinergic P2X-like receptors are present in several sponge genomes, leading us to ask whether ATP works with glutamate to coordinate contractions in sponges as it does in other animal nervous systems. Using pharmacological approaches on the freshwater sponge Ephydatia muelleri, we show that ATP is involved in coordinating contractions. Bath application of ATP caused a rapid, sustained expansion of the excurrent canals in a dose-dependent manner. Complete contractions occurred when ATP was added in the presence of apyrase, an enzyme that hydrolyses ATP. Application of ADP, the first metabolic product of ATP hydrolysis, triggered complete contractions, whereas AMP, the subsequent metabolite, did not trigger a response. Blocking ATP from binding and activating P2X receptors with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) prevented both glutamate- and ATP-triggered contractions, suggesting that ATP works downstream of glutamate. Bioinformatic analysis revealed two P2X receptor sequences, one of which groups with other vertebrate P2X receptors. Altogether, our results confirm that purinergic signalling by ATP is involved in coordinating contractions in the freshwater sponge.
Collapse
Affiliation(s)
- Vanessa R. Ho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Greg G. Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Sally P. Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| |
Collapse
|
7
|
Keleher JG, Strope TA, Estrada NE, Griggs Mathis AM, Easson CG, Fiore C. Freshwater sponges in the southeastern U.S. harbor unique microbiomes that are influenced by host and environmental factors. PeerJ 2025; 13:e18807. [PMID: 39897492 PMCID: PMC11787800 DOI: 10.7717/peerj.18807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025] Open
Abstract
Marine, and more recently, freshwater sponges are known to harbor unique microbial symbiotic communities relative to the surrounding water; however, our understanding of the microbial ecology and diversity of freshwater sponges is vastly limited compared to those of marine sponges. Here we analyzed the microbiomes of three freshwater sponge species: Radiospongilla crateriformis, Eunapius fragilis, and Trochospongilla horrida, across four sites in western North Carolina, U.S.A. Our results support recent work indicating that freshwater sponges indeed harbor a distinct microbiome composition compared to the surrounding water and that these varied across sampling site indicating both environmental and host factors in shaping this distinct community. We also sampled sponges at one site over 3 months and observed that divergence in the microbial community between sponge and water occurs at least several weeks after sponges emerge for the growing season and that sponges maintain a distinct community from the water as the sponge tissue degrades. Bacterial taxa within the Gammproteobacteria, Alphproteobacteria, Bacteroidota (Flavobacteriia in particular), and Verrucomicrobia, were notable as enriched in the sponge relative to the surrounding water across sponge individuals with diverging microbial communities from the water. These results add novel information on the assembly and maintenance of microbial communities in an ancient metazoan host and is one of few published studies on freshwater sponge microbial symbiont communities.
Collapse
Affiliation(s)
| | - Taylor A. Strope
- Biology Department, Appalachian State University, Boone, NC, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Noah E. Estrada
- Biology Department, Appalachian State University, Boone, NC, United States
| | | | - Cole G. Easson
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Cara Fiore
- Biology Department, Appalachian State University, Boone, NC, United States
| |
Collapse
|
8
|
Neuweiler F, Mueller M, Walter BF, Landing E, Beranoaguirre A, Sendino C, Amati L, Kershaw S. Spongy-looking microfabrics in the earliest named stromatolite represent deep burial alteration and incipient metamorphism. Sci Rep 2024; 14:31537. [PMID: 39733218 DOI: 10.1038/s41598-024-83359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
The earliest named stromatolite Cryptozoon Hall, 1884 (Late Cambrian, ca. 490 Ma, eastern New York State), was recently re-interpreted as an interlayered microbial mat and non-spiculate (keratosan) sponge deposit. This "classic stromatolite" is prominent in a fundamental debate concerning the significance or even existence of non-spiculate sponges in carbonate rocks from the Neoproterozoic (Tonian) onwards. Cryptozoon has three types of microbially-induced carbonate layers: clotted-pelletoidal micrite with microbial filaments, clotted-pelletoidal micrite with vesicular structure, and dense microcrystalline laminae. A fourth, stratiform to patchy fabric comprises suspect sponges. Using contextual fabric analysis, elemental mapping, cathodoluminescence, fluid inclusions, electron backscatter diffraction, U-Pb dating, and burial history, the sponge interpretation is denied. Neither a distinct sponge body outline nor a canal system is identifiable. Instead, the suspect fabric is secondary in origin, and best explained as a product of Carboniferous (Mississippian) deep burial alteration associated with basement reactivation. Key petrographic observations include heterogenous recrystallization via aggrading Ostwald ripening with interfingering reaction fronts typical for partially miscible fluids, a granoblastic calcite texture (incipient metamorphism), and subsequent hypidioblastic white mica (arguably Carboniferous/Permian, Alleghenian orogeny). Topotype Cryptozoon is a stromatolite altered to sub-greenschist metacarbonate. The published Tonian to Phanerozoic record of interpreted non-spiculate sponges requires reassessment.
Collapse
Affiliation(s)
- Fritz Neuweiler
- Département de Géologie et de Génie géologique, Université Laval, 1065, av. de la Médecine, Quebec, G1V 0A6, Canada.
| | - Mathias Mueller
- Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Benjamin F Walter
- Karlsruhe Institute for Technology (KIT), Adenauerring 20b, 76131, Karlsruhe, Germany
- Department of Geoscience, Petrology and Mineral Ressources, Eberhard Karls University Tübingen, Schnarrenbergstrasse 94-96, 72074, Tübingen, Germany
| | - Ed Landing
- New York State Museum, 222 Madison Avenue, Albany, NY, 12230, USA
| | - Aratz Beranoaguirre
- Karlsruhe Institute for Technology (KIT), Adenauerring 20b, 76131, Karlsruhe, Germany
- Department of Geosciences, Goethe-University Frankfurt, Altenhöferallee 1, 60438, Frankfurt, Germany
| | - Consuelo Sendino
- Collections Department, National Museum of Natural Sciences, José Gutierrez Abascal 2, Madrid, 28006, Spain
- Science Group, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Lisa Amati
- New York State Museum, 222 Madison Avenue, Albany, NY, 12230, USA
| | - Stephen Kershaw
- Science Group, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Department of Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| |
Collapse
|
9
|
Ruperti F, Dzieciatkowska M, Pankey MS, Asensio CS, Anselmetti D, Fernàndez-Busquets X, Nichols SA. Proteomic analysis of the sponge Aggregation Factor implicates an ancient toolkit for allorecognition and adhesion in animals. Proc Natl Acad Sci U S A 2024; 121:e2409125121. [PMID: 39693348 DOI: 10.1073/pnas.2409125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
The discovery that sponges (Porifera) can fully regenerate from aggregates of dissociated cells launched them as one of the earliest experimental models to study the evolution of cell adhesion and allorecognition in animals. This process depends on an extracellular glycoprotein complex called the Aggregation Factor (AF), which is composed of proteins thought to be unique to sponges. We used quantitative proteomics to identify additional AF components and interacting proteins in the classical model, Clathria prolifera, and compared them to proteins involved in cell interactions in Bilateria. Our results confirm MAFp3/p4 proteins as the primary components of the AF but implicate related proteins with calx-beta and wreath domains as additional components. Using AlphaFold, we unveiled close structural similarities of AF components to protein domains in other animals, previously masked by the mutational decay of sequence similarity. The wreath domain, believed to be unique to the AF, was predicted to contain a central beta-sandwich of the same organization as the vWFD domain (also found in extracellular, gel-forming glycoproteins in other animals). Additionally, many copurified proteins share a conserved C-terminus, containing divergent immunoglobulin (Ig) and Fn3 domains predicted to serve as an AF-interaction interface. One of these proteins, MAF-associated protein 1, resembles Ig superfamily cell adhesion molecules and we hypothesize that it may function to link the AF to the surface of cells. Our results highlight the existence of an ancient toolkit of conserved protein domains regulating cell-cell and cell-extracellular matrix protein interactions in all animals, and likely reflect a common origin of cell adhesion and allorecognition.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Science, University of New Hampshire, Durham, NH 03824
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80208
| | - Dario Anselmetti
- Nanomalaria Group, Faculty of Physics, Experimental Biophysics, Bielefeld University, Bielefeld 33501, Germany
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona, Barcelona 08036, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Scott A Nichols
- Department of Biological Sciences, University of Denver, Denver, CO 80208
| |
Collapse
|
10
|
Muthye VR, Leon Coria A, Liu H, Goater CP, Finney CAM, Wasmuth JD. The Highly Repetitive Genome of Myxobolus rasmusseni, an Emerging Myxozoan Parasite of Fathead Minnows. Genome Biol Evol 2024; 16:evae220. [PMID: 39403974 PMCID: PMC11557904 DOI: 10.1093/gbe/evae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/14/2024] Open
Abstract
Myxozoans are a monophyletic taxon of approximately 2,400 described species of parasites from the phylum Cnidaria. The recent focus on their negative impacts on fisheries, on their evolution from free-living ancestors, and on their emergence into new fish host populations has stressed the critical need for genomic resources for this parasitic group. Here, we describe the genome assembly and annotation of Myxobolus rasmusseni, an emerging parasite of fathead minnows in Alberta, Canada. The assembly is 174.6 Mb in size, 68% of which is made up of repetitive elements, making it one of the most repetitive animal genomes sequenced to date. Through comparisons to other myxozoans, we show that widespread gene loss, a known phenomenon of this group of parasites, is consistent with closely related species. Additionally, we assembled the M. rasmusseni mitochondrial genome, which is nearly twice the size of the typical animal mitochondrial genome yet contains only five of the canonical mitochondrial protein-coding genes and open reading frames not found in other myxozoans. These results add to our understanding of the gene- and genome-level diversity observed in myxozoans.
Collapse
Affiliation(s)
- Viraj R Muthye
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Canada
| | - Aralia Leon Coria
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Hongrui Liu
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Cameron P Goater
- Department of Biological Sciences, Faculty of Arts and Science, University of Lethbridge, Lethbridge, Canada
| | - Constance A M Finney
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - James D Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
12
|
Irisarri I, Lorente-Martínez H, Strassert JFH, Agorreta A, Zardoya R, San Mauro D, de Vries J. Early Diversification of Membrane Intrinsic Proteins (MIPs) in Eukaryotes. Genome Biol Evol 2024; 16:evae164. [PMID: 39058319 PMCID: PMC11316224 DOI: 10.1093/gbe/evae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Membrane intrinsic proteins (MIPs), including aquaporins (AQPs) and aquaglyceroporins (GLPs), form an ancient family of transporters for water and small solutes across biological membranes. The evolutionary history and functions of MIPs have been extensively studied in vertebrates and land plants, but their widespread presence across the eukaryotic tree of life suggests both a more complex evolutionary history and a broader set of functions than previously thought. That said, the early evolution of MIPs remains obscure. The presence of one GLP and four AQP clades across both bacteria and archaea suggests that the first eukaryotes could have possessed up to five MIPs. Here, we report on a previously unknown richness in MIP diversity across all major eukaryotic lineages, including unicellular eukaryotes, which make up the bulk of eukaryotic diversity. Three MIP clades have likely deep evolutionary origins, dating back to the last eukaryotic common ancestor (LECA), and support the presence of a complex MIP repertoire in early eukaryotes. Overall, our findings highlight the growing complexity of the reconstructed LECA genome: the dynamic evolutionary history of MIPs was set in motion when eukaryotes were in their infancy followed by radiative bursts across all main eukaryotic lineages.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
- Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, 20146 Hamburg, Germany
| | - Héctor Lorente-Martínez
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jürgen F H Strassert
- Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Ainhoa Agorreta
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rafael Zardoya
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain
| | - Diego San Mauro
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
- Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Wörheide G, Francis WR, Deister F, Krebs S, Erpenbeck D, Vargas S. The genomes of the aquarium sponges Tethya wilhelma and Tethya minuta (Porifera: Demospongiae). F1000Res 2024; 13:679. [PMID: 39193510 PMCID: PMC11347921 DOI: 10.12688/f1000research.150836.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Sponges (Phylum Porifera) are aquatic sessile metazoans found worldwide in marine and freshwater environments. They are significant in the animal tree of life as one of the earliest-branching metazoan lineages and as filter feeders play crucial ecological roles, particularly in coral reefs, but are susceptible to the effects of climate change. In the face of the current biodiversity crisis, genomic data is crucial for species conservation efforts and predicting their evolutionary potential in response to environmental changes. However, there is a limited availability of culturable sponge species with annotated high-quality genomes to further comprehensive insights into animal evolution, function, and their response to the ongoing global change. Despite the publication of a few high-quality annotated sponge genomes, there remains a gap in resources for culturable sponge species. To address this gap, we provide high quality draft genomes of the two congeneric aquarium species Tethya wilhelma and Tethya minuta, small ball-shaped demosponges that are easily maintained long-term in ex situ culture. As such, they offer promising opportunities as laboratory models to contribute to advancing our understanding of sponge biology and provide valuable resources for studying animal evolution, function, and responses to environmental challenges.
Collapse
Affiliation(s)
- Gert Wörheide
- Bayerische Staatssammlung für Paläontologie und Geologie, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Munich, Bavaria, 80333, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Warren R. Francis
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Fabian Deister
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Erpenbeck
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Sergio Vargas
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| |
Collapse
|
14
|
Marulanda-Gomez AM, Ribes M, Franzenburg S, Hentschel U, Pita L. Transcriptomic responses of Mediterranean sponges upon encounter with symbiont microbial consortia. BMC Genomics 2024; 25:674. [PMID: 38972970 PMCID: PMC11229196 DOI: 10.1186/s12864-024-10548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
Collapse
Affiliation(s)
| | - Marta Ribes
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain
| | - Sören Franzenburg
- Research Group Genetics and Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Lucia Pita
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain.
| |
Collapse
|
15
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
16
|
Paix B, van der Valk E, de Voogd NJ. Dynamics, diversity, and roles of bacterial transmission modes during the first asexual life stages of the freshwater sponge Spongilla lacustris. ENVIRONMENTAL MICROBIOME 2024; 19:37. [PMID: 38851755 PMCID: PMC11162577 DOI: 10.1186/s40793-024-00580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Sponge-associated bacteria play important roles in the physiology of their host, whose recruitment processes are crucial to maintain symbiotic associations. However, the acquisition of bacterial communities within freshwater sponges is still under explored. Spongilla lacustris is a model sponge widely distributed in European rivers and lakes, producing dormant cysts (named gemmules) for their asexual reproduction, before winter. Through an in vitro experiment, this study aims to describe the dynamics of bacterial communities and their transmission modes following the hatching of these gemmules. RESULTS An overall change of bacterial β-diversity was observed through the ontology of the juvenile sponges. These temporal differences were potentially linked, first to the osculum acquisition and the development of a canal system, and then, the increasing colonization of the Chlorella-like photosymbionts. Gemmules hatching with a sterilized surface were found to have a more dispersed and less diverse microbiome, revealing the importance of gemmule epibacteria for the whole holobiont stability. These epibacteria were suggested to be vertically transmitted from the maternal tissues to the gemmule surface. Vertical transmission through the incorporation of bacterial communities inside of the gemmule, was also found as a dominant transmission mode, especially with the nitrogen fixers Terasakiellaceae. Finally, we showed that almost no ASVs were shared between the free-living community and the juveniles, suggesting that horizontal recruitment is unlikely to happen during the first stages of development. However, the free-living bacteria filtered are probably used as a source of nutrients, allowing an enrichment of copiotrophic bacteria already present within its microbiome. CONCLUSIONS This study brings new insight for a better understanding of the microbiome acquisition during the first stages of freshwater sponge development. We showed the importance of epibacterial communities on gemmules for the whole holobiont stability, and demonstrated the near absence of recruitment of free-living bacteria during the first stages.
Collapse
Affiliation(s)
- Benoit Paix
- Naturalis Biodiversity Center, Leiden, The Netherlands.
- UMR CARRTEL, INRAE - Université Savoie Mont-Blanc, Thonon-les-Bains, France.
| | - Elodie van der Valk
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology (IBL), Leiden University, PO Box 9505, Leiden, 2333BE, The Netherlands
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Leiden, The Netherlands.
- Institute of Biology (IBL), Leiden University, PO Box 9505, Leiden, 2333BE, The Netherlands.
| |
Collapse
|
17
|
Mörsdorf D, Knabl P, Genikhovich G. Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria. Dev Genes Evol 2024; 234:1-19. [PMID: 38472535 PMCID: PMC11226491 DOI: 10.1007/s00427-024-00714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Bilateria encompass the vast majority of the animal phyla. As the name states, they are bilaterally symmetric, that is with a morphologically clear main body axis connecting their anterior and posterior ends, a second axis running between their dorsal and ventral surfaces, and with a left side being roughly a mirror image of their right side. Bone morphogenetic protein (BMP) signalling has widely conserved functions in the formation and patterning of the second, dorso-ventral (DV) body axis, albeit to different extents in different bilaterian species. Whilst initial findings in the fruit fly Drosophila and the frog Xenopus highlighted similarities amongst these evolutionarily very distant species, more recent analyses featuring other models revealed considerable diversity in the mechanisms underlying dorsoventral patterning. In fact, as phylogenetic sampling becomes broader, we find that this axis patterning system is so evolvable that even its core components can be deployed differently or lost in different model organisms. In this review, we will try to highlight the diversity of ways by which BMP signalling controls bilaterality in different animals, some of which do not belong to Bilateria. Future research combining functional analyses and modelling is bound to give us some understanding as to where the limits to the extent of the evolvability of BMP-dependent axial patterning may lie.
Collapse
Affiliation(s)
- David Mörsdorf
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
18
|
Steenwyk JL, King N. The promise and pitfalls of synteny in phylogenomics. PLoS Biol 2024; 22:e3002632. [PMID: 38768403 PMCID: PMC11105162 DOI: 10.1371/journal.pbio.3002632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Reconstructing the tree of life remains a central goal in biology. Early methods, which relied on small numbers of morphological or genetic characters, often yielded conflicting evolutionary histories, undermining confidence in the results. Investigations based on phylogenomics, which use hundreds to thousands of loci for phylogenetic inquiry, have provided a clearer picture of life's history, but certain branches remain problematic. To resolve difficult nodes on the tree of life, 2 recent studies tested the utility of synteny, the conserved collinearity of orthologous genetic loci in 2 or more organisms, for phylogenetics. Synteny exhibits compelling phylogenomic potential while also raising new challenges. This Essay identifies and discusses specific opportunities and challenges that bear on the value of synteny data and other rare genomic changes for phylogenomic studies. Synteny-based analyses of highly contiguous genome assemblies mark a new chapter in the phylogenomic era and the quest to reconstruct the tree of life.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
19
|
McCoy MJ, Fire AZ. Parallel gene size and isoform expansion of ancient neuronal genes. Curr Biol 2024; 34:1635-1645.e3. [PMID: 38460513 PMCID: PMC11043017 DOI: 10.1016/j.cub.2024.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/16/2023] [Accepted: 02/11/2024] [Indexed: 03/11/2024]
Abstract
How nervous systems evolved is a central question in biology. A diversity of synaptic proteins is thought to play a central role in the formation of specific synapses leading to nervous system complexity. The largest animal genes, often spanning hundreds of thousands of base pairs, are known to be enriched for expression in neurons at synapses and are frequently mutated or misregulated in neurological disorders and diseases. Although many of these genes have been studied independently in the context of nervous system evolution and disease, general principles underlying their parallel evolution remain unknown. To investigate this, we directly compared orthologous gene sizes across eukaryotes. By comparing relative gene sizes within organisms, we identified a distinct class of large genes with origins predating the diversification of animals and, in many cases, the emergence of neurons as dedicated cell types. We traced this class of ancient large genes through evolution and found orthologs of the large synaptic genes potentially driving the immense complexity of metazoan nervous systems, including in humans and cephalopods. Moreover, we found that while these genes are evolving under strong purifying selection, as demonstrated by low dN/dS ratios, they have simultaneously grown larger and gained the most isoforms in animals. This work provides a new lens through which to view this distinctive class of large and multi-isoform genes and demonstrates how intrinsic genomic properties, such as gene length, can provide flexibility in molecular evolution and allow groups of genes and their host organisms to evolve toward complexity.
Collapse
Affiliation(s)
- Matthew J McCoy
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Weinrauch AM, Dumar ZJ, Overduin SL, Goss GG, Leys SP, Blewett TA. Evidence for transporter-mediated uptake of environmental L-glutamate in a freshwater sponge, Ephydatia muelleri. J Comp Physiol B 2024; 194:121-130. [PMID: 38553641 DOI: 10.1007/s00360-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/10/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
The freshwater sponge, Ephydatia muelleri, lacks a nervous or endocrine system and yet it exhibits a coordinated whole-body action known as a "sneeze" that can be triggered by exposure to L-glutamate. It is not known how L-glutamate is obtained by E. muelleri in sufficient quantities (i.e., 70 µM) to mediate this response endogenously. The present study tested the hypothesis that L-glutamate can be directly acquired from the environment across the body surface of E. muelleri. We demonstrate carrier mediated uptake of two distinct saturable systems with maximal transport rates (Jmax) of 64.27 ± 4.98 and 25.12 ± 1.87 pmols mg-1 min-1, respectively. The latter system has a higher calculated substrate affinity (Km) of 2.87 ± 0.38 µM compared to the former (8.75 ± 1.00 µM), indicative of distinct systems that can acquire L-glutamate at variable environmental concentrations. Further characterization revealed potential shared pathways of L-glutamate uptake with other negatively charged amino acids, namely D-glutamate and L-aspartate, as well as the neutral amino acid L-alanine. We demonstrate that L-glutamate uptake does not appear to rely on exogenous sodium or proton concentrations as removal of these ions from the bathing media did not significantly alter uptake. Likewise, L-glutamate uptake does not seem to rely on internal proton motive forces driven by VHA as application of 100 nM of the VHA inhibitor bafilomycin did not alter uptake rates within E. muelleri tissues. Whether the acquired amino acid is used to supplement feeding or is stored and accumulated to mediate the sneeze response remains to be determined.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zachary J Dumar
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Sienna L Overduin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
21
|
Pozo G, Albuja-Quintana M, Larreátegui L, Gutiérrez B, Fuentes N, Alfonso-Cortés F, Torres MDL. First whole-genome sequence and assembly of the Ecuadorian brown-headed spider monkey (Ateles fusciceps fusciceps), a critically endangered species, using Oxford Nanopore Technologies. G3 (BETHESDA, MD.) 2024; 14:jkae014. [PMID: 38244218 PMCID: PMC10917520 DOI: 10.1093/g3journal/jkae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
The Ecuadorian brown-headed spider monkey (Ateles fusciceps fusciceps) is currently considered one of the most endangered primates in the world and is classified as critically endangered [International union for conservation of nature (IUCN)]. It faces multiple threats, the most significant one being habitat loss due to deforestation in western Ecuador. Genomic tools are keys for the management of endangered species, but this requires a reference genome, which until now was unavailable for A. f. fusciceps. The present study reports the first whole-genome sequence and assembly of A. f. fusciceps generated using Oxford Nanopore long reads. DNA was extracted from a subadult male, and libraries were prepared for sequencing following the Ligation Sequencing Kit SQK-LSK112 workflow. Sequencing was performed using a MinION Mk1C sequencer. The sequencing reads were processed to generate a genome assembly. Two different assemblers were used to obtain draft genomes using raw reads, of which the Flye assembly was found to be superior. The final assembly has a total length of 2.63 Gb and contains 3,861 contigs, with an N50 of 7,560,531 bp. The assembly was analyzed for annotation completeness based on primate ortholog prediction using a high-resolution database, and was found to be 84.3% complete, with a low number of duplicated genes indicating a precise assembly. The annotation of the assembly predicted 31,417 protein-coding genes, comparable with other mammal assemblies. A reference genome for this critically endangered species will allow researchers to gain insight into the genetics of its populations and thus aid conservation and management efforts of this vulnerable species.
Collapse
Affiliation(s)
- Gabriela Pozo
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Instituto Nacional de Biodiversidad (INABIO), Quito 170135, Ecuador
| | - Martina Albuja-Quintana
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Lizbeth Larreátegui
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Bernardo Gutiérrez
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Nathalia Fuentes
- Proyecto Washu/Fundación Naturaleza y Arte, Quito 170521, Ecuador
| | | | - Maria de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Instituto Nacional de Biodiversidad (INABIO), Quito 170135, Ecuador
| |
Collapse
|
22
|
Talajić A, Dominko K, Lončarić M, Ambriović-Ristov A, Ćetković H. The ancestral type of the R-RAS protein has oncogenic potential. Cell Mol Biol Lett 2024; 29:27. [PMID: 38383288 PMCID: PMC10882905 DOI: 10.1186/s11658-024-00546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The R-RAS2 is a small GTPase highly similar to classical RAS proteins at the regulatory and signaling levels. The high evolutionary conservation of R-RAS2, its links to basic cellular processes and its role in cancer, make R-RAS2 an interesting research topic. To elucidate the evolutionary history of R-RAS proteins, we investigated and compared structural and functional properties of ancestral type R-RAS protein with human R-RAS2. METHODS Bioinformatics analysis were used to elucidate the evolution of R-RAS proteins. Intrinsic GTPase activity of purified human and sponge proteins was analyzed with GTPase-GloTM Assay kit. The cell model consisted of human breast cancer cell lines MCF-7 and MDA-MB-231 transiently transfected with EsuRRAS2-like or HsaRRAS2. Biological characterization of R-RAS2 proteins was performed by Western blot on whole cell lysates or cell adhesion protein isolates, immunofluorescence and confocal microscopy, MTT test, colony formation assay, wound healing and Boyden chamber migration assays. RESULTS We found that the single sponge R-RAS2-like gene/protein probably reflects the properties of the ancestral R-RAS protein that existed prior to duplications during the transition to Bilateria, and to Vertebrata. Biochemical characterization of sponge and human R-RAS2 showed that they have the same intrinsic GTPase activity and RNA binding properties. By testing cell proliferation, migration and colony forming efficiency in MDA-MB-231 human breast cancer cells, we showed that the ancestral type of the R-RAS protein, sponge R-RAS2-like, enhances their oncogenic potential, similar to human R-RAS2. In addition, sponge and human R-RAS2 were not found in focal adhesions, but both homologs play a role in their regulation by increasing talin1 and vinculin. CONCLUSIONS This study suggests that the ancestor of all animals possessed an R-RAS2-like protein with oncogenic properties similar to evolutionarily more recent versions of the protein, even before the appearance of true tissue and the origin of tumors. Therefore, we have unraveled the evolutionary history of R-RAS2 in metazoans and improved our knowledge of R-RAS2 properties, including its structure, regulation and function.
Collapse
Affiliation(s)
- Antea Talajić
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Kristina Dominko
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Helena Ćetković
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
23
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. The Physiological Inorganic Polymers Biosilica and Polyphosphate as Key Drivers for Biomedical Materials in Regenerative Nanomedicine. Int J Nanomedicine 2024; 19:1303-1337. [PMID: 38348175 PMCID: PMC10860874 DOI: 10.2147/ijn.s446405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
There is a need for novel nanomaterials with properties not yet exploited in regenerative nanomedicine. Based on lessons learned from the oldest metazoan phylum, sponges, it has been recognized that two previously ignored or insufficiently recognized principles play an essential role in tissue regeneration, including biomineral formation/repair and wound healing. Firstly, the dependence on enzymes as a driving force and secondly, the availability of metabolic energy. The discovery of enzymatic synthesis and regenerative activity of amorphous biosilica that builds the mineral skeleton of siliceous sponges formed the basis for the development of successful strategies for the treatment of osteochondral impairments in humans. In addition, the elucidation of the functional significance of a second regeneratively active inorganic material, namely inorganic polyphosphate (polyP) and its amorphous nanoparticles, present from sponges to humans, has pushed forward the development of innovative materials for both soft (skin, cartilage) and hard tissue (bone) repair. This energy-rich molecule exhibits a property not shown by any other biopolymer: the delivery of metabolic energy, even extracellularly, necessary for the ATP-dependent tissue regeneration. This review summarizes the latest developments in nanobiomaterials based on these two evolutionarily old, regeneratively active materials, amorphous silica and amorphous polyP, highlighting their specific, partly unique properties and mode of action, and discussing their possible applications in human therapy. The results of initial proof-of-concept studies on patients demonstrating complete healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
24
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
25
|
Hsiao J, Deng LC, Moroz LL, Chalasani SH, Edsinger E. Ocean to Tree: Leveraging Single-Molecule RNA-Seq to Repair Genome Gene Models and Improve Phylogenomic Analysis of Gene and Species Evolution. Methods Mol Biol 2024; 2757:461-490. [PMID: 38668979 PMCID: PMC11112408 DOI: 10.1007/978-1-0716-3642-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Understanding gene evolution across genomes and organisms, including ctenophores, can provide unexpected biological insights. It enables powerful integrative approaches that leverage sequence diversity to advance biomedicine. Sequencing and bioinformatic tools can be inexpensive and user-friendly, but numerous options and coding can intimidate new users. Distinct challenges exist in working with data from diverse species but may go unrecognized by researchers accustomed to gold-standard genomes. Here, we provide a high-level workflow and detailed pipeline to enable animal collection, single-molecule sequencing, and phylogenomic analysis of gene and species evolution. As a demonstration, we focus on (1) PacBio RNA-seq of the genome-sequenced ctenophore Mnemiopsis leidyi, (2) diversity and evolution of the mechanosensitive ion channel Piezo in genetic models and basal-branching animals, and (3) associated challenges and solutions to working with diverse species and genomes, including gene model updating and repair using single-molecule RNA-seq. We provide a Python Jupyter Notebook version of our pipeline (GitHub Repository: Ctenophore-Ocean-To-Tree-2023 https://github.com/000generic/Ctenophore-Ocean-To-Tree-2023 ) that can be run for free in the Google Colab cloud to replicate our findings or modified for specific or greater use. Our protocol enables users to design new sequencing projects in ctenophores, marine invertebrates, or other novel organisms. It provides a simple, comprehensive platform that can ease new user entry into running their evolutionary sequence analyses.
Collapse
Affiliation(s)
- Jan Hsiao
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| | - Lola Chenxi Deng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL32611
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| | - Eric Edsinger
- Molecular Neurobiology Laboratory, Salk Institute for Biological Study, La Jolla, CA 92037
| |
Collapse
|
26
|
Lo Giudice A, Rizzo C. Freshwater Sponges as a Neglected Reservoir of Bacterial Biodiversity. Microorganisms 2023; 12:25. [PMID: 38257852 PMCID: PMC10819713 DOI: 10.3390/microorganisms12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Freshwater sponges (Spongillida: Demospongiae), including more than 240 described species, are globally distributed in continental waters (except for Antarctica), where they cover both natural and artificial surfaces. However, fragmentary studies have targeted their microbiome, making it difficult to test hypotheses about sponge-microbe specificity and metabolic relationships, along with the environmental factors playing key roles in structuring the associated microbial communities. To date, particular attention has been paid to sponges (family Lubomirskiidae) that are endemic to Lake Baikal. Few other freshwater sponge species (e.g., Ephydatia spp., Eunapius spp., and Spongilla lacustris), from lakes and rivers spanning from Europe to South and North America, have been targeted for microbiological studies. Representatives of the phyla Proteobacteria, Bacteroidetes, and Actinobacteria largely predominated, and high differences were reported between the microbiome of freshwater and marine sponges. Several bacterial strains isolated from freshwater sponges can produce bioactive compounds, mainly showing antibiotic activities, with potential application in biotechnology. Understanding the roles played by sponge microbiomes in freshwater ecosystems is still in its infancy and has yet to be clarified to disentangle the ecological and evolutionary significance of these largely under-investigated microbial communities. This review was aimed at providing the main available information on the composition and biotechnological potential of prokaryotic communities associated with healthy freshwater sponges, as a neglected component of the global sponge microbiome, to stimulate researchers interested in the field.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy;
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy;
- Zoological Station “Anton Dohrn”, Department of Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello, 98168 Messina, Italy
| |
Collapse
|
27
|
Zimmermann B, Montenegro JD, Robb SMC, Fropf WJ, Weilguny L, He S, Chen S, Lovegrove-Walsh J, Hill EM, Chen CY, Ragkousi K, Praher D, Fredman D, Schultz D, Moran Y, Simakov O, Genikhovich G, Gibson MC, Technau U. Topological structures and syntenic conservation in sea anemone genomes. Nat Commun 2023; 14:8270. [PMID: 38092765 PMCID: PMC10719294 DOI: 10.1038/s41467-023-44080-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus. We find a robust set of 15 chromosomes with a clear one-to-one correspondence between the two species. Both genomes show chromosomal conservation, allowing us to reconstruct ancestral cnidarian and metazoan chromosomal blocks, consisting of at least 19 and 16 ancestral linkage groups, respectively. We show that, in contrast to Bilateria, the Hox and NK clusters of investigated cnidarians are largely disintegrated, despite the presence of staggered hox/gbx expression in Nematostella. This loss of microsynteny conservation may be facilitated by shorter distances between cis-regulatory sequences and their cognate transcriptional start sites. We find no clear evidence for topologically associated domains, suggesting fundamental differences in long-range gene regulation compared to vertebrates. These data suggest that large sets of ancestral metazoan genes have been retained in ancestral linkage groups of some extant lineages; yet, higher order gene regulation with associated 3D architecture may have evolved only after the cnidarian-bilaterian split.
Collapse
Affiliation(s)
- Bob Zimmermann
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Research platform SinCeReSt, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Juan D Montenegro
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Research platform SinCeReSt, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sofia M C Robb
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Whitney J Fropf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Lukas Weilguny
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Jessica Lovegrove-Walsh
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Eric M Hill
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Cheng-Yi Chen
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Katerina Ragkousi
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Biology, Amherst College, Amherst, MA, 01002, USA
| | - Daniela Praher
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - David Fredman
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Darrin Schultz
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yehu Moran
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Research platform SinCeReSt, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research platform SinCeReSt, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Max Perutz laboratories, University of Vienna, Dr. Bohrgasse 5, 1030, Vienna, Austria.
| |
Collapse
|
28
|
Varney R. The Genomics in Emerging Marine Systems Checklist for Clear and Reproducible Genomics in Emerging, Marine Systems. Integr Comp Biol 2023; 63:1010-1016. [PMID: 37381586 DOI: 10.1093/icb/icad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023] Open
Abstract
Genome sequencing becomes more accessible and powerful every year, but there is a lack of consensus on what information should be provided in publications that include genomic data. The result is a flood of sequencing data without a framework to evaluate its quality and completeness, hindering reproducibility. In non-model taxa in marine systems, a lack of detail in methods sections often hinders future researchers from adopting improved techniques, leaving them to repeat costly protocols and take up computational (wall) time with programs that are already known to fail. Here, I present a set of guidelines tailored for marine taxa (emerging model organisms) to promote consistency between publications, increase transparency of sequencing projects, and preserve the value of sequence data as sequencing technologies advance. Included is a checklist to (1) guide authors toward including more detailed information in their manuscripts, (2) expand data availability, and (3) assist reviewers to thoroughly vet methods and results of future 'omic publications. This set of guidelines will support the usefulness of 'omic data in future analyses by providing a framework to document and evaluate these data, leading to transparent and reproducible genomics research on emerging marine systems.
Collapse
|
29
|
Lavrov DV, Diaz MC, Maldonado M, Morrow CC, Perez T, Pomponi SA, Thacker RW. Phylomitogenomics bolsters the high-level classification of Demospongiae (phylum Porifera). PLoS One 2023; 18:e0287281. [PMID: 38048310 PMCID: PMC10695373 DOI: 10.1371/journal.pone.0287281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Class Demospongiae is the largest in the phylum Porifera (Sponges) and encompasses nearly 8,000 accepted species in three subclasses: Keratosa, Verongimorpha, and Heteroscleromorpha. Subclass Heteroscleromorpha contains ∼90% of demosponge species and is subdivided into 17 orders. The higher level classification of demosponges underwent major revision as the result of nearly three decades of molecular studies. However, because most of the previous molecular work only utilized partial data from a small number of nuclear and mitochondrial (mt) genes, this classification scheme needs to be tested by larger datasets. Here we compiled a mt dataset for 136 demosponge species-including 64 complete or nearly complete and six partial mt-genome sequences determined or assembled for this study-and used it to test phylogenetic relationships among Demospongiae in general and Heteroscleromorpha in particular. We also investigated the phylogenetic position of Myceliospongia araneosa, a highly unusual demosponge without spicules and spongin fibers, currently classified as Demospongiae incertae sedis, for which molecular data were not available. Our results support the previously inferred sister-group relationship between Heteroscleromorpha and Keratosa + Verongimorpha and suggest five main clades within Heteroscleromorpha: Clade C0 composed of order Haplosclerida; Clade C1 composed of Scopalinida, Sphaerocladina, and Spongillida; Clade C2 composed of Axinellida, Biemnida, Bubarida; Clade C3 composed of Tetractinellida; and Clade C4 composed of Agelasida, Clionaida, Desmacellida, Merliida, Suberitida, Poecilosclerida, Polymastiida, and Tethyida. The inferred relationships among these clades were (C0(C1(C2(C3+C4)))). Analysis of molecular data from M. araneosa placed it in the C3 clade as a sister taxon to the highly skeletonized tetractinellids Microscleroderma sp. and Leiodermatium sp. Molecular clock analysis dated divergences among the major clades in Heteroscleromorpha from the Cambrian to the Early Silurian, the origins of most heteroscleromorph orders in the middle Paleozoic, and the most basal splits within these orders around the Paleozoic to Mesozoic transition. Overall, the results of this study are mostly congruent with the accepted classification of Heteroscleromorpha, but add temporal perspective and new resolution to phylogenetic relationships within this subclass.
Collapse
Affiliation(s)
- Dennis V. Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Maria C. Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
- Museo Marino de Margarita, Boca de Río, Nueva Esparta, Venezuela
| | - Manuel Maldonado
- Department of Marine Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| | - Christine C. Morrow
- Zoology Department, School of Natural Sciences & Ryan Institute, NUI Galway, University Road, Galway, Ireland
- Ireland and Queen’s University Marine Laboratory, Portaferry, Northern Ireland
| | - Thierry Perez
- Institut Méditerranéen de la Biodiversité et d’Ecologie marine et continentale (IMBE), CNRS, Aix-Marseille Université, IRD, Avignon Université City, Provence, France
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
| | - Robert W. Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States of America
- Smithsonian Tropical Research Institute, Balboa, Panama City, Republic of Panama
| |
Collapse
|
30
|
Neighmond H, Quinn A, Schmandt B, Ettinger K, Hill A, Williams L. Developmental bisphenol S toxicity in two freshwater animal models. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104311. [PMID: 37939749 PMCID: PMC11178287 DOI: 10.1016/j.etap.2023.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Freshwater animals are exposed to anthropogenic contaminants and are biomonitors of water quality and models of the deleterious impacts of exposure. Sponges, such as Ephydatia muelleri, constantly pump water and are effective indicators of water-soluble contaminants. Zebrafish (Danio rerio), native to Southeast Asia, live in the water column and feed at the water-sediment interface and are exposed to both water-soluble and insoluble contaminants. While sponges and zebrafish diverged ∼700 million years ago, they share common genetic elements, and their response to contaminants can be predictive to a wide-range of animals. An emerging contaminant, bisphenol S, was tested to evaluate its toxicity during development. The toxicity and mechanism(s) of action of BPS is not well known. Water-borne exposures to BPS caused differing hatching rates, morphological changes, and shared gene expression changes of toxicologically-relevant genes. This study shows that BPS causes similarly adverse developmental impacts pointing to some overlapping mechanisms of action.
Collapse
Affiliation(s)
- Hayley Neighmond
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA
| | - Abigail Quinn
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA
| | - Benjamin Schmandt
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA
| | - Kerry Ettinger
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA
| | - April Hill
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA.
| | - Larissa Williams
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA.
| |
Collapse
|
31
|
Law STS, Yu Y, Nong W, So WL, Li Y, Swale T, Ferrier DEK, Qiu J, Qian P, Hui JHL. The genome of the deep-sea anemone Actinernus sp. contains a mega-array of ANTP-class homeobox genes. Proc Biol Sci 2023; 290:20231563. [PMID: 37876192 PMCID: PMC10598428 DOI: 10.1098/rspb.2023.1563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Members of the phylum Cnidaria include sea anemones, corals and jellyfish, and have successfully colonized both marine and freshwater habitats throughout the world. The understanding of how cnidarians adapt to extreme environments such as the dark, high-pressure deep-sea habitat has been hindered by the lack of genomic information. Here, we report the first chromosome-level deep-sea cnidarian genome, of the anemone Actinernus sp., which was 1.39 Gbp in length and contained 44 970 gene models including 14 806 tRNA genes and 30 164 protein-coding genes. Analyses of homeobox genes revealed the longest chromosome hosts a mega-array of Hox cluster, HoxL, NK cluster and NKL homeobox genes; until now, such an array has only been hypothesized to have existed in ancient ancestral genomes. In addition to this striking arrangement of homeobox genes, analyses of microRNAs revealed cnidarian-specific complements that are distinctive for nested clades of these animals, presumably reflecting the progressive evolution of the gene regulatory networks in which they are embedded. Also, compared with other sea anemones, circadian rhythm genes were lost in Actinernus sp., which likely reflects adaptation to living in the dark. This high-quality genome of a deep-sea cnidarian thus reveals some of the likely molecular adaptations of this ecologically important group of metazoans to the extreme deep-sea environment. It also deepens our understanding of the evolution of genome content and organization of animals in general and cnidarians in particular, specifically from the viewpoint of key developmental control genes like the homeobox-encoding genes, where we find an array of genes that until now has only been hypothesized to have existed in the ancient ancestor that pre-dated both the cnidarians and bilaterians.
Collapse
Affiliation(s)
- Sean Tsz Sum Law
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yifei Yu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Thomas Swale
- Dovetail Genomics, LLC, Scotts Valley, CA 95066, USA
| | - David E. K. Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Jianwen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People's Republic of China
- Department of Biology, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Peiyuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
32
|
Steffen K, Proux-Wéra E, Soler L, Churcher A, Sundh J, Cárdenas P. Whole genome sequence of the deep-sea sponge Geodia barretti (Metazoa, Porifera, Demospongiae). G3 (BETHESDA, MD.) 2023; 13:jkad192. [PMID: 37619978 PMCID: PMC10542158 DOI: 10.1093/g3journal/jkad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Sponges are among the earliest branching extant animals. As such, genetic data from this group are valuable for understanding the evolution of various traits and processes in other animals. However, like many marine organisms, they are notoriously difficult to sequence, and hence, genomic data are scarce. Here, we present the draft genome assembly for the North Atlantic deep-sea high microbial abundance species Geodia barretti Bowerbank 1858, from a single individual collected on the West Coast of Sweden. The nuclear genome assembly has 4,535 scaffolds, an N50 of 48,447 bp and a total length of 144 Mb; the mitochondrial genome is 17,996 bp long. BUSCO completeness was 71.5%. The genome was annotated using a combination of ab initio and evidence-based methods finding 31,884 protein-coding genes.
Collapse
Affiliation(s)
- Karin Steffen
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Estelle Proux-Wéra
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna SE-17121, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Uppsala 752 37, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - John Sundh
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna SE-17121, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
33
|
Xiang X, Vilar Gomez AA, Blomberg SP, Yuan H, Degnan BM, Degnan SM. Potential for host-symbiont communication via neurotransmitters and neuromodulators in an aneural animal, the marine sponge Amphimedon queenslandica. Front Neural Circuits 2023; 17:1250694. [PMID: 37841893 PMCID: PMC10570526 DOI: 10.3389/fncir.2023.1250694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Interkingdom signalling within a holobiont allows host and symbionts to communicate and to regulate each other's physiological and developmental states. Here we show that a suite of signalling molecules that function as neurotransmitters and neuromodulators in most animals with nervous systems, specifically dopamine and trace amines, are produced exclusively by the bacterial symbionts of the demosponge Amphimedon queenslandica. Although sponges do not possess a nervous system, A. queenslandica expresses rhodopsin class G-protein-coupled receptors that are structurally similar to dopamine and trace amine receptors. When sponge larvae, which express these receptors, are exposed to agonists and antagonists of bilaterian dopamine and trace amine receptors, we observe marked changes in larval phototactic swimming behaviour, consistent with the sponge being competent to recognise and respond to symbiont-derived trace amine signals. These results indicate that monoamines synthesised by bacterial symbionts may be able to influence the physiology of the host sponge.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandie M. Degnan
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Hehmeyer J, Spitz F, Marlow H. Shifting landscapes: the role of 3D genomic organizations in gene regulatory strategies. Curr Opin Genet Dev 2023; 81:102064. [PMID: 37390583 PMCID: PMC10547022 DOI: 10.1016/j.gde.2023.102064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023]
Abstract
3D genome folding enables the physical storage of chromosomes into the compact volume of a cell's nucleus, allows for the accurate segregation of chromatin to daughter cells, and has been shown to be tightly coupled to the way in which genetic information is converted into transcriptional programs [1-3]. Importantly, this link between chromatin architecture and gene regulation is a selectable feature in which modifications to chromatin organization accompany, or perhaps even drive the establishment of new regulatory strategies with enduring impacts on animal body plan complexity. Here, we discuss the nature of different 3D genome folding systems found across the tree of life, with particular emphasis on metazoans, and the relative influence of these systems on gene regulation. We suggest how the properties of these folding systems have influenced regulatory strategies employed by different lineages and may have catalyzed the partitioning and specialization of genetic programs that enabled multicellularity and organ-grade body plan complexity.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Department of Organismal Biology and Anatomy, The University of Chicago, USA
| | - François Spitz
- Department of Human Genetics, The University of Chicago, USA
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, USA.
| |
Collapse
|
35
|
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, Bombarely A, Crottini A, Gallo GR, Godoy JA, Jentoft S, Malukiewicz J, Mouton A, Oomen RA, Paez S, Palsbøll PJ, Pampoulie C, Ruiz-López MJ, Secomandi S, Svardal H, Theofanopoulou C, de Vries J, Waldvogel AM, Zhang G, Jarvis ED, Bálint M, Ciofi C, Waterhouse RM, Mazzoni CJ, Höglund J. How genomics can help biodiversity conservation. Trends Genet 2023; 39:545-559. [PMID: 36801111 DOI: 10.1016/j.tig.2023.01.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.
Collapse
Affiliation(s)
- Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Carlos Fernandes
- CE3C - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal
| | - Giulio Formenti
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Iliana Bista
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, The Netherlands; Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Paul R Berg
- NIVA - Norwegian Institute for Water Research, Økernveien, 94, 0579 Oslo, Norway; Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Christoph Bleidorn
- University of Göttingen, Department of Animal Evolution and Biodiversity, Untere Karspüle, 2, 37073, Göttingen, Germany
| | | | - Angelica Crottini
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Rua Padre Armando Quintas, 7, 4485-661, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Guido R Gallo
- Department of Biosciences, University of Milan, Milan, Italy
| | - José A Godoy
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Joanna Malukiewicz
- Primate Genetics Laborator, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Alice Mouton
- InBios - Conservation Genetics Lab, University of Liege, Chemin de la Vallée 4, 4000, Liege, Belgium
| | - Rebekah A Oomen
- Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Sadye Paez
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Per J Palsbøll
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh, 9747, AG, Groningen, The Netherlands; Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657, USA
| | - Christophe Pampoulie
- Marine and Freshwater Research Institute, Fornubúðir, 5,220, Hanafjörður, Iceland
| | - María J Ruiz-López
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Hannes Svardal
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Constantina Theofanopoulou
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA; Hunter College, City University of New York, NY, USA
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Ann-Marie Waldvogel
- Institute of Zoology, University of Cologne, Zülpicherstrasse 47b, D-50674, Cologne, Germany
| | - Guojie Zhang
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Erich D Jarvis
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Claudio Ciofi
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino, (FI) 50019, Italy
| | - Robert M Waterhouse
- University of Lausanne, Department of Ecology and Evolution, Le Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Camila J Mazzoni
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str 17, 10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Koenigin-Luise-Str 6-8, 14195 Berlin, Germany
| | - Jacob Höglund
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75246, Uppsala, Sweden.
| |
Collapse
|
36
|
Desplat Y, Warner JF, Blake EJ, Vijayan N, Cuvelier M, Blackwelder P, Lopez JV. Morphological and transcriptional effects of crude oil and dispersant exposure on the marine sponge Cinachyrella alloclada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162832. [PMID: 36924960 DOI: 10.1016/j.scitotenv.2023.162832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 05/13/2023]
Abstract
Marine sponges play important roles in benthic ecosystems. More than providing shelter and food to other species, they help maintain water quality by regulating nitrogen and ammonium levels in the water, and bioaccumulate heavy metals. This system, however, is particularly sensitive to sudden environmental changes including catastrophic pollution event such as oil spills. Hundreds of oil platforms are currently actively extracting oil and gas in the Gulf of Mexico. To test the vulnerability of the benthic ecosystems to oil spills, we utilized the Caribbean reef sponge, Cinachyrella alloclada, as a novel experimental indicator. We have exposed organisms to crude oil and oil dispersant for up to 24 h and measured resultant gene expression changes. Our findings indicate that 1-hour exposure to water accommodated fractions (WAF) was enough to elicit massive shifts in gene expression in sponges and host bacterial communities (8052 differentially expressed transcripts) with the up-regulation of stress related pathways, cancer related pathways, and cell integrity pathways. Genes that were upregulated included heat shock proteins, apoptosis, oncogenes (Rab/Ras, Src, CMYC), and several E3 ubiquitin ligases. 24-hour exposure of chemically enhanced WAF (CE-WAF) had the greatest impact to benthic communities, resulting in mostly downregulation of gene expression (4248 differentially expressed transcripts). Gene deregulation from 1-hour treatments follow this decreasing trend of toxicity: WAF > CE-WAF > Dispersant, while the 24-hour treatment showed a shift to CE-WAF > Dispersant > WAF in our experiments. Thus, this study supports the development of Cinachyrella alloclada as a research model organism and bioindicator species for Florida reefs and underscores the importance of developing more efficient and safer ways to remove oil in the event of a spill catastrophe.
Collapse
Affiliation(s)
- Yvain Desplat
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America.
| | - Jacob F Warner
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28409, United States of America
| | - Emily J Blake
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| | - Nidhi Vijayan
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| | - Marie Cuvelier
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| | - Patricia Blackwelder
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America; UMCAM, Chemistry Department, University of Miami, Coral Gables, FL 33126, United States of America
| | - Jose V Lopez
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, United States of America
| |
Collapse
|
37
|
Santini S, Schenkelaars Q, Jourda C, Duchesne M, Belahbib H, Rocher C, Selva M, Riesgo A, Vervoort M, Leys SP, Kodjabachian L, Le Bivic A, Borchiellini C, Claverie JM, Renard E. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biol 2023; 21:139. [PMID: 37337252 DOI: 10.1186/s12915-023-01619-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.
Collapse
Affiliation(s)
- Sébastien Santini
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Quentin Schenkelaars
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Jourda
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
- CIRAD, UMR PVBMT, La Réunion, France
| | - Marc Duchesne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Hassiba Belahbib
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Marjorie Selva
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Turing Center for Living Systems, Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France.
| |
Collapse
|
38
|
Francis WR, Eitel M, Vargas S, Garcia-Escudero CA, Conci N, Deister F, Mah JL, Guiglielmoni N, Krebs S, Blum H, Leys SP, Wörheide G. The genome of the reef-building glass sponge Aphrocallistes vastus provides insights into silica biomineralization. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230423. [PMID: 37351491 PMCID: PMC10282587 DOI: 10.1098/rsos.230423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Well-annotated and contiguous genomes are an indispensable resource for understanding the evolution, development, and metabolic capacities of organisms. Sponges, an ecologically important non-bilaterian group of primarily filter-feeding sessile aquatic organisms, are underrepresented with respect to available genomic resources. Here we provide a high-quality and well-annotated genome of Aphrocallistes vastus, a glass sponge (Porifera: Hexactinellida) that forms large reef structures off the coast of British Columbia (Canada). We show that its genome is approximately 80 Mb, small compared to most other metazoans, and contains nearly 2500 nested genes, more than other genomes. Hexactinellida is characterized by a unique skeletal architecture made of amorphous silicon dioxide (SiO2), and we identified 419 differentially expressed genes between the osculum, i.e. the vertical growth zone of the sponge, and the main body. Among the upregulated ones, mineralization-related genes such as glassin, as well as collagens and actins, dominate the expression profile during growth. Silicateins, suggested being involved in silica mineralization, especially in demosponges, were not found at all in the A. vastus genome and suggests that the underlying mechanisms of SiO2 deposition in the Silicea sensu stricto (Hexactinellida + Demospongiae) may not be homologous.
Collapse
Affiliation(s)
- Warren R. Francis
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Catalina A. Garcia-Escudero
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Deister
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jasmine L. Mah
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9
| | - Nadège Guiglielmoni
- Service Evolution Biologique et Ecologie, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sally P. Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
39
|
Schultz DT, Haddock SHD, Bredeson JV, Green RE, Simakov O, Rokhsar DS. Ancient gene linkages support ctenophores as sister to other animals. Nature 2023; 618:110-117. [PMID: 37198475 PMCID: PMC10232365 DOI: 10.1038/s41586-023-05936-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/09/2023] [Indexed: 05/19/2023]
Abstract
A central question in evolutionary biology is whether sponges or ctenophores (comb jellies) are the sister group to all other animals. These alternative phylogenetic hypotheses imply different scenarios for the evolution of complex neural systems and other animal-specific traits1-6. Conventional phylogenetic approaches based on morphological characters and increasingly extensive gene sequence collections have not been able to definitively answer this question7-11. Here we develop chromosome-scale gene linkage, also known as synteny, as a phylogenetic character for resolving this question12. We report new chromosome-scale genomes for a ctenophore and two marine sponges, and for three unicellular relatives of animals (a choanoflagellate, a filasterean amoeba and an ichthyosporean) that serve as outgroups for phylogenetic analysis. We find ancient syntenies that are conserved between animals and their close unicellular relatives. Ctenophores and unicellular eukaryotes share ancestral metazoan patterns, whereas sponges, bilaterians, and cnidarians share derived chromosomal rearrangements. Conserved syntenic characters unite sponges with bilaterians, cnidarians, and placozoans in a monophyletic clade to the exclusion of ctenophores, placing ctenophores as the sister group to all other animals. The patterns of synteny shared by sponges, bilaterians, and cnidarians are the result of rare and irreversible chromosome fusion-and-mixing events that provide robust and unambiguous phylogenetic support for the ctenophore-sister hypothesis. These findings provide a new framework for resolving deep, recalcitrant phylogenetic problems and have implications for our understanding of animal evolution.
Collapse
Affiliation(s)
- Darrin T Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.
- Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, CA, USA.
| | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Richard E Green
- Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, CA, USA
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
40
|
Aguilar-Camacho JM, Foreman K, Jaimes-Becerra A, Aharoni R, Gründer S, Moran Y. Functional analysis in a model sea anemone reveals phylogenetic complexity and a role in cnidocyte discharge of DEG/ENaC ion channels. Commun Biol 2023; 6:17. [PMID: 36609696 PMCID: PMC9822975 DOI: 10.1038/s42003-022-04399-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Ion channels of the DEG/ENaC family share a similar structure but serve strikingly diverse biological functions, such as Na+ reabsorption, mechanosensing, proton-sensing, chemosensing and cell-cell communication via neuropeptides. This functional diversity raises the question of the ancient function of DEG/ENaCs. Using an extensive phylogenetic analysis across many different animal groups, we found a surprising diversity of DEG/ENaCs already in Cnidaria (corals, sea anemones, hydroids and jellyfish). Using a combination of gene expression analysis, electrophysiological and functional studies combined with pharmacological inhibition as well as genetic knockout in the model cnidarian Nematostella vectensis, we reveal an unanticipated role for a proton-sensitive DEG/ENaC in discharge of N. vectensis cnidocytes, the stinging cells typifying all cnidarians. Our study supports the view that DEG/ENaCs are versatile channels that have been co-opted for diverse functions since their early occurrence in animals and that respond to simple and ancient stimuli, such as omnipresent protons.
Collapse
Affiliation(s)
- Jose Maria Aguilar-Camacho
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Aachen, Germany.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
41
|
Juravel K, Porras L, Höhna S, Pisani D, Wörheide G. Exploring genome gene content and morphological analysis to test recalcitrant nodes in the animal phylogeny. PLoS One 2023; 18:e0282444. [PMID: 36952565 PMCID: PMC10035847 DOI: 10.1371/journal.pone.0282444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
An accurate phylogeny of animals is needed to clarify their evolution, ecology, and impact on shaping the biosphere. Although datasets of several hundred thousand amino acids are nowadays routinely used to test phylogenetic hypotheses, key deep nodes in the metazoan tree remain unresolved: the root of animals, the root of Bilateria, and the monophyly of Deuterostomia. Instead of using the standard approach of amino acid datasets, we performed analyses of newly assembled genome gene content and morphological datasets to investigate these recalcitrant nodes in the phylogeny of animals. We explored extensively the choices for assembling the genome gene content dataset and model choices of morphological analyses. Our results are robust to these choices and provide additional insights into the early evolution of animals, they are consistent with sponges as the sister group of all the other animals, the worm-like bilaterian lineage Xenacoelomorpha as the sister group of the other Bilateria, and tentatively support monophyletic Deuterostomia.
Collapse
Affiliation(s)
- Ksenia Juravel
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Luis Porras
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Sebastian Höhna
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
42
|
Riesgo A, Santodomingo N, Koutsouveli V, Kumala L, Leger MM, Leys SP, Funch P. Molecular machineries of ciliogenesis, cell survival, and vasculogenesis are differentially expressed during regeneration in explants of the demosponge Halichondria panicea. BMC Genomics 2022; 23:858. [PMID: 36581804 PMCID: PMC9798719 DOI: 10.1186/s12864-022-09035-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/21/2022] [Indexed: 12/30/2022] Open
Abstract
Sponges are interesting animal models for regeneration studies, since even from dissociated cells, they are able to regenerate completely. In particular, explants are model systems that can be applied to many sponge species, since small fragments of sponges can regenerate all elements of the adult, including the oscula and the ability to pump water. The morphological aspects of regeneration in sponges are relatively well known, but the molecular machinery is only now starting to be elucidated for some sponge species. Here, we have used an explant system of the demosponge Halichondria panicea to understand the molecular machinery deployed during regeneration of the aquiferous system. We sequenced the transcriptomes of four replicates of the 5-day explant without an osculum (NOE), four replicates of the 17-18-day explant with a single osculum and pumping activity (PE) and also four replicates of field-collected individuals with regular pumping activity (PA), and performed differential gene expression analysis. We also described the morphology of NOE and PE samples using light and electron microscopy. Our results showed a highly disorganised mesohyl and disarranged aquiferous system in NOE that is coupled with upregulated pathways of ciliogenesis, organisation of the ECM, and cell proliferation and survival. Once the osculum is formed, genes involved in "response to stimulus in other organisms" were upregulated. Interestingly, the main molecular machinery of vasculogenesis described in vertebrates was activated during the regeneration of the aquiferous system. Notably, vasculogenesis markers were upregulated when the tissue was disorganised and about to start forming canals (NOE) and angiogenic stimulators and ECM remodelling machineries were differentially expressed once the aquiferous system was in place (PE and PA). Our results are fundamental to better understanding the molecular mechanisms involved in the formation of the aquiferous system in sponges, and its similarities with the early onset of blood-vessel formation in animal evolution.
Collapse
Affiliation(s)
- Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain.
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW5 7BD, UK.
| | - Nadia Santodomingo
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW5 7BD, UK
- Department of Earth Sciences, Oxford University, South Parks Road, Oxford, OX1 3AN, UK
| | - Vasiliki Koutsouveli
- Marine Symbioses Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105, Kiel, Germany
| | - Lars Kumala
- Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300, Kerteminde, Denmark
| | - Michelle M Leger
- Institute of Evolutionary Biology (CSIC-UPF), Paseo Marítimo de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2R3, Canada
| | - Peter Funch
- Department of Biology, Aarhus University, Ny Munkegade, 114-116, Aarhus C, Denmark
| |
Collapse
|
43
|
DeBiasse MB, Schiebelhut LM, Escalona M, Beraut E, Fairbairn C, Marimuthu MPA, Nguyen O, Sahasrabudhe R, Dawson MN. A chromosome-level reference genome for the giant pink sea star, Pisaster brevispinus, a species severely impacted by wasting. J Hered 2022; 113:689-698. [PMID: 36044245 PMCID: PMC9709977 DOI: 10.1093/jhered/esac044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Efforts to protect the ecologically and economically significant California Current Ecosystem from global change will greatly benefit from data about patterns of local adaptation and population connectivity. To facilitate that work, we present a reference-quality genome for the giant pink sea star, Pisaster brevispinus, a species of ecological importance along the Pacific west coast of North America that has been heavily impacted by environmental change and disease. We used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to generate a highly contiguous genome assembly of 550 Mb in length. The assembly contains 127 scaffolds with a contig N50 of 4.6 Mb and a scaffold N50 of 21.4 Mb; the BUSCO completeness score is 98.70%. The P. brevispinus genome assembly is comparable to the genome of the congener species P. ochraceus in size and completeness. Both Pisaster assemblies are consistent with previously published karyotyping results showing sea star genomes are organized into 22 autosomes. The reference genome for P. brevispinus is an important first step toward the goal of producing a comprehensive, population genomics view of ecological and evolutionary processes along the California coast. This resource will help scientists, managers, and policy makers in their task of understanding and protecting critical coastal regions from the impacts of global change.
Collapse
Affiliation(s)
- Melissa B DeBiasse
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| | - Lauren M Schiebelhut
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Eric Beraut
- Ecology & Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Colin Fairbairn
- Ecology & Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California Davis, Davis, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California Davis, Davis, CA, United States
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California Davis, Davis, CA, United States
| | - Michael N Dawson
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| |
Collapse
|
44
|
Sugden S, Holert J, Cardenas E, Mohn WW, Stein LY. Microbiome of the freshwater sponge Ephydatia muelleri shares compositional and functional similarities with those of marine sponges. THE ISME JOURNAL 2022; 16:2503-2512. [PMID: 35906397 PMCID: PMC9562138 DOI: 10.1038/s41396-022-01296-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Sponges are known for hosting diverse communities of microbial symbionts, but despite persistent interest in the sponge microbiome, most research has targeted marine sponges; freshwater sponges have been the focus of less than a dozen studies. Here, we used 16 S rRNA gene amplicon sequencing and shotgun metagenomics to characterize the microbiome of the freshwater sponge Ephydatia muelleri and identify potential indicators of sponge-microbe mutualism. Using samples collected from the Sooke, Nanaimo, and Cowichan Rivers on Vancouver Island, British Columbia, we show that the E. muelleri microbiome is distinct from the ambient water and adjacent biofilms and is dominated by Sediminibacterium, Comamonas, and unclassified Rhodospirillales. We also observed phylotype-level differences in sponge microbiome taxonomic composition among different rivers. These differences were not reflected in the ambient water, suggesting that other environmental or host-specific factors may drive the observed geographic variation. Shotgun metagenomes and metagenome-assembled genomes further revealed that freshwater sponge-associated bacteria share many genomic similarities with marine sponge microbiota, including an abundance of defense-related proteins (CRISPR, restriction-modification systems, and transposases) and genes for vitamin B12 production. Overall, our results provide foundational information on the composition and function of freshwater sponge-associated microbes, which represent an important yet underappreciated component of the global sponge microbiome.
Collapse
Affiliation(s)
- Scott Sugden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada.
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Erick Cardenas
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Díez-Vives C, Koutsouveli V, Conejero M, Riesgo A. Global patterns in symbiont selection and transmission strategies in sponges. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1015592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges host dense and diverse communities of microbes (known as the microbiome) beneficial for the host nutrition and defense. Symbionts in turn receive shelter and metabolites from the sponge host, making their relationship beneficial for both partners. Given that sponge-microbes associations are fundamental for the survival of both, especially the sponge, such relationship is maintained through their life and even passed on to the future generations. In many organisms, the microbiome has profound effects on the development of the host, but the influence of the microbiome on the reproductive and developmental pathways of the sponges are less understood. In sponges, microbes are passed on to oocytes, sperm, embryos, and larvae (known as vertical transmission), using a variety of methods that include direct uptake from the mesohyl through phagocytosis by oocytes to indirect transmission to the oocyte by nurse cells. Such microbes can remain in the reproductive elements untouched, for transfer to offspring, or can be digested to make the yolky nutrient reserves of oocytes and larvae. When and how those decisions are made are fundamentally unanswered questions in sponge reproduction. Here we review the diversity of vertical transmission modes existent in the entire phylum Porifera through detailed imaging using electron microscopy, available metabarcoding data from reproductive elements, and macroevolutionary patterns associated to phylogenetic constraints. Additionally, we examine the fidelity of this vertical transmission and possible reasons for the observed variability in some developmental stages. Our current understanding in marine sponges, however, is that the adult microbial community is established by a combination of both vertical and horizontal (acquisition from the surrounding environment in each new generation) transmission processes, although the extent in which each mode shapes the adult microbiome still remains to be determined. We also assessed the fundamental role of filtration, the cellular structures for acquiring external microbes, and the role of the host immune system, that ultimately shapes the stable communities of prokaryotes observed in adult sponges.
Collapse
|
46
|
Yuan H, Hatleberg WL, Degnan BM, Degnan SM. Gene activation of metazoan Fox transcription factors at the onset of metamorphosis in the marine demosponge Amphimedon queenslandica. Dev Growth Differ 2022; 64:455-468. [PMID: 36155915 PMCID: PMC9828451 DOI: 10.1111/dgd.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Transcription factors encoded by the Forkhead (Fox) gene family have diverse, sometimes conserved, regulatory roles in eumetazoan development, immunity, and physiology. Although this gene family includes members that predate the origin of the animal kingdom, the majority of metazoan Fox genes evolved after the divergence of animals and choanoflagellates. Here, we characterize the composition, structure, and expression of Fox genes in the marine demosponge Amphimedon queenslandica to better understand the origin and evolution of this family. The Fox gene repertoire in A. queenslandica appears to be similar to the ancestral metazoan Fox gene family. All 17 A. queenslandica Fox genes are differentially expressed during development and in adult cell types. Remarkably, eight of these, all of which appear to be metazoan-specific, are induced within just 1 h of larval settlement and commencement of metamorphosis. Gene co-expression analyses suggest that these eight Fox genes regulate developmental and physiological processes similar to their roles in other animals. These findings are consistent with Fox genes playing deeply ancestral roles in animal development and physiology, including in response to changes in the external environment.
Collapse
Affiliation(s)
- Huifang Yuan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - William L. Hatleberg
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia,Present address:
Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bernard M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Sandie M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
47
|
Arif A, Bailey S, Izumi N, Anzelon TA, Ozata DM, Andersson C, Gainetdinov I, MacRae IJ, Tomari Y, Zamore PD. GTSF1 accelerates target RNA cleavage by PIWI-clade Argonaute proteins. Nature 2022; 608:618-625. [PMID: 35772669 PMCID: PMC9385479 DOI: 10.1038/s41586-022-05009-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Argonaute proteins use nucleic acid guides to find and bind specific DNA or RNA target sequences. Argonaute proteins have diverse biological functions and many retain their ancestral endoribonuclease activity, cleaving the phosphodiester bond between target nucleotides t10 and t11. In animals, the PIWI proteins-a specialized class of Argonaute proteins-use 21-35 nucleotide PIWI-interacting RNAs (piRNAs) to direct transposon silencing, protect the germline genome, and regulate gene expression during gametogenesis1. The piRNA pathway is required for fertility in one or both sexes of nearly all animals. Both piRNA production and function require RNA cleavage catalysed by PIWI proteins. Spermatogenesis in mice and other placental mammals requires three distinct, developmentally regulated PIWI proteins: MIWI (PIWIL1), MILI (PIWIL2) and MIWI22-4 (PIWIL4). The piRNA-guided endoribonuclease activities of MIWI and MILI are essential for the production of functional sperm5,6. piRNA-directed silencing in mice and insects also requires GTSF1, a PIWI-associated protein of unknown function7-12. Here we report that GTSF1 potentiates the weak, intrinsic, piRNA-directed RNA cleavage activities of PIWI proteins, transforming them into efficient endoribonucleases. GTSF1 is thus an example of an auxiliary protein that potentiates the catalytic activity of an Argonaute protein.
Collapse
Affiliation(s)
- Amena Arif
- Department of Biochemistry and Molecular Biotechnology Graduate Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Beam Therapeutics, Cambridge, MA, USA
| | - Shannon Bailey
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natsuko Izumi
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Todd A Anzelon
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Deniz M Ozata
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Cecilia Andersson
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
48
|
Desplat Y, Warner JF, Lopez JV. Holo-Transcriptome Sequences From the Tropical Marine Sponge Cinachyrella alloclada. J Hered 2022; 113:184-187. [PMID: 35575076 DOI: 10.1093/jhered/esab075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
Marine sponge transcriptomes are underrepresented in current databases. Furthermore, only 2 sponge genomes are available for comparative studies. Here we present the assembled and annotated holo-transcriptome of the common Florida reef sponge from the species Cinachyrella alloclada. After Illumina high-throughput sequencing, the data assembled using Trinity v2.5 confirmed a highly symbiotic organism, with the complexity of high microbial abundance sponges. This dataset is enriched in poly-A selected eukaryotic, rather than microbial transcripts. Overall, 39 813 transcripts with verified sponge sequence homology coded for 8496 unique proteins. The average sequence length was found to be 946 bp with an N50 sequence length of 1290 bp. Overall, the sponge assembly resulted in a GC content of 51.04%, which is within the range of GC bases in a eukaryotic transcriptome. BUSCO scored completeness analysis revealed a completeness of 60.3% and 60.1% based on the Eukaryota and Metazoa databases, respectively. Overall, this study points to an overarching goal of developing the C. alloclada sponge as a useful new experimental model organism.
Collapse
Affiliation(s)
- Yvain Desplat
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Jacob F Warner
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Jose V Lopez
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| |
Collapse
|
49
|
Strehlow BW, Schuster A, Francis WR, Canfield DE. Metagenomic data for Halichondria panicea from Illumina and nanopore sequencing and preliminary genome assemblies for the sponge and two microbial symbionts. BMC Res Notes 2022; 15:135. [PMID: 35397610 PMCID: PMC8994243 DOI: 10.1186/s13104-022-06013-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES These data were collected to generate a novel reference metagenome for the sponge Halichondria panicea and its microbiome for subsequent differential expression analyses. DATA DESCRIPTION These data include raw sequences from four separate sequencing runs of the metagenome of a single individual of Halichondria panicea-one Illumina MiSeq (2 × 300 bp, paired-end) run and three Oxford Nanopore Technologies (ONT) long-read sequencing runs, generating 53.8 and 7.42 Gbp respectively. Comparing assemblies of Illumina, ONT and an Illumina-ONT hybrid revealed the hybrid to be the 'best' assembly, comprising 163 Mbp in 63,555 scaffolds (N50: 3084). This assembly, however, was still highly fragmented and only contained 52% of core metazoan genes (with 77.9% partial genes), so it was also not complete. However, this sponge is an emerging model species for field and laboratory work, and there is considerable interest in genomic sequencing of this species. Although the resultant assemblies from the data presented here are suboptimal, this data note can inform future studies by providing an estimated genome size and coverage requirements for future sequencing, sharing additional data to potentially improve other suboptimal assemblies of this species, and outlining potential limitations and pitfalls of the combined Illumina and ONT approach to novel genome sequencing.
Collapse
Affiliation(s)
- Brian W. Strehlow
- Department of Biology & Nordcee, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Astrid Schuster
- Department of Biology & Nordcee, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Warren R. Francis
- Department of Biology & Nordcee, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Donald E. Canfield
- Department of Biology & Nordcee, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
50
|
Simakov O, Bredeson J, Berkoff K, Marletaz F, Mitros T, Schultz DT, O’Connell BL, Dear P, Martinez DE, Steele RE, Green RE, David CN, Rokhsar DS. Deeply conserved synteny and the evolution of metazoan chromosomes. SCIENCE ADVANCES 2022; 8:eabi5884. [PMID: 35108053 PMCID: PMC8809688 DOI: 10.1126/sciadv.abi5884] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/10/2021] [Indexed: 05/04/2023]
Abstract
Animal genomes show networks of deeply conserved gene linkages whose phylogenetic scope and chromosomal context remain unclear. Here, we report chromosome-scale conservation of synteny among bilaterians, cnidarians, and sponges and use comparative analysis to reconstruct ancestral chromosomes across major animal groups. Comparisons among diverse metazoans reveal the processes of chromosome evolution that produced contemporary karyotypes from their Precambrian progenitors. On the basis of these findings, we introduce a simple algebraic representation of chromosomal change and use it to establish a unified systematic framework for metazoan chromosome evolution. We find that fusion-with-mixing, a previously unappreciated mode of chromosome change, has played a central role. We find that relicts of several metazoan chromosomal units are preserved in unicellular eukaryotes. These conserved pre-metazoan linkages include the chromosomal unit that encodes the most diverse set of metazoan homeobox genes, suggesting a candidate genomic context for the early diversification of this key gene family.
Collapse
Affiliation(s)
- Oleg Simakov
- Department for Neurosciences and Developmental
Biology, University of Vienna, Vienna 1010, Austria
| | - Jessen Bredeson
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Kodiak Berkoff
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Ferdinand Marletaz
- Molecular Genetics Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna, Okinawa 904-0495,
Japan
- Division of Biosciences, University College London,
Gower St., London WC1E 6BT, UK
| | - Therese Mitros
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Darrin T. Schultz
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
- Monterey Bay Aquarium Research Institute, Moss
Landing, CA 95039, USA
| | - Brendan L. O’Connell
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Paul Dear
- Mote Research Ltd, Babraham Hall, Babraham, Cambridge
CB2 4AT, UK
| | | | - Robert E. Steele
- Department of Biological Chemistry, University of
California, Irvine, Irvine, CA 92697-1700, USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Charles N. David
- Faculty of Biology, Ludwig Maximilian University of
Munich, Munich 80539, Germany
| | - Daniel S. Rokhsar
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
- Molecular Genetics Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna, Okinawa 904-0495,
Japan
- Chan Zuckerberg Biohub, 499 Illinois St., San
Francisco, CA 94158, USA
- U.S. Department of Energy Joint Genome Institute,
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720,
USA
| |
Collapse
|