1
|
Zhang J, Feng X, Li M, Liu Y, Liu M, Hou LJ, Dong HP. Deep origin of eukaryotes outside Heimdallarchaeia within Asgardarchaeota. Nature 2025:10.1038/s41586-025-08955-7. [PMID: 40335687 DOI: 10.1038/s41586-025-08955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/28/2025] [Indexed: 05/09/2025]
Abstract
Research on the morphology, physiology and genomics of Asgard archaea has provided valuable insights into the evolutionary history of eukaryotes1-3. A previous study suggested that eukaryotes are nested within Heimdallarchaeia4, but their exact phylogenetic placement within Asgard archaea remains controversial4,5. This debate complicates understanding of the metabolic features and timescales of early eukaryotic ancestors. Here we generated 223 metagenome-assembled nearly complete genomes of Asgard archaea that have not previously been documented. We identify 16 new lineages at the genus level or higher, which substantially expands the known phylogenetic diversity of Asgard archaea. Through sophisticated phylogenomic analysis of this expanded genomic dataset involving several marker sets we infer that eukaryotes evolved before the diversification of all sampled Heimdallarchaeia, rather than branching with Hodarchaeales within the Heimdallarchaeia. This difference in the placement of eukaryotes is probably caused by the previously underappreciated chimeric nature of Njordarchaeales genomes, which we find are composed of sequences of both Asgard and TACK archaea (Asgard's sister phylum). Using ancestral reconstruction and molecular dating, we infer that the last Asgard archaea and eukaryote common ancestor emerged before the Great Oxidation Event and was probably an anaerobic H2-dependent acetogen. Our findings support the hydrogen hypothesis of eukaryogenesis, which posits that eukaryotes arose from the fusion of a H2-consuming archaeal host and a H2-producing protomitochondrion.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiaoyuan Feng
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education, East China Normal University, Shanghai, China.
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Peng SX, Gao SM, Lin ZL, Luo ZH, Zhang SY, Shu WS, Meng F, Huang LN. Biogeography and ecological functions of underestimated CPR and DPANN in acid mine drainage sediments. mBio 2025:e0070525. [PMID: 40298441 DOI: 10.1128/mbio.00705-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Recent genomic surveys have uncovered candidate phyla radiation (CPR) bacteria and DPANN archaea as major microbial dark matter lineages in various anoxic habitats. Despite their extraordinary diversity, the biogeographic patterns and ecological implications of these ultra-small and putatively symbiotic microorganisms have remained elusive. Here, we performed metagenomic sequencing on 90 geochemically diverse acid mine drainage sediments sampled across southeast China and recovered 282 CPR and 189 DPANN nonredundant metagenome-assembled genomes, which collectively account for up to 28.6% and 31.2% of the indigenous prokaryotic communities, respectively. We found that, remarkably, geographic distance represents the primary factor driving the large-scale ecological distribution of both CPR and DPANN organisms, followed by pH and Fe. Although both groups might be capable of iron reduction through a flavin-based extracellular electron transfer mechanism, significant differences are found in their metabolic capabilities (with complex carbon degradation and chitin degradation being more prevalent in CPR whereas fermentation and acetate production being enriched in DPANN), indicating potential niche differentiation. Predicted hosts are mainly Acidobacteriota, Bacteroidota, and Proteobacteria for CPR and Thermoplasmatota for DPANN, and extensive, unbalanced metabolic exchanges between these symbionts and putative hosts are displayed. Together, our results provide initial insights into the complex interplays between the two lineages and their physicochemical environments and host populations at a large geographic scale.IMPORTANCECandidate phyla radiation (CPR) bacteria and DPANN archaea constitute a significant fraction of Earth's prokaryotic diversity. Despite their ubiquity and abundance, especially in anoxic habitats, we know little about the community patterns and ecological drivers of these ultra-small, putatively episymbiotic microorganisms across geographic ranges. This study is facilitated by a large collection of CPR and DPANN metagenome-assembled genomes recovered from the metagenomes of 90 sediments sampled from geochemically diverse acid mine drainage (AMD) environments across southeast China. Our comprehensive analyses have allowed first insights into the biogeographic patterns and functional differentiation of these major enigmatic prokaryotic groups in the AMD model system.
Collapse
Affiliation(s)
- Sheng-Xuan Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Liang Lin
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhen-Hao Luo
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Boukhchtaber DC, von Meijenfeldt FAB, Sahonero Canavesi DX, Dorhout D, Bale NJ, Hopmans EC, Villanueva L. Discovering Hidden Archaeal and Bacterial Lipid Producers in a Euxinic Marine System. Environ Microbiol 2025; 27:e70054. [PMID: 40016913 PMCID: PMC11868695 DOI: 10.1111/1462-2920.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 03/01/2025]
Abstract
Bacterial membrane lipids are typically characterised by fatty acid bilayers linked through ester bonds, whereas those of Archaea are characterised by ether-linked isoprenoids forming bilayers or monolayers of membrane-spanning lipids known as isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs). However, this understanding has been reconsidered with the identification of branched GDGTs (brGDGTs), which are membrane-spanning ether-bound branched alkyl fatty acids of bacterial origin, though their producers are often unidentified. The limited availability of microbial cultures constrains the understanding of the biological sources of these membrane lipids, thus limiting their use as biomarkers. To address this issue, we identified membrane lipids in the Black Sea using high-resolution accurate mass/mass spectrometry and inferred their potential producers by targeting lipid biosynthetic pathways encoded on the metagenome, in metagenome-assembled genomes and unbinned scaffolds. We also identified brGDGTs and highly branched GDGTs in the suboxic and euxinic waters, potentially attributed to Planctomycetota, Cloacimonadota, Desulfobacterota, Chloroflexota, Actinobacteria and Myxococcota-based on their lipid biosynthetic genomic potential. These findings introduce new possibilities for using specific brGDGTs as biomarkers of anoxic conditions in marine environments and highlight the role of these membrane lipids in microbial adaptation.
Collapse
Affiliation(s)
- Dina Castillo Boukhchtaber
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - Diana X. Sahonero Canavesi
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - Denise Dorhout
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - Nicole J. Bale
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - Ellen C. Hopmans
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
- Faculty of Sciences. Department of BiologyUtrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
4
|
Zeng Z, Li L, Wang H, Tao Y, Lv Z, Wang F, Wang Y. Oxidative adaptations in prokaryotes imply the oxygenic photosynthesis before crown-group Cyanobacteria. PNAS NEXUS 2025; 4:pgaf035. [PMID: 39949657 PMCID: PMC11823831 DOI: 10.1093/pnasnexus/pgaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
The metabolic transition from anaerobic to aerobic in prokaryotes reflects adaptations to oxidative stress. Methanogen, one of the earliest life forms on Earth, has evolved into three major groups within the Euryarchaeota, exhibiting different phylogenetic affiliations and metabolic characters. In comparison with other strictly anaerobic methanogenic groups, the Class II methanogens possess a better capability to adapt to limited oxygen pressure. Cyanobacteria is considered the first and only prokaryote evolving oxygenic photosynthesis and is responsible for the Great Oxidation Event on Earth. However, the connection between oxygenic Cyanobacteria and evolutionary adaptations to oxidative stress in prokaryotes remains elusive. Here, through the gene encoding structural maintenance of chromosomes (SMC) protein, which was horizontally transferred from ancient Class II methanogens to the last common ancestor of the crown-group Cyanobacteria, we demonstrate that the origin of extant Cyanobacteria was undoubtedly posterior to the occurrence of oxygen-tolerant Class II methanogens. In addition, we found that certain prokaryotic lineages had evolved the tolerance mechanisms against oxidative stress before the origin of extant Cyanobacteria. The contradiction that oxidative adaptations in Class II methanogens and other prokaryotes predating the crown-group oxygenic Cyanobacteria implies the existence of more ancient biological oxygenesis. We propose that these potential oxygenic organisms might represent the extinct phototrophs and first emerge during the Paleoarchean, contributing to the oxidative adaptations in the prokaryotic tree of life and facilitating the dispersal of reaction centers across the bacterial domain.
Collapse
Affiliation(s)
- Zichao Zeng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liuyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Heng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxin Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenbo Lv
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Zhang S, Song W, Marinos G, Waschina S, Zimmermann J, Kaleta C, Thomas T. Genome-scale metabolic modelling reveals interactions and key roles of symbiont clades in a sponge holobiont. Nat Commun 2024; 15:10858. [PMID: 39738126 PMCID: PMC11685487 DOI: 10.1038/s41467-024-55222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Sponges harbour complex microbiomes and as ancient metazoans and important ecosystem players are emerging as powerful models to understand the evolution and ecology of symbiotic interactions. Metagenomic studies have previously described the functional features of sponge symbionts, however, little is known about the metabolic interactions and processes that occur under different environmental conditions. To address this issue, we construct here constraint-based, genome-scale metabolic networks for the microbiome of the sponge Stylissa sp. Our models define the importance of sponge-derived nutrients for microbiome stability and discover how different organic inputs can result in net heterotrophy or autotrophy of the symbiont community. The analysis further reveals the key role that a newly discovered bacterial taxon has in cross-feeding activities and how it dynamically adjusts with nutrient inputs. Our study reveals insights into the functioning of a sponge microbiome and provides a framework to further explore and define metabolic interactions in holobionts.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Department of Ocean Science, School of Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Weizhi Song
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Geogios Marinos
- Research Group Medical Systems Biology, Institute of Experimental Medicine, University of Kiel and University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Silvio Waschina
- Institute of Human Nutrition and Food Science, University of Kiel, 24105, Kiel, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, Institute of Experimental Medicine, University of Kiel and University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, University of Kiel and University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.
| |
Collapse
|
6
|
Wu Z, Liu S, Ni J. Metagenomic characterization of viruses and mobile genetic elements associated with the DPANN archaeal superphylum. Nat Microbiol 2024; 9:3362-3375. [PMID: 39448846 DOI: 10.1038/s41564-024-01839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The archaeal superphylum DPANN (an acronym formed from the initials of the first five phyla discovered: Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanohaloarchaeota and Nanoarchaeota) is a group of ultrasmall symbionts able to survive in extreme ecosystems. The diversity and dynamics between DPANN archaea and their virome remain largely unknown. Here we use a metagenomic clustered regularly interspaced short palindromic repeats (CRISPR) screening approach to identify 97 globally distributed, non-redundant viruses and unclassified mobile genetic elements predicted to infect hosts across 8 DPANN phyla, including 7 viral groups not previously characterized. Genomic analysis suggests a diversity of viral morphologies including head-tailed, tailless icosahedral and spindle-shaped viruses with the potential to establish lytic, chronic or lysogenic infections. We also find evidence of a virally encoded Cas12f1 protein (probably originating from uncultured DPANN archaea) and a mini-CRISPR array, which could play a role in modulating host metabolism. Many metagenomes have virus-to-host ratios >10, indicating that DPANN viruses play an important role in controlling host populations. Overall, our study illuminates the underexplored diversity, functional repertoires and host interactions of the DPANN virome.
Collapse
Affiliation(s)
- Zongzhi Wu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, People's Republic of China
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| | - Shufeng Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, People's Republic of China.
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China.
| |
Collapse
|
7
|
Cloarec LA, Bacchetta T, Bruto M, Leboulanger C, Grossi V, Brochier-Armanet C, Flandrois JP, Zurmely A, Bernard C, Troussellier M, Agogué H, Ader M, Oger-Desfeux C, Oger PM, Vigneron A, Hugoni M. Lineage-dependent partitioning of activities in chemoclines defines Woesearchaeota ecotypes in an extreme aquatic ecosystem. MICROBIOME 2024; 12:249. [PMID: 39609882 PMCID: PMC11606122 DOI: 10.1186/s40168-024-01956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND DPANN archaea, including Woesearchaeota, encompass a large fraction of the archaeal diversity, yet their genomic diversity, lifestyle, and role in natural microbiomes remain elusive. With an archaeal assemblage naturally enriched in Woesearchaeota and steep vertical geochemical gradients, Lake Dziani Dzaha (Mayotte) provides an ideal model to decipher their in-situ activity and ecology. RESULTS Using genome-resolved metagenomics and phylogenomics, we identified highly diversified Woesearchaeota populations and defined novel halophilic clades. Depth distribution of these populations in the water column showed an unusual double peak of abundance, located at two distinct chemoclines that are hotspots of microbial diversity in the water column. Genome-centric metatranscriptomics confirmed this vertical distribution and revealed a fermentative activity, with acetate and lactate as end products, and active cell-to-cell processes, supporting strong interactions with other community members at chemoclines. Our results also revealed distinct Woesearchaeota ecotypes, with different transcriptional patterns, contrasted lifestyles, and ecological strategies, depending on environmental/host conditions. CONCLUSIONS This work provides novel insights into Woesearchaeota in situ activity and metabolism, revealing invariant, bimodal, and adaptative lifestyles among halophilic Woesearchaeota. This challenges our precepts of an invariable host-dependent metabolism for all the members of this taxa and revises our understanding of their contributions to ecosystem functioning and microbiome assemblage. Video Abstract.
Collapse
Affiliation(s)
- Lilian A Cloarec
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Thomas Bacchetta
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Maxime Bruto
- Université de Lyon, UMR Mycoplasmoses Animales, VetAgro Sup, AnsesMarcy L'Etoile, 69280, France
| | | | - Vincent Grossi
- UMR 5276, Laboratoire de Géologie de Lyon: Terre, Univ Lyon, UCBL, CNRS, Environnement (LGL-TPE), PlanètesVilleurbanne, 69622, France
- Present address: Mediterranean Institute of Oceanography (MIO), Aix Marseille Univ-CNRS, Marseille, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Jean-Pierre Flandrois
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Adrian Zurmely
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication Et Adaptations Des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, Paris, F-75231, France
| | | | - Hélène Agogué
- UMR 7266, LIENSs, La Rochelle Université-CNRS, 2 Rue Olympe de Gouges, La Rochelle, 17000, France
| | - Magali Ader
- Institut de Physique du Globe de Paris, Université de Paris, Paris, France
| | | | - Philippe M Oger
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Adrien Vigneron
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Mylène Hugoni
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
8
|
Valentin-Alvarado LE, Shi LD, Appler KE, Crits-Christoph A, De Anda V, Adler BA, Cui ML, Ly L, Leão P, Roberts RJ, Sachdeva R, Baker BJ, Savage DF, Banfield JF. Complete genomes of Asgard archaea reveal diverse integrated and mobile genetic elements. Genome Res 2024; 34:1595-1609. [PMID: 39406503 PMCID: PMC11529989 DOI: 10.1101/gr.279480.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 11/01/2024]
Abstract
Asgard archaea are of great interest as the progenitors of Eukaryotes, but little is known about the mobile genetic elements (MGEs) that may shape their ongoing evolution. Here, we describe MGEs that replicate in Atabeyarchaeia, a wetland Asgard archaea lineage represented by two complete genomes. We used soil depth-resolved population metagenomic data sets to track 18 MGEs for which genome structures were defined and precise chromosome integration sites could be identified for confident host linkage. Additionally, we identified a complete 20.67 kbp circular plasmid and two family-level groups of viruses linked to Atabeyarchaeia, via CRISPR spacer targeting. Closely related 40 kbp viruses possess a hypervariable genomic region encoding combinations of specific genes for small cysteine-rich proteins structurally similar to restriction-homing endonucleases. One 10.9 kbp integrative conjugative element (ICE) integrates genomically into the Atabeyarchaeum deiterrae-1 chromosome and has a 2.5 kbp circularizable element integrated within it. The 10.9 kbp ICE encodes an expressed Type IIG restriction-modification system with a sequence specificity matching an active methylation motif identified by Pacific Biosciences (PacBio) high-accuracy long-read (HiFi) metagenomic sequencing. Restriction-modification of Atabeyarchaeia differs from that of another coexisting Asgard archaea, Freyarchaeia, which has few identified MGEs but possesses diverse defense mechanisms, including DISARM and Hachiman, not found in Atabeyarchaeia. Overall, defense systems and methylation mechanisms of Asgard archaea likely modulate their interactions with MGEs, and integration/excision and copy number variation of MGEs in turn enable host genetic versatility.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Ling-Dong Shi
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Kathryn E Appler
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | - Alexander Crits-Christoph
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Valerie De Anda
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Michael L Cui
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Lynn Ly
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Pedro Leão
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | | | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA;
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
- Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3168, Australia
| |
Collapse
|
9
|
Chen CZ, Li P, Liu L, Sun YJ, Ju WM, Li ZH. Seasonal variations of microbial communities and viral diversity in fishery-enhanced marine ranching sediments: insights into metabolic potentials and ecological interactions. MICROBIOME 2024; 12:209. [PMID: 39434181 PMCID: PMC11492486 DOI: 10.1186/s40168-024-01922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The ecosystems of marine ranching have enhanced marine biodiversity and ecological balance and have promoted the natural recovery and enhancement of fishery resources. The microbial communities of these ecosystems, including bacteria, fungi, protists, and viruses, are the drivers of biogeochemical cycles. Although seasonal changes in microbial communities are critical for ecosystem functioning, the current understanding of microbial-driven metabolic properties and their viral communities in marine sediments remains limited. Here, we employed amplicon (16S and 18S) and metagenomic approaches aiming to reveal the seasonal patterns of microbial communities, bacterial-eukaryotic interactions, whole metabolic potential, and their coupling mechanisms with carbon (C), nitrogen (N), and sulfur (S) cycling in marine ranching sediments. Additionally, the characterization and diversity of viral communities in different seasons were explored in marine ranching sediments. RESULTS The current study demonstrated that seasonal variations dramatically affected the diversity of microbial communities in marine ranching sediments and the bacterial-eukaryotic interkingdom co-occurrence networks. Metabolic reconstruction of the 113 medium to high-quality metagenome-assembled genomes (MAGs) was conducted, and a total of 8 MAGs involved in key metabolic genes and pathways (methane oxidation - denitrification - S oxidation), suggesting a possible coupling effect between the C, N, and S cycles. In total, 338 viral operational taxonomic units (vOTUs) were identified, all possessing specific ecological characteristics in different seasons and primarily belonging to Caudoviricetes, revealing their widespread distribution and variety in marine sediment ecosystems. In addition, predicted virus-host linkages showed that high host specificity was observed, with few viruses associated with specific hosts. CONCLUSIONS This finding deepens our knowledge of element cycling and viral diversity in fisheries enrichment ecosystems, providing insights into microbial-virus interactions in marine sediments and their effects on biogeochemical cycling. These findings have potential applications in marine ranching management and ecological conservation. Video Abstract.
Collapse
Affiliation(s)
- Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Yong-Jun Sun
- Homey Group Co. Ltd., Rongcheng, 264306, Shandong, China
| | - Wen-Ming Ju
- Homey Group Co. Ltd., Rongcheng, 264306, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
10
|
Nakagawa S, Sakai HD, Shimamura S, Takamatsu Y, Kato S, Yagi H, Yanaka S, Yagi-Utsumi M, Kurosawa N, Ohkuma M, Kato K, Takai K. N-linked protein glycosylation in Nanobdellati (formerly DPANN) archaea and their hosts. J Bacteriol 2024; 206:e0020524. [PMID: 39194224 PMCID: PMC11411935 DOI: 10.1128/jb.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Members of the kingdom Nanobdellati, previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of Nanobdellati. Cell adhesion is often mediated by cell surface carbohydrates, and in archaea, this may be facilitated by the glycosylated S-layer protein that typically coats their cell surface. In this study, we conducted glycoproteomic analyses on two co-cultures of Nanobdellati with their host archaea, as well as on pure cultures of both host and non-host archaea. Nanobdellati exhibited various glycoproteins, including archaellins and hypothetical proteins, with glycans that were structurally distinct from those of their hosts. This indicated that Nanobdellati autonomously synthesize their glycans for protein modifications probably using host-derived substrates, despite the high energy cost. Glycan modifications on Nanobdellati proteins consistently occurred on asparagine residues within the N-X-S/T sequon, consistent with patterns observed across archaea, bacteria, and eukaryotes. In both host and non-host archaea, S-layer proteins were commonly modified with hexose, N-acetylhexosamine, and sulfonated deoxyhexose. However, the N-glycan structures of host archaea, characterized by distinct sugars such as deoxyhexose, nonulosonate sugar, and pentose at the nonreducing ends, were implicated in enabling Nanobdellati to differentiate between host and non-host cells. Interestingly, the specific sugar, xylose, was eliminated from the N-glycan in a host archaeon when co-cultured with Nanobdella. These findings enhance our understanding of the role of protein glycosylation in archaeal interactions.IMPORTANCENanobdellati archaea, formerly known as DPANN, are phylogenetically diverse, widely distributed, and obligately ectosymbiotic. The molecular mechanisms by which Nanobdellati recognize and adhere to their specific hosts remain largely unexplored. Protein glycosylation, a fundamental biological mechanism observed across all domains of life, is often crucial for various cell-cell interactions. This study provides the first insights into the glycoproteome of Nanobdellati and their host and non-host archaea. We discovered that Nanobdellati autonomously synthesize glycans for protein modifications, probably utilizing substrates derived from their hosts. Additionally, we identified distinctive glycosylation patterns that suggest mechanisms through which Nanobdellati differentiate between host and non-host cells. This research significantly advances our understanding of the molecular basis of microbial interactions in extreme environments.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki D. Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shigeru Shimamura
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshiki Takamatsu
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
11
|
Wu Z, Liu T, Chen Q, Chen T, Hu J, Sun L, Wang B, Li W, Ni J. Unveiling the unknown viral world in groundwater. Nat Commun 2024; 15:6788. [PMID: 39117653 PMCID: PMC11310336 DOI: 10.1038/s41467-024-51230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses as the prevailing biological entities are poorly understood in underground realms. Here, we establish the first metagenomic Groundwater Virome Catalogue (GWVC) comprising 280,420 viral species ( ≥ 5 kb) detected from 607 monitored wells in seven geo-environmental zones throughout China. In expanding ~10-fold the global portfolio of known groundwater viruses, we uncover over 99% novel viruses and about 95% novel viral clusters. By linking viruses to hosts from 119 prokaryotic phyla, we double the number of microbial phyla known to be virus-infected in groundwater. As keystone ultrasmall symbionts in aquifers, CPR bacteria and DPANN archaea are susceptible to virulent viruses. Certain complete CPR viruses even likely infect non-CPR bacteria, while partial CPR/DPANN viruses harbor cell-surface modification genes that assist symbiont cell adhesion to free-living microbes. This study reveals the unknown viral world and auxiliary metabolism associated with methane, nitrogen, sulfur, and phosphorus cycling in groundwater, and highlights the importance of subsurface virosphere in viral ecology.
Collapse
Affiliation(s)
- Zongzhi Wu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tang Liu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Qian Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Jinyun Hu
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Liyu Sun
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Bingxue Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Wenpeng Li
- Center for Groundwater Monitoring, China Institute of Geo-environmental Monitoring, Beijing, 100081, PR China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
12
|
Valentin-Alvarado LE, Appler KE, De Anda V, Schoelmerich MC, West-Roberts J, Kivenson V, Crits-Christoph A, Ly L, Sachdeva R, Greening C, Savage DF, Baker BJ, Banfield JF. Asgard archaea modulate potential methanogenesis substrates in wetland soil. Nat Commun 2024; 15:6384. [PMID: 39085194 PMCID: PMC11291895 DOI: 10.1038/s41467-024-49872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
The roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems remain unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and a complete genome of Freyarchaeia, and predicted their metabolism in situ. Metatranscriptomics reveals expression of genes for [NiFe]-hydrogenases, pyruvate oxidation and carbon fixation via the Wood-Ljungdahl pathway. Also expressed are genes encoding enzymes for amino acid metabolism, anaerobic aldehyde oxidation, hydrogen peroxide detoxification and carbohydrate breakdown to acetate and formate. Overall, soil-associated Asgard archaea are predicted to include non-methanogenic acetogens, highlighting their potential role in carbon cycling in terrestrial environments.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Kathryn E Appler
- Department of Marine Science, University of Texas at Austin; Marine Science Institute, Port Aransas, TX, USA
| | - Valerie De Anda
- Department of Marine Science, University of Texas at Austin; Marine Science Institute, Port Aransas, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Marie C Schoelmerich
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Environmental Systems Sciences; ETH Zürich, Zürich, Switzerland
| | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Veronika Kivenson
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexander Crits-Christoph
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Cultivarium, Watertown, MA, USA
| | - Lynn Ly
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute; Monash University, Clayton, VIC, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin; Marine Science Institute, Port Aransas, TX, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Microbiology, Biomedicine Discovery Institute; Monash University, Clayton, VIC, Australia.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
| |
Collapse
|
13
|
Hamm JN, Liao Y, von Kügelgen A, Dombrowski N, Landers E, Brownlee C, Johansson EMV, Whan RM, Baker MAB, Baum B, Bharat TAM, Duggin IG, Spang A, Cavicchioli R. The parasitic lifestyle of an archaeal symbiont. Nat Commun 2024; 15:6449. [PMID: 39085207 PMCID: PMC11291902 DOI: 10.1038/s41467-024-49962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
DPANN archaea are a diverse group of microorganisms characterised by small cells and reduced genomes. To date, all cultivated DPANN archaea are ectosymbionts that require direct cell contact with an archaeal host species for growth and survival. However, these interactions and their impact on the host species are poorly understood. Here, we show that a DPANN archaeon (Candidatus Nanohaloarchaeum antarcticus) engages in parasitic interactions with its host (Halorubrum lacusprofundi) that result in host cell lysis. During these interactions, the nanohaloarchaeon appears to enter, or be engulfed by, the host cell. Our results provide experimental evidence for a predatory-like lifestyle of an archaeon, suggesting that at least some DPANN archaea may have roles in controlling host populations and their ecology.
Collapse
Affiliation(s)
- Joshua N Hamm
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ.
| | - Yan Liao
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Andriko von Kügelgen
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ
| | - Evan Landers
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christopher Brownlee
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Fluorescence Analysis Facility, Molecular Horizons, University of Wollongong, Keiraville, NSW, 2522, Australia
| | - Emma M V Johansson
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Renee M Whan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew A B Baker
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Buzz Baum
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Iain G Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
14
|
Tamarit D, Köstlbacher S, Appler KE, Panagiotou K, De Anda V, Rinke C, Baker BJ, Ettema TJG. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst Appl Microbiol 2024; 47:126525. [PMID: 38909391 DOI: 10.1016/j.syapm.2024.126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Asgardarchaeota, commonly referred to as Asgard archaea, is a candidatus phylum-rank archaeal clade that includes the closest archaeal relatives of eukaryotes. Despite their prevalence in the scientific literature, the name Asgardarchaeota lacks nomenclatural validation. Here, we describe a novel high-quality metagenome-assembled genome (MAG), AB3033_2TS, proposed to serve as the nomenclatural type for the species Asgardarchaeum abyssiTS according to the rules of the SeqCode. Based on protein content and compositional features, we infer that A. abyssi AB3033_2TS is an acetogenic chemoheterotroph, possibly a facultative lithoautotroph, and is adapted to a thermophilic lifestyle. Utilizing genomes from Asgard archaea, TACK, and Euryarchaea, we perform phylogenomic reconstructions using the GTDB archaeal marker genes, the current reference set for taxonomic classification. Calibrating relative evolutionary divergence (RED) values for Asgardarchaeota using established Thermoproteota lineages in the GTDB r207 reference tree, we establish a robust classification and propose Asgardarchaeum as the type genus for the family Asgardarchaeaceae (fam. nov)., the order Asgardarchaeales (ord. nov.), the class Asgardarchaeia (class. nov.), and the phylum Asgardarchaeota (phyl. nov.). This effort aims to preserve taxonomic congruence in the scientific literature.
Collapse
Affiliation(s)
- Daniel Tamarit
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands; Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Kathryn E Appler
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Kassiani Panagiotou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Valerie De Anda
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA; Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Christian Rinke
- Faculty of Biology, Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA; Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Liu H, Al-Dhabi NA, Jiang H, Liu B, Qing T, Feng B, Ma T, Tang W, Zhang P. Toward nitrogen recovery: Co-cultivation of microalgae and bacteria enhances the production of high-value nitrogen-rich cyanophycin. WATER RESEARCH 2024; 256:121624. [PMID: 38669903 DOI: 10.1016/j.watres.2024.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The algal-bacterial wastewater treatment process has been proven to be highly efficient in removing nutrients and recovering nitrogen (N). However, the recovery of the valuable N-rich biopolymer, cyanophycin, remains limited. This research explored the synthesis mechanism and recovery potential of cyanophycin within two algal-bacterial symbiotic reactors. The findings reveal that the synergy between algae and bacteria enhances the removal of N and phosphorus. The crude contents of cyanophycin in the algal-bacterial consortia reached 115 and 124 mg/g of mixed liquor suspended solids (MLSS), respectively, showing an increase of 11.7 %-20.4 % (p < 0.001) compared with conventional activated sludge. Among the 170 metagenome-assembled genomes (MAGs) analyzed, 50 were capable of synthesizing cyanophycin, indicating that cyanophycin producers are common in algal-bacterial systems. The compositions of cyanophycin producers in the two algal-bacterial reactors were affected by different lighting initiation time. The study identified two intracellular synthesis pathways for cyanophycin. Approximately 36 MAGs can synthesize cyanophycin de novo using ammonium and glucose, while the remaining 14 MAGs require exogenous arginine for production. Notably, several MAGs with high abundance are capable of assimilating both nitrate and ammonium into cyanophycin, demonstrating a robust N utilization capability. This research also marks the first identification of potential horizontal gene transfer of the cyanophycin synthase encoding gene (cphA) within the wastewater microbial community. This suggests that the spread of cphA could expand the population of cyanophycin producers. The study offers new insights into recycling the high-value N-rich biopolymer cyanophycin, contributing to the advancement of wastewater resource utilization.
Collapse
Affiliation(s)
- Hongyuan Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Huiling Jiang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Bingzhi Liu
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Taiping Qing
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Bo Feng
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Tengfei Ma
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Peng Zhang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
16
|
Ding S, Hamm JN, Bale NJ, Sinninghe Damsté JS, Spang A. Selective lipid recruitment by an archaeal DPANN symbiont from its host. Nat Commun 2024; 15:3405. [PMID: 38649682 PMCID: PMC11035636 DOI: 10.1038/s41467-024-47750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
The symbiont Ca. Nanohaloarchaeum antarcticus is obligately dependent on its host Halorubrum lacusprofundi for lipids and other metabolites due to its lack of certain biosynthetic genes. However, it remains unclear which specific lipids or metabolites are acquired from its host, and how the host responds to infection. Here, we explored the lipidome dynamics of the Ca. Nha. antarcticus - Hrr. lacusprofundi symbiotic relationship during co-cultivation. By using a comprehensive untargeted lipidomic methodology, our study reveals that Ca. Nha. antarcticus selectively recruits 110 lipid species from its host, i.e., nearly two-thirds of the total number of host lipids. Lipid profiles of co-cultures displayed shifts in abundances of bacterioruberins and menaquinones and changes in degree of bilayer-forming glycerolipid unsaturation. This likely results in increased membrane fluidity and improved resistance to membrane disruptions, consistent with compensation for higher metabolic load and mechanical stress on host membranes when in contact with Ca. Nha. antarcticus cells. Notably, our findings differ from previous observations of other DPANN symbiont-host systems, where no differences in lipidome composition were reported. Altogether, our work emphasizes the strength of employing untargeted lipidomics approaches to provide details into the dynamics underlying a DPANN symbiont-host system.
Collapse
Affiliation(s)
- Su Ding
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands.
| | - Joshua N Hamm
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands.
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Kuroda K, Maeda R, Shinshima F, Urasaki K, Kubota K, Nobu MK, Noguchi TQP, Satoh H, Yamauchi M, Narihiro T, Yamada M. Microbiological insights into anaerobic phenol degradation mechanisms and bulking phenomenon in a mesophilic upflow anaerobic sludge blanket reactor in long-term operation. WATER RESEARCH 2024; 253:121271. [PMID: 38341972 DOI: 10.1016/j.watres.2024.121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In this study, a long-term operation of 2,747 days was conducted to evaluate the performance of the upflow anaerobic sludge blanket (UASB) reactor and investigated the degradation mechanisms of high-organic loading phenol wastewater. During the reactor operation, the maximum chemical oxygen demand (COD) removal rate of 6.1 ± 0.6 kg/m3/day under 1,680 mg/L phenol concentration was achieved in the mesophilic UASB reactor. After a significant change in the operating temperature from 24.0 ± 4.1 °C to 35.9 ± 0.6 °C, frequent observations of floating and washout of the bloated granular sludge (novel types of the bulking phenomenon) were made in the UASB reactor, suggesting that the change in operating temperature could be a trigger for the bulking phenomenon. Through the metagenomic analysis, phenol degradation mechanisms were predicted that phenol was converted to 4-hydroxybenzoate via two possible routes by Syntrophorhabdaceae and Pelotomaculaceae bacteria. Furthermore, the degradation of 4-hydroxybenzoate to benzoyl-CoA was carried out by members of Syntrophorhabdaceae and Smithellaceae. In the bulking sludge, a predominant presence of Nanobdellota, belonging to DPANN archaea, was detected. The metagenome-assembled genome of the Nanobdellota lacks many biosynthetic pathways and has several genes for the symbiotic lifestyle such as trimeric autotransporter adhesin-related protein. Furthermore, the Nanobdellota have significant correlations with several methanogenic archaea that are predominantly present in the UASB reactor. Considering the results of this study, the predominant Nanobdellota may negatively affect the growth of the methanogens through the parasitic lifestyle and change the balance of microbial interactions in the granular sludge ecosystem.
Collapse
Affiliation(s)
- Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan.
| | - Ryota Maeda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Futaba Shinshima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Kampachiro Urasaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Taro Q P Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Hokkaido 060-8628 Japan
| | - Masahito Yamauchi
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinkou, Hayato, Kirishima, Kagoshima 899-5193, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan.
| | - Masayoshi Yamada
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinkou, Hayato, Kirishima, Kagoshima 899-5193, Japan.
| |
Collapse
|
18
|
Morel B, Williams TA, Stamatakis A, Szöllősi GJ. AleRax: a tool for gene and species tree co-estimation and reconciliation under a probabilistic model of gene duplication, transfer, and loss. Bioinformatics 2024; 40:btae162. [PMID: 38514421 PMCID: PMC10990685 DOI: 10.1093/bioinformatics/btae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
MOTIVATION Genomes are a rich source of information on the pattern and process of evolution across biological scales. How best to make use of that information is an active area of research in phylogenetics. Ideally, phylogenetic methods should not only model substitutions along gene trees, which explain differences between homologous gene sequences, but also the processes that generate the gene trees themselves along a shared species tree. To conduct accurate inferences, one needs to account for uncertainty at both levels, that is, in gene trees estimated from inherently short sequences and in their diverse evolutionary histories along a shared species tree. RESULTS We present AleRax, a software that can infer reconciled gene trees together with a shared species tree using a simple, yet powerful, probabilistic model of gene duplication, transfer, and loss. A key feature of AleRax is its ability to account for uncertainty in the gene tree and its reconciliation by using an efficient approximation to calculate the joint phylogenetic-reconciliation likelihood and sample reconciled gene trees accordingly. Simulations and analyses of empirical data show that AleRax is one order of magnitude faster than competing gene tree inference tools while attaining the same accuracy. It is consistently more robust than species tree inference methods such as SpeciesRax and ASTRAL-Pro 2 under gene tree uncertainty. Finally, AleRax can process multiple gene families in parallel thereby allowing users to compare competing phylogenetic hypotheses and estimate model parameters, such as duplication, transfer, and loss probabilities for genome-scale datasets with hundreds of taxa. AVAILABILITY AND IMPLEMENTATION GNU GPL at https://github.com/BenoitMorel/AleRax and data are made available at https://cme.h-its.org/exelixis/material/alerax_data.tar.gz.
Collapse
Affiliation(s)
- Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
- Institute of Computer Science, Biodiversity Computing Group, Heraklion GR-70013, Greece
| | - Gergely J Szöllősi
- ELTE-MTA “Lendület”, Evolutionary Genomics Research Group, Budapest H-1117, Hungary
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest H-1121, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
19
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential. mBio 2024; 15:e0291823. [PMID: 38380943 PMCID: PMC10936187 DOI: 10.1128/mbio.02918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Archaea belonging to the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have been found in an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise a sizeable fraction of the archaeal community within marine oxygen-deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes (MAGs) belonging to the DPANN phyla Nanoarchaeota, Pacearchaeota, Woesearchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and the Arabian Sea. We find these archaea to be permanent, stable residents of all three major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25%-50% of archaea as estimated from read mapping to MAGs. ODZ DPANN appear to be capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs. IMPORTANCE Archaea from the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have diverse metabolic capabilities and participate in multiple biogeochemical cycles. While metagenomics and enrichments have revealed that many DPANN are characterized by ultrasmall genomes, few biosynthetic genes, and episymbiotic lifestyles, much remains unknown about their biology. We report 33 new DPANN metagenome-assembled genomes originating from the three global marine oxygen-deficient zones (ODZs), the first from these regions. We survey DPANN abundance and distribution within the ODZ water column, investigate their biosynthetic capabilities, and report potential roles in the cycling of organic carbon, methane, and nitrogen. We test the hypothesis that nitrous oxide reductases found within several ODZ DPANN genomes may enable ultrasmall episymbionts to serve as nitrous oxide consumers when attached to a host nitrous oxide producer. Our results indicate DPANN archaea as ubiquitous residents within the anoxic core of ODZs with the potential to produce or consume key compounds.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven Wilbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Qiu Z, Yuan L, Lian CA, Lin B, Chen J, Mu R, Qiao X, Zhang L, Xu Z, Fan L, Zhang Y, Wang S, Li J, Cao H, Li B, Chen B, Song C, Liu Y, Shi L, Tian Y, Ni J, Zhang T, Zhou J, Zhuang WQ, Yu K. BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis. Nat Commun 2024; 15:2179. [PMID: 38467684 PMCID: PMC10928208 DOI: 10.1038/s41467-024-46539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Metagenomic binning is an essential technique for genome-resolved characterization of uncultured microorganisms in various ecosystems but hampered by the low efficiency of binning tools in adequately recovering metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Binning Across a Series of Assemblies Toolkit) for binning and refinement of short- and long-read sequencing data. BASALT employs multiple binners with multiple thresholds to produce initial bins, then utilizes neural networks to identify core sequences to remove redundant bins and refine non-redundant bins. Using the same assemblies generated from Critical Assessment of Metagenome Interpretation (CAMI) datasets, BASALT produces up to twice as many MAGs as VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21 unique class-level prokaryotic lineages. Functional annotations reveal that BASALT can retrieve 47.6% more non-redundant opening-reading frames than metaWRAP. These results highlight the robust handling of metagenomic sequencing data of BASALT.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
| | - Li Yuan
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Chun-Ang Lian
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
| | - Bin Lin
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
| | - Jie Chen
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Rong Mu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Xuejiao Qiao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Liyu Zhang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Huiluo Cao
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Bing Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Wuhan Benagen Technology Co., Ltd, Wuhan, China
| | - Yongxin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lili Shi
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yonghong Tian
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, Hong Kong, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China.
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China.
| |
Collapse
|
21
|
Lu Z, Xia R, Zhang S, Pan J, Liu Y, Wolf YI, Koonin EV, Li M. Evolution of optimal growth temperature in Asgard archaea inferred from the temperature dependence of GDP binding to EF-1A. Nat Commun 2024; 15:515. [PMID: 38225278 PMCID: PMC10789797 DOI: 10.1038/s41467-024-44806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
The archaeal ancestor of eukaryotes apparently belonged to the phylum Asgardarchaeota, but the ecology and evolution of Asgard archaea are poorly understood. The optimal GDP-binding temperature of a translation elongation factor (EF-1A or EF-Tu) has been previously shown to correlate with the optimal growth temperature of diverse prokaryotes. Here, we reconstruct ancestral EF-1A sequences and experimentally measure the optimal GDP-binding temperature of EF-1A from ancient and extant Asgard archaea, to infer the evolution of optimal growth temperatures in Asgardarchaeota. Our results suggest that the Asgard ancestor of eukaryotes was a moderate thermophile, with an optimal growth temperature around 53 °C. The origin of eukaryotes appears to coincide with a transition from thermophilic to mesophilic lifestyle during the evolution of Asgard archaea.
Collapse
Affiliation(s)
- Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Runyue Xia
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
22
|
Zhao D, Zhang S, Chen J, Zhao J, An P, Xiang H. Members of the class Candidatus Ordosarchaeia imply an alternative evolutionary scenario from methanogens to haloarchaea. THE ISME JOURNAL 2024; 18:wrad033. [PMID: 38366248 PMCID: PMC10873845 DOI: 10.1093/ismejo/wrad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 02/18/2024]
Abstract
The origin of methanogenesis can be traced to the common ancestor of non-DPANN archaea, whereas haloarchaea (or Halobacteria) are believed to have evolved from a methanogenic ancestor through multiple evolutionary events. However, due to the accelerated evolution and compositional bias of proteins adapting to hypersaline habitats, Halobacteria exhibit substantial evolutionary divergence from methanogens, and the identification of the closest methanogen (either Methanonatronarchaeia or other taxa) to Halobacteria remains a subject of debate. Here, we obtained five metagenome-assembled genomes with high completeness from soda-saline lakes on the Ordos Plateau in Inner Mongolia, China, and we proposed the name Candidatus Ordosarchaeia for this novel class. Phylogenetic analyses revealed that Ca. Ordosarchaeia is firmly positioned near the median position between the Methanonatronarchaeia and Halobacteria-Hikarchaeia lineages. Functional predictions supported the transitional status of Ca. Ordosarchaeia with the metabolic potential of nonmethanogenic and aerobic chemoheterotrophy, as did remnants of the gene sequences of methylamine/dimethylamine/trimethylamine metabolism and coenzyme M biosynthesis. Based on the similarity of the methyl-coenzyme M reductase genes mcrBGADC in Methanonatronarchaeia with the phylogenetically distant methanogens, an alternative evolutionary scenario is proposed, in which Methanonatronarchaeia, Ca. Ordosarchaeia, Ca. Hikarchaeia, and Halobacteria share a common ancestor that initially lost mcr genes. However, certain members of Methanonatronarchaeia subsequently acquired mcr genes through horizontal gene transfer from distantly related methanogens. This hypothesis is supported by amalgamated likelihood estimation, phylogenetic analysis, and gene arrangement patterns. Altogether, Ca. Ordosarchaeia genomes clarify the sisterhood of Methanonatronarchaeia with Halobacteria and provide new insights into the evolution from methanogens to haloarchaea.
Collapse
Affiliation(s)
- Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Junyu Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juanjuan Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng An
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Sichuan Normal University, Sichuan 610068, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
23
|
Meier D, van Grinsven S, Michel A, Eickenbusch P, Glombitza C, Han X, Fiskal A, Bernasconi S, Schubert CJ, Lever MA. Hydrogen-independent CO 2 reduction dominates methanogenesis in five temperate lakes that differ in trophic states. ISME COMMUNICATIONS 2024; 4:ycae089. [PMID: 38988698 PMCID: PMC11235125 DOI: 10.1093/ismeco/ycae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Emissions of microbially produced methane (CH4) from lake sediments are a major source of this potent greenhouse gas to the atmosphere. The rates of CH4 production and emission are believed to be influenced by electron acceptor distributions and organic carbon contents, which in turn are affected by anthropogenic inputs of nutrients leading to eutrophication. Here, we investigate how eutrophication influences the abundance and community structure of CH4 producing Archaea and methanogenesis pathways across time-resolved sedimentary records of five Swiss lakes with well-characterized trophic histories. Despite higher CH4 concentrations which suggest higher methanogenic activity in sediments of eutrophic lakes, abundances of methanogens were highest in oligotrophic lake sediments. Moreover, while the methanogenic community composition differed significantly at the lowest taxonomic levels (OTU), depending on whether sediment layers had been deposited under oligotrophic or eutrophic conditions, it showed no clear trend in relation to in situ distributions of electron acceptors. Remarkably, even though methanogenesis from CO2-reduction was the dominant pathway in all sediments based on carbon isotope fractionation values, taxonomic identities, and genomes of resident methanogens, CO2-reduction with hydrogen (H2) was thermodynamically unfavorable based on measured reactant and product concentrations. Instead, strong correlations between genomic abundances of CO2-reducing methanogens and anaerobic bacteria with potential for extracellular electron transfer suggest that methanogenic CO2-reduction in lake sediments is largely powered by direct electron transfer from syntrophic bacteria without involvement of H2 as an electron shuttle.
Collapse
Affiliation(s)
- Dimitri Meier
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
| | - Sigrid van Grinsven
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Seestrasse 79, 6047 Kastanienbaum, Switzerland
- Geomicrobiology, Department of Geosciences, Eberhard Karls Universität Tübingen (Tübingen University), Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Anja Michel
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Philip Eickenbusch
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Clemens Glombitza
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Xingguo Han
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Annika Fiskal
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Stefano Bernasconi
- Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Geological Institute, Sonneggstrasse 5, 8092 Zurich, Switzerland
| | - Carsten J Schubert
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Mark A Lever
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
- Marine Science Institute, Department of Marine Sciences, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, United States
| |
Collapse
|
24
|
Göker M, Oren A. Valid publication of names of two domains and seven kingdoms of prokaryotes. Int J Syst Evol Microbiol 2024; 74. [PMID: 38252124 DOI: 10.1099/ijsem.0.006242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
The International Code of Nomenclature of Prokaryotes (ICNP) now includes the categories domain and kingdom. For the purpose of the valid publication of their names under the ICNP, we consider here the two known domains, 'Bacteria' and 'Archaea', as well as a number of taxa suitable for the rank of kingdom, based on previous phylogenetic and taxonomic studies. It is proposed to subdivide the domain Bacteria into the kingdoms Bacillati, Fusobacteriati, Pseudomonadati and Thermotogati. This arrangement reflects contemporary phylogenetic hypotheses as well as previous taxonomic proposals based on cell wall structure, including 'diderms' vs. 'monoderms', Gracilicutes vs. Firmicutes, 'Negibacteria' vs. 'Unibacteria', 'Hydrobacteria' vs. 'Terrabacteria', and 'Hydrobacterida' vs. 'Terrabacterida'. The domain Archaea is proposed to include the kingdoms Methanobacteriati, Nanobdellati and Thermoproteati, reflecting the previous division into 'Euryarchaeota', 'DPANN superphylum' and 'TACK superphylum'.
Collapse
Affiliation(s)
- Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Aharon Oren
- The Hebrew University of Jerusalem, The Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, 9190401 Jerusalem, Israel
| |
Collapse
|
25
|
Hribovšek P, Olesin Denny E, Dahle H, Mall A, Øfstegaard Viflot T, Boonnawa C, Reeves EP, Steen IH, Stokke R. Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. mSystems 2023; 8:e0054323. [PMID: 37921472 PMCID: PMC10734525 DOI: 10.1128/msystems.00543-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.
Collapse
Affiliation(s)
- Petra Hribovšek
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Emily Olesin Denny
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Håkon Dahle
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Achim Mall
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas Øfstegaard Viflot
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Chanakan Boonnawa
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Eoghan P. Reeves
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
26
|
Mahendrarajah TA, Moody ERR, Schrempf D, Szánthó LL, Dombrowski N, Davín AA, Pisani D, Donoghue PCJ, Szöllősi GJ, Williams TA, Spang A. ATP synthase evolution on a cross-braced dated tree of life. Nat Commun 2023; 14:7456. [PMID: 37978174 PMCID: PMC10656485 DOI: 10.1038/s41467-023-42924-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.
Collapse
Affiliation(s)
- Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Edmund R R Moody
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Dominik Schrempf
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
| | - Lénárd L Szánthó
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Karolina ut 29, H-1113, Budapest, Hungary
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Adrián A Davín
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Gergely J Szöllősi
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Stöckl R, Nißl L, Reichelt R, Rachel R, Grohmann D, Grünberger F. The transcriptional regulator EarA and intergenic terminator sequences modulate archaellation in Pyrococcus furiosus. Front Microbiol 2023; 14:1241399. [PMID: 38029142 PMCID: PMC10665913 DOI: 10.3389/fmicb.2023.1241399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The regulation of archaellation, the formation of archaeal-specific cell appendages called archaella, is crucial for the motility, adhesion, and survival of archaeal organisms. Although the heavily archaellated and highly motile Pyrococcus furiosus is a key model organism for understanding the production and function of archaella in Euryarchaea, the transcriptional regulation of archaellum assembly is so far unknown. Here we show that the transcription factor EarA is the master regulator of the archaellum (arl) operon transcription, which is further modulated by intergenic transcription termination signals. EarA deletion or overexpression strains demonstrate that EarA is essential for archaellation in P. furiosus and governs the degree of archaellation. Providing a single-molecule update on the transcriptional landscape of the arl operon in P. furiosus, we identify sequence motifs for EarA binding upstream of the arl operon and intergenic terminator sequences as critical elements for fine-tuning the expression of the multicistronic arl cluster. Furthermore, transcriptome re-analysis across different Thermococcales species demonstrated a heterogeneous production of major archaellins, suggesting a more diverse composition of archaella than previously recognized. Overall, our study provides novel insights into the transcriptional regulation of archaellation and highlights the essential role of EarA in Pyrococcus furiosus. These findings advance our understanding of the mechanisms governing archaellation and have implications for the functional diversity of archaella.
Collapse
Affiliation(s)
- Richard Stöckl
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Laura Nißl
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Reinhard Rachel
- Centre for Electron Microscopy, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Felix Grünberger
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
28
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen deficient zones with diverse metabolic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564641. [PMID: 37961710 PMCID: PMC10634959 DOI: 10.1101/2023.10.30.564641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Archaea belonging to the DPANN superphylum have been found within an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise 15-26% of the archaeal community within marine oxygen deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes belonging to DPANN phyla Nanoarchaeota, Pacearchaeota, Woesarchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and Arabian Sea. We find these archaea to be permanent, stable residents of all 3 major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25-50% of archaea. ODZ DPANN appear capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Wilbert
- Divisions of Biology and Biological Engineering and Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Divisions of Biology and Biological Engineering and Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
29
|
Pan J, Zhang X, Xu W, Liu Y, Liu L, Luo Z, Li M. Wood-Ljungdahl pathway found in novel marine Korarchaeota groups illuminates their evolutionary history. mSystems 2023; 8:e0030523. [PMID: 37458475 PMCID: PMC10469681 DOI: 10.1128/msystems.00305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023] Open
Abstract
Korarchaeota, due to its rarity in common environments, is one of the archaeal phyla that has received the least attention from researchers. It was previously thought to consist solely of strict thermophiles. However, our study provides genetic evidence for the presence of korarchaeal members in temperate subsurface seawater. Furthermore, a systematic reclassification of the Korarchaeota based on 16S rRNA genes and genomes has revealed three novel marine groups (Kor-6 to Kor-8) at the root of the Korarchaeota branch. Kor-6 contains microbes that are present in moderate temperatures. All three novel marine phyla possess genes for the Wood-Ljungdahl pathway, and Kor-7 and Kor-8 possess fewer genes encoding oxygen resistance traits than other korarchaeal groups, suggesting a distinct lifestyle for these novel phyla. Our results, together with estimations of Korarchaeota divergence times, suggest that oxygen availability may be one of the important factors that have influenced the evolution of Korarchaeota. IMPORTANCE Korarchaeota were previously thought to inhabit exclusively high-temperature environments. However, our study provides genetic evidence for their unexpected presence in temperate marine waters. Through analysis of publicly available korarchaeal reference data, we have systematically reclassified Korarchaeota and identified the existence of three previously unknown marine groups (Kor-6, Kor-7, and Kor-8) at the root of the Korarchaeota branch. Comparative analysis of their gene content revealed that these novel groups exhibit a lifestyle distinct from other Korarchaeota. Specifically, they have the ability to fix carbon exclusively via the Wood-Ljungdahl (WL) pathway, and the genomes within Kor-7 and Kor-8 contain few genes encoding antioxidant enzymes, indicating their strictly anaerobic lifestyle. Further studies suggest that the genes related to methane metabolism and the WL pathway may have been inherited from a common ancestor of the Korarchaeota and that oxygen availability may be one of the important evolutionary factors that shaped the diversification of this archaeal phylum.
Collapse
Affiliation(s)
- Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, Guangdong, China
| | - Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Lirui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
30
|
Ghaly TM, Focardi A, Elbourne LDH, Sutcliffe B, Humphreys W, Paulsen IT, Tetu SG. Stratified microbial communities in Australia's only anchialine cave are taxonomically novel and drive chemotrophic energy production via coupled nitrogen-sulphur cycling. MICROBIOME 2023; 11:190. [PMID: 37626351 PMCID: PMC10463829 DOI: 10.1186/s40168-023-01633-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Anchialine environments, in which oceanic water mixes with freshwater in coastal aquifers, are characterised by stratified water columns with complex physicochemical profiles. These environments, also known as subterranean estuaries, support an abundance of endemic macro and microorganisms. There is now growing interest in characterising the metabolisms of anchialine microbial communities, which is essential for understanding how complex ecosystems are supported in extreme environments, and assessing their vulnerability to environmental change. However, the diversity of metabolic strategies that are utilised in anchialine ecosystems remains poorly understood. RESULTS Here, we employ shotgun metagenomics to elucidate the key microorganisms and their dominant metabolisms along a physicochemical profile in Bundera Sinkhole, the only known continental subterranean estuary in the Southern Hemisphere. Genome-resolved metagenomics suggests that the communities are largely represented by novel taxonomic lineages, with 75% of metagenome-assembled genomes assigned to entirely new or uncharacterised families. These diverse and novel taxa displayed depth-dependent metabolisms, reflecting distinct phases along dissolved oxygen and salinity gradients. In particular, the communities appear to drive nutrient feedback loops involving nitrification, nitrate ammonification, and sulphate cycling. Genomic analysis of the most highly abundant members in this system suggests that an important source of chemotrophic energy is generated via the metabolic coupling of nitrogen and sulphur cycling. CONCLUSION These findings substantially contribute to our understanding of the novel and specialised microbial communities in anchialine ecosystems, and highlight key chemosynthetic pathways that appear to be important in these energy-limited environments. Such knowledge is essential for the conservation of anchialine ecosystems, and sheds light on adaptive processes in extreme environments. Video Abstract.
Collapse
Affiliation(s)
- Timothy M Ghaly
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Amaranta Focardi
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Liam D H Elbourne
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | | | - William Humphreys
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
31
|
Røyseth V, Hurysz BM, Kaczorowska AK, Dorawa S, Fedøy AE, Arsın H, Serafim MSM, Myers SA, Werbowy O, Kaczorowski T, Stokke R, O’Donoghue AJ, Steen IH. Activation mechanism and activity of globupain, a thermostable C11 protease from the Arctic Mid-Ocean Ridge hydrothermal system. Front Microbiol 2023; 14:1199085. [PMID: 37405169 PMCID: PMC10315481 DOI: 10.3389/fmicb.2023.1199085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Deep-sea hydrothermal vents offer unique habitats for heat tolerant enzymes with potential new enzymatic properties. Here, we present the novel C11 protease globupain, which was prospected from a metagenome-assembled genome of uncultivated Archaeoglobales sampled from the Soria Moria hydrothermal vent system located on the Arctic Mid-Ocean Ridge. Sequence comparisons against the MEROPS-MPRO database showed that globupain has the highest sequence identity to C11-like proteases present in human gut and intestinal bacteria. Successful recombinant expression in Escherichia coli of the wild-type zymogen and 13 mutant substitution variants allowed assessment of residues involved in maturation and activity of the enzyme. For activation, globupain required the addition of DTT and Ca2+. When activated, the 52kDa proenzyme was processed at K137 and K144 into a 12kDa light- and 32kDa heavy chain heterodimer. A structurally conserved H132/C185 catalytic dyad was responsible for the proteolytic activity, and the enzyme demonstrated the ability to activate in-trans. Globupain exhibited caseinolytic activity and showed a strong preference for arginine in the P1 position, with Boc-QAR-aminomethylcoumarin (AMC) as the best substrate out of a total of 17 fluorogenic AMC substrates tested. Globupain was thermostable (Tm activated enzyme = 94.51°C ± 0.09°C) with optimal activity at 75°C and pH 7.1. Characterization of globupain has expanded our knowledge of the catalytic properties and activation mechanisms of temperature tolerant marine C11 proteases. The unique combination of features such as elevated thermostability, activity at relatively low pH values, and ability to operate under high reducing conditions makes globupain a potential intriguing candidate for use in diverse industrial and biotechnology sectors.
Collapse
Affiliation(s)
- Victoria Røyseth
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Brianna M. Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms | KPD, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Anita-Elin Fedøy
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Hasan Arsın
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Mateus Sá M. Serafim
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel A. Myers
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Olesia Werbowy
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Runar Stokke
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Ida Helene Steen
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Bergen, Norway
| |
Collapse
|
32
|
Reva O, Messina E, La Cono V, Crisafi F, Smedile F, La Spada G, Marturano L, Selivanova EA, Rohde M, Krupovic M, Yakimov MM. Functional diversity of nanohaloarchaea within xylan-degrading consortia. Front Microbiol 2023; 14:1182464. [PMID: 37323909 PMCID: PMC10266531 DOI: 10.3389/fmicb.2023.1182464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Extremely halophilic representatives of the phylum Candidatus Nanohaloarchaeota (members of the DPANN superphyla) are obligately associated with extremely halophilic archaea of the phylum Halobacteriota (according to the GTDB taxonomy). Using culture-independent molecular techniques, their presence in various hypersaline ecosystems around the world has been confirmed over the past decade. However, the vast majority of nanohaloarchaea remain uncultivated, and thus their metabolic capabilities and ecophysiology are currently poorly understood. Using the (meta)genomic, transcriptomic, and DNA methylome platforms, the metabolism and functional prediction of the ecophysiology of two novel extremely halophilic symbiotic nanohaloarchaea (Ca. Nanohalococcus occultus and Ca. Nanohalovita haloferacivicina) stably cultivated in the laboratory as members of a xylose-degrading binary culture with a haloarchaeal host, Haloferax lucentense, was determined. Like all known DPANN superphylum nanoorganisms, these new sugar-fermenting nanohaloarchaea lack many fundamental biosynthetic repertoires, making them exclusively dependent on their respective host for survival. In addition, given the cultivability of the new nanohaloarchaea, we managed to discover many unique features in these new organisms that have never been observed in nano-sized archaea both within the phylum Ca. Nanohaloarchaeota and the entire superphylum DPANN. This includes the analysis of the expression of organism-specific non-coding regulatory (nc)RNAs (with an elucidation of their 2D-secondary structures) as well as profiling of DNA methylation. While some ncRNA molecules have been predicted with high confidence as RNAs of an archaeal signal recognition particle involved in delaying protein translation, others resemble the structure of ribosome-associated ncRNAs, although none belong to any known family. Moreover, the new nanohaloarchaea have very complex cellular defense mechanisms. In addition to the defense mechanism provided by the type II restriction-modification system, consisting of Dcm-like DNA methyltransferase and Mrr restriction endonuclease, Ca. Nanohalococcus encodes an active type I-D CRISPR/Cas system, containing 77 spacers divided into two loci. Despite their diminutive genomes and as part of their host interaction mechanism, the genomes of new nanohaloarchaea do encode giant surface proteins, and one of them (9,409 amino acids long) is the largest protein of any sequenced nanohaloarchaea and the largest protein ever discovered in cultivated archaea.
Collapse
Affiliation(s)
- Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | | | - Violetta La Cono
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Francesca Crisafi
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Francesco Smedile
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Gina La Spada
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Laura Marturano
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Elena A. Selivanova
- Institute for Cellular and Intracellular Symbiosis, Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| | - Manfred Rohde
- Central Facility for Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Michail M. Yakimov
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| |
Collapse
|
33
|
Oren A, Göker M. Candidatus List. Lists of names of prokaryotic Candidatus phyla. Int J Syst Evol Microbiol 2023; 73. [PMID: 37159402 DOI: 10.1099/ijsem.0.005821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
34
|
Rao YZ, Li YX, Li ZW, Qu YN, Qi YL, Jiao JY, Shu WS, Hua ZS, Li WJ. Metagenomic Discovery of " Candidatus Parvarchaeales"-Related Lineages Sheds Light on Adaptation and Diversification from Neutral-Thermal to Acidic-Mesothermal Environments. mSystems 2023; 8:e0125222. [PMID: 36943058 PMCID: PMC10134863 DOI: 10.1128/msystems.01252-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
"Candidatus Parvarchaeales" microbes, representing a DPANN archaeal group with limited metabolic potential and reliance on hosts for their growth, were initially found in acid mine drainage (AMD). Due to the lack of representatives, however, their ecological roles and adaptation to extreme habitats such as AMD as well as how they diverge across the lineage remain largely unexplored. By applying genome-resolved metagenomics, 28 Parvarchaeales-associated metagenome-assembled genomes (MAGs) representing two orders and five genera were recovered. Among them, we identified three new genera and proposed the names "Candidatus Jingweiarchaeum," "Candidatus Haiyanarchaeum," and "Candidatus Rehaiarchaeum," with the former two belonging to a new order, "Candidatus Jingweiarchaeales." Further analyses of the metabolic potentials revealed substantial niche differentiation between Jingweiarchaeales and Parvarchaeales. Jingweiarchaeales may rely on fermentation, salvage pathways, partial glycolysis, and the pentose phosphate pathway (PPP) for energy conservation reservation, while the metabolic potentials of Parvarchaeales might be more versatile. Comparative genomic analyses suggested that Jingweiarchaeales favor habitats with higher temperatures and that Parvarchaeales are better adapted to acidic environments. We further revealed that the thermal adaptation of these lineages, especially Haiyanarchaeum, might rely on genomic features such as the usage of specific amino acids, genome streamlining, and hyperthermophile featured genes such as rgy. Notably, the adaptation of Parvarchaeales to acidic environments was possibly driven by horizontal gene transfer (HGT). The reconstruction of ancestral states demonstrated that both may have originated from thermal and neutral environments and later spread to mesothermal and acidic environments. These evolutionary processes may also be accompanied by adaptation to oxygen-rich environments via HGT. IMPORTANCE "Candidatus Parvarchaeales" microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments. By the discovery of potential new order-level lineages, "Ca. Jingweiarchaeales," and in-depth comparative genomic analysis, we unveiled the functional differentiation of these lineages. Furthermore, we show that the adaptation of these lineages to high-temperature and acidic environments was driven by different strategies, with the former relying more on genomic characteristics such as genome streamlining and amino acid compositions and the latter relying more on the acquisition of genes associated with acid tolerance. Finally, by the reconstruction of the ancestral states of the optimal growth temperature (OGT) and isoelectric point (pI), we showed the potential evolutionary process of Parvarchaeales-related lineages with regard to the shift from the high-temperature environment of their common ancestors to low-temperature (potentially acidic) environments.
Collapse
Affiliation(s)
- Yang-Zhi Rao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ze-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People’s Republic of China
| |
Collapse
|
35
|
Røyseth V, Hurysz BM, Kaczorowska A, Dorawa S, Fedøy AE, Arsin H, Serafim M, Werbowy O, Kaczorowski T, Stokke R, O'Donoghue AJ, Steen IH. Activation mechanism and activity of globupain, a thermostable C11 protease from the Arctic Mid-Ocean Ridge hydrothermal system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535519. [PMID: 37066400 PMCID: PMC10104074 DOI: 10.1101/2023.04.04.535519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Deep-sea hydrothermal vent systems with prevailing extreme thermal conditions for life offer unique habitats to source heat tolearant enzymes with potential new enzymatic properties. Here, we present the novel C11 protease globupain , prospected from a metagenome-assembled genome of uncultivated Archaeoglobales sampled from the Soria Moria hydrothermal vent system located on the Arctic Mid- Ocean Ridges. By sequence comparisons against the MEROPS-MPRO database, globupain showed highest sequence identity to C11-like proteases present in human gut and intestinal bacteria,. Successful recombinant expression in Escherichia coli of the active zymogen and 13 mutant substitution variants allowed assesment of residues involved in maturation and activity of the enzyme. For activation, globupain required the addition of DTT and Ca²⁺. When activated, the 52 kDa proenzyme was processed at Lys 137 and Lys 144 into a 12 kDa light- and 32 kDa heavy chain heterodimer. A structurally conserved His 132 /Cys 185 catalytic dyad was responsible for the proteolytic activity, and the enzyme demonstrated the ability to activate in-trans . Globupain exhibited caseinolytic activity and showed a strong preference for arginine in the P1 position, with Boc-QAR- aminomethylcoumarin (AMC) as the best substrate out of a total of 17 fluorogenic AMC substrates tested. Globupain was thermostable (T m activated enzyme = 94.51 ± 0.09°C) with optimal activity at 75 °C and pH 7.1. By characterizing globupain, our knowledge of the catalytic properties and activation mechanisms of temperature tolerant marine C11 proteases have been expanded. The unique combination of features such as elevated thermostability, activity at relatively low pH values, and ability to operate under high reducing conditions makes globupain a potential intriguing candidate for use in diverse industrial and biotechnology sectors.
Collapse
|
36
|
Qu YN, Rao YZ, Qi YL, Li YX, Li A, Palmer M, Hedlund BP, Shu WS, Evans PN, Nie GX, Hua ZS, Li WJ. Panguiarchaeum symbiosum, a potential hyperthermophilic symbiont in the TACK superphylum. Cell Rep 2023; 42:112158. [PMID: 36827180 DOI: 10.1016/j.celrep.2023.112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/27/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
The biology of Korarchaeia remains elusive due to the lack of genome representatives. Here, we reconstruct 10 closely related metagenome-assembled genomes from hot spring habitats and place them into a single species, proposed herein as Panguiarchaeum symbiosum. Functional investigation suggests that Panguiarchaeum symbiosum is strictly anaerobic and grows exclusively in thermal habitats by fermenting peptides coupled with sulfide and hydrogen production to dispose of electrons. Due to its inability to biosynthesize archaeal membranes, amino acids, and purines, this species likely exists in a symbiotic lifestyle similar to DPANN archaea. Population metagenomics and metatranscriptomic analyses demonstrated that genes associated with amino acid/peptide uptake and cell attachment exhibited positive selection and were highly expressed, supporting the proposed proteolytic catabolism and symbiotic lifestyle. Our study sheds light on the metabolism, evolution, and potential symbiotic lifestyle of Panguiarchaeum symbiosum, which may be a unique host-dependent archaeon within the TACK superphylum.
Collapse
Affiliation(s)
- Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Andrew Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
37
|
Prondzinsky P, Toyoda S, McGlynn SE. The methanogen core and pangenome: conservation and variability across biology's growth temperature extremes. DNA Res 2023; 30:dsac048. [PMID: 36454681 PMCID: PMC9886072 DOI: 10.1093/dnares/dsac048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Temperature is a key variable in biological processes. However, a complete understanding of biological temperature adaptation is lacking, in part because of the unique constraints among different evolutionary lineages and physiological groups. Here we compared the genomes of cultivated psychrotolerant and thermotolerant methanogens, which are physiologically related and span growth temperatures from -2.5°C to 122°C. Despite being phylogenetically distributed amongst three phyla in the archaea, the genomic core of cultivated methanogens comprises about one-third of a given genome, while the genome fraction shared by any two organisms decreases with increasing phylogenetic distance between them. Increased methanogenic growth temperature is associated with reduced genome size, and thermotolerant organisms-which are distributed across the archaeal tree-have larger core genome fractions, suggesting that genome size is governed by temperature rather than phylogeny. Thermotolerant methanogens are enriched in metal and other transporters, and psychrotolerant methanogens are enriched in proteins related to structure and motility. Observed amino acid compositional differences between temperature groups include proteome charge, polarity and unfolding entropy. Our results suggest that in the methanogens, shared physiology maintains a large, conserved genomic core even across large phylogenetic distances and biology's temperature extremes.
Collapse
Affiliation(s)
- Paula Prondzinsky
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8550 Tokyo, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - Sakae Toyoda
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - Shawn Erin McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8550 Tokyo, Japan
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, 351-0198 Saitama, Japan
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| |
Collapse
|
38
|
van der Gulik PT, Egas M, Kraaijeveld K, Dombrowski N, Groot AT, Spang A, Hoff WD, Gallie J. On distinguishing between canonical tRNA genes and tRNA gene fragments in prokaryotes. RNA Biol 2023; 20:48-58. [PMID: 36727270 PMCID: PMC9897764 DOI: 10.1080/15476286.2023.2172370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Automated genome annotation is essential for extracting biological information from sequence data. The identification and annotation of tRNA genes is frequently performed by the software package tRNAscan-SE, the output of which is listed for selected genomes in the Genomic tRNA database (GtRNAdb). Here, we highlight a pervasive error in prokaryotic tRNA gene sets on GtRNAdb: the mis-categorization of partial, non-canonical tRNA genes as standard, canonical tRNA genes. Firstly, we demonstrate the issue using the tRNA gene sets of 20 organisms from the archaeal taxon Thermococcaceae. According to GtRNAdb, these organisms collectively deviate from the expected set of tRNA genes in 15 instances, including the listing of eleven putative canonical tRNA genes. However, after detailed manual annotation, only one of these eleven remains; the others are either partial, non-canonical tRNA genes resulting from the integration of genetic elements or CRISPR-Cas activity (seven instances), or attributable to ambiguities in input sequences (three instances). Secondly, we show that similar examples of the mis-categorization of predicted tRNA sequences occur throughout the prokaryotic sections of GtRNAdb. While both canonical and non-canonical prokaryotic tRNA gene sequences identified by tRNAscan-SE are biologically interesting, the challenge of reliably distinguishing between them remains. We recommend employing a combination of (i) screening input sequences for the genetic elements typically associated with non-canonical tRNA genes, and ambiguities, (ii) activating the tRNAscan-SE automated pseudogene detection function, and (iii) scrutinizing predicted tRNA genes with low isotype scores. These measures greatly reduce manual annotation efforts, and lead to improved prokaryotic tRNA gene set predictions.
Collapse
Affiliation(s)
- Peter T.S. van der Gulik
- Department of Algorithms and Complexity, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands,CONTACT Peter T.S. van der Gulik Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Martijn Egas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Leiden Centre for Applied Bioscience, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Astrid T. Groot
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Spang
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands,Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA,Wouter Hoff
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany,Jenna Gallie
| |
Collapse
|
39
|
Comparative Genomic Insights into the Evolution of Halobacteria-Associated " Candidatus Nanohaloarchaeota". mSystems 2022; 7:e0066922. [PMID: 36259734 PMCID: PMC9765267 DOI: 10.1128/msystems.00669-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Members of the phylum "Candidatus Nanohaloarchaeota," a representative lineage within the DPANN superphylum, are characterized by their nanosized cells and symbiotic lifestyle with Halobacteria. However, the development of the symbiosis remains unclear. Here, we propose two novel families, "Candidatus Nanoanaerosalinaceae" and "Candidatus Nanohalalkaliarchaeaceae" in "Ca. Nanohaloarchaeota," represented by five dereplicated metagenome-assembled genomes obtained from hypersaline sediments or related enrichment cultures of soda-saline lakes. Phylogenetic analyses reveal that the two novel families are placed at the root of the family "Candidatus Nanosalinaceae," including the cultivated taxa. The two novel families prefer hypersaline sediments, and the acid shift of predicted proteomes indicates a "salt-in" strategy for hypersaline adaptation. They contain a lower proportion of putative horizontal gene transfers from Halobacteria than "Ca. Nanosalinaceae," suggesting a weaker association with Halobacteria. Functional prediction and historical events reconstruction disclose that they exhibit divergent potentials in carbohydrate and organic acid metabolism and environmental responses. Globally, comparative genomic analyses based on the new families enrich the taxonomic and functional diversity of "Ca. Nanohaloarchaeota" and provide insights into the evolutionary process of "Ca. Nanohaloarchaeota" and their symbiotic relationship with Halobacteria. IMPORTANCE The DPANN superphylum is a group of archaea widely distributed in various habitats. They generally have small cells and have a symbiotic lifestyle with other archaea. The archaeal symbiotic interaction is vital to understanding microbial communities. However, the formation and evolution of the symbiosis between the DPANN lineages and other diverse archaea remain unclear. Based on phylogeny, habitat distribution, hypersaline adaptation, host prediction, functional potentials, and historical events of "Ca. Nanohaloarchaeota," a representative phylum within the DPANN superphylum, we report two novel families representing intermediate stages, and we infer the evolutionary process of "Ca. Nanohaloarchaeota" and their Halobacteria-associated symbiosis. Altogether, this research helps in understanding the evolution of symbiosis in "Ca. Nanohaloarchaeota" and provides a model for the evolution of other DPANN lineages.
Collapse
|
40
|
Zhou Z, Liu Y, Anantharaman K, Li M. The expanding Asgard archaea invoke novel insights into Tree of Life and eukaryogenesis. MLIFE 2022; 1:374-381. [PMID: 38818484 PMCID: PMC10989744 DOI: 10.1002/mlf2.12048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 06/01/2024]
Abstract
The division of organisms on the Tree of Life into either a three-domain (3D) tree or a two-domain (2D) tree has been disputed for a long time. Ever since the discovery of Archaea by Carl Woese in 1977 using 16S ribosomal RNA sequence as the evolutionary marker, there has been a great advance in our knowledge of not only the growing diversity of Archaea but also the evolutionary relationships between different lineages of living organisms. Here, we present this perspective to summarize the progress of archaeal diversity and changing notion of the Tree of Life. Meanwhile, we provide the latest progress in genomics/physiology-based discovery of Asgard archaeal lineages as the closest relative of Eukaryotes. Furthermore, we propose three major directions for future research on exploring the "next one" closest Eukaryote relative, deciphering the function of archaeal eukaryotic signature proteins and eukaryogenesis from both genomic and physiological aspects, and understanding the roles of horizontal gene transfer, viruses, and mobile elements in eukaryogenesis.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of BacteriologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | | | - Meng Li
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| |
Collapse
|
41
|
Ghaly TM, Tetu SG, Penesyan A, Qi Q, Rajabal V, Gillings MR. Discovery of integrons in Archaea: Platforms for cross-domain gene transfer. SCIENCE ADVANCES 2022; 8:eabq6376. [PMID: 36383678 PMCID: PMC9668308 DOI: 10.1126/sciadv.abq6376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Horizontal gene transfer between different domains of life is increasingly being recognized as an important evolutionary driver, with the potential to increase the pace of biochemical innovation and environmental adaptation. However, the mechanisms underlying the recruitment of exogenous genes from foreign domains are mostly unknown. Integrons are a family of genetic elements that facilitate this process within Bacteria. However, they have not been reported outside Bacteria, and thus their potential role in cross-domain gene transfer has not been investigated. Here, we discover that integrons are also present in 75 archaeal metagenome-assembled genomes from nine phyla, and are particularly enriched among Asgard archaea. Furthermore, we provide experimental evidence that integrons can facilitate the recruitment of archaeal genes by bacteria. Our findings establish a previously unknown mechanism of cross-domain gene transfer whereby bacteria can incorporate archaeal genes from their surrounding environment via integron activity. These findings have important implications for prokaryotic ecology and evolution.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Qin Qi
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael R. Gillings
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
42
|
Xie YG, Luo ZH, Fang BZ, Jiao JY, Xie QJ, Cao XR, Qu YN, Qi YL, Rao YZ, Li YX, Liu YH, Li A, Seymour C, Palmer M, Hedlund BP, Li WJ, Hua ZS. Functional differentiation determines the molecular basis of the symbiotic lifestyle of Ca. Nanohaloarchaeota. MICROBIOME 2022; 10:172. [PMID: 36242054 PMCID: PMC9563170 DOI: 10.1186/s40168-022-01376-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/22/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Candidatus Nanohaloarchaeota, an archaeal phylum within the DPANN superphylum, is characterized by limited metabolic capabilities and limited phylogenetic diversity and until recently has been considered to exclusively inhabit hypersaline environments due to an obligate association with Halobacteria. Aside from hypersaline environments, Ca. Nanohaloarchaeota can also have been discovered from deep-subsurface marine sediments. RESULTS Three metagenome-assembled genomes (MAGs) representing a new order within the Ca. Nanohaloarchaeota were reconstructed from a stratified salt crust and proposed to represent a novel order, Nucleotidisoterales. Genomic features reveal them to be anaerobes capable of catabolizing nucleotides by coupling nucleotide salvage pathways with lower glycolysis to yield free energy. Comparative genomics demonstrated that these and other Ca. Nanohaloarchaeota inhabiting saline habitats use a "salt-in" strategy to maintain osmotic pressure based on the high proportion of acidic amino acids. In contrast, previously described Ca. Nanohaloarchaeota MAGs from geothermal environments were enriched with basic amino acids to counter heat stress. Evolutionary history reconstruction revealed that functional differentiation of energy conservation strategies drove diversification within Ca. Nanohaloarchaeota, further leading to shifts in the catabolic strategy from nucleotide degradation within deeper lineages to polysaccharide degradation within shallow lineages. CONCLUSIONS This study provides deeper insight into the ecological functions and evolution of the expanded phylum Ca. Nanohaloarchaeota and further advances our understanding on the functional and genetic associations between potential symbionts and hosts. Video Abstract.
Collapse
Affiliation(s)
- Yuan-Guo Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qi-Jun Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Xing-Ru Cao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yan-Lin Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Andrew Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Cale Seymour
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
43
|
Wang D, Meng Y, Meng F. Genome-centric metagenomics insights into functional divergence and horizontal gene transfer of denitrifying bacteria in anammox consortia. WATER RESEARCH 2022; 224:119062. [PMID: 36116192 DOI: 10.1016/j.watres.2022.119062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Denitrifying bacteria with high abundances in anammox communities play crucial roles in achieving stable anammox-based systems. Despite the relative constant composition of denitrifying bacteria, their functional diversity remains to be explored in anammox communities. Herein, a total of 77 high-quality metagenome-assembled genomes (MAGs) of denitrifying bacteria were recovered from the anammox community in a full-scale swine wastewater treatment plant. Among these microbes, a total of 26 MAGs were affiliated with the seven dominant denitrifying genera that have total abundances higher than 1%. A meta-analysis of these species suggested that external organics reduced the abundances of genus Ignavibacterium and species MAG.305 of UTPRO2 in anammox communities. Comparative genome analysis revealed functional divergence across different denitrifying bacteria, largely owing to their distinct capabilities for carbohydrate (including endogenous and exogenous) utilization and vitamin (e.g., pantothenate and thiamine) biosynthesis. Serval microbes in this system contained fewer genes encoding biotin, pantothenate and methionine biosynthesis compared with their related species from other habitats. In addition, the genes encoding energy production and conversion (73 genes) and inorganic ion transport (53 genes) putatively transferred from other species to denitrifying bacteria, while these denitrifying bacteria (especially genera UTPRO2 and SCN-69-89) likely donated the genes encoding nutrients (e.g., inorganic ion and amino acid) transporter (64 genes) for other members to utilize new metabolites. Collectively, these findings highlighted the functional divergence of these denitrifying bacteria and speculated that the genetic interactions within anammox communities through horizontal gene transfer may be one of the reasons for their functional divergence.
Collapse
Affiliation(s)
- Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China.
| |
Collapse
|
44
|
Zhang X, Huang Y, Liu Y, Xu W, Pan J, Zheng X, Du H, Zhang C, Lu Z, Zou D, Liu Z, Cai M, Xiong J, Zhu Y, Dong Z, Jiang H, Dong H, Jiang J, Luo Z, Huang L, Li M. An Ancient Respiratory System in the Widespread Sedimentary Archaea Thermoprofundales. Mol Biol Evol 2022; 39:6742362. [PMID: 36181435 PMCID: PMC9585477 DOI: 10.1093/molbev/msac213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Thermoprofundales, formerly Marine Benthic Group D (MBG-D), is a ubiquitous archaeal lineage found in sedimentary environments worldwide. However, its taxonomic classification, metabolic pathways, and evolutionary history are largely unexplored because of its uncultivability and limited number of sequenced genomes. In this study, phylogenomic analysis and average amino acid identity values of a collection of 146 Thermoprofundales genomes revealed five Thermoprofundales subgroups (A-E) with distinct habitat preferences. Most of the microorganisms from Subgroups B and D were thermophiles inhabiting hydrothermal vents and hot spring sediments, whereas those from Subgroup E were adapted to surface environments where sunlight is available. H2 production may be featured in Thermoprofundales as evidenced by a gene cluster encoding the ancient membrane-bound hydrogenase (MBH) complex. Interestingly, a unique structure separating the MBH gene cluster into two modular units was observed exclusively in the genomes of Subgroup E, which included a peripheral arm encoding the [NiFe] hydrogenase domain and a membrane arm encoding the Na+/H+ antiporter domain. These two modular structures were confirmed to function independently by detecting the H2-evolving activity in vitro and salt tolerance to 0.2 M NaCl in vivo, respectively. The peripheral arm of Subgroup E resembles the proposed common ancestral respiratory complex of modern respiratory systems, which plays a key role in the early evolution of life. In addition, molecular dating analysis revealed that Thermoprofundales is an early emerging archaeal lineage among the extant MBH-containing microorganisms, indicating new insights into the evolution of this ubiquitous archaea lineage.
Collapse
Affiliation(s)
- Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuhan Huang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huan Du
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Zongbao Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Corresponding author: E-mail:
| |
Collapse
|
45
|
Escudeiro P, Henry CS, Dias RP. Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100159. [PMID: 36561390 PMCID: PMC9764257 DOI: 10.1016/j.crmicr.2022.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eight-hundred thousand to one trillion prokaryotic species may inhabit our planet. Yet, fewer than two-hundred thousand prokaryotic species have been described. This uncharted fraction of microbial diversity, and its undisclosed coding potential, is known as the "microbial dark matter" (MDM). Next-generation sequencing has allowed to collect a massive amount of genome sequence data, leading to unprecedented advances in the field of genomics. Still, harnessing new functional information from the genomes of uncultured prokaryotes is often limited by standard classification methods. These methods often rely on sequence similarity searches against reference genomes from cultured species. This hinders the discovery of unique genetic elements that are missing from the cultivated realm. It also contributes to the accumulation of prokaryotic gene products of unknown function among public sequence data repositories, highlighting the need for new approaches for sequencing data analysis and classification. Increasing evidence indicates that these proteins of unknown function might be a treasure trove of biotechnological potential. Here, we outline the challenges, opportunities, and the potential hidden within the functional dark matter (FDM) of prokaryotes. We also discuss the pitfalls surrounding molecular and computational approaches currently used to probe these uncharted waters, and discuss future opportunities for research and applications.
Collapse
Affiliation(s)
- Pedro Escudeiro
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Christopher S. Henry
- Argonne National Laboratory, Lemont, Illinois, USA
- University of Chicago, Chicago, Illinois, USA
| | - Ricardo P.M. Dias
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- iXLab - Innovation for National Biological Resilience, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
46
|
Liu Y, Li M. The unstable evolutionary position of Korarchaeota and its relationship with other TACK and Asgard archaea. MLIFE 2022; 1:218-222. [PMID: 38817676 PMCID: PMC10989867 DOI: 10.1002/mlf2.12020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/24/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2024]
Abstract
The applications of marker gene concatenation have been advanced to resolve the key questions in the Tree of Life. However, the interphylum evolutionary relationship between Korarchaeota of TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) and Asgard archaea remains uncertain. We applied a marker gene ranking procedure to examine their evolutionary history. Our updated trees showed confident placements of (1) Korarchaeota as the basal branch to other TACK archaea and as a sister group to Asgard archaea; (2) Njordarchaeota at basal branch to Korarchaeota instead of within Asgard archaea. They highlight the importance of evaluating marker genes for phylogeny inference of the Archaea domain.
Collapse
Affiliation(s)
- Yang Liu
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| |
Collapse
|
47
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
48
|
Jüttner M, Ferreira-Cerca S. Looking through the Lens of the Ribosome Biogenesis Evolutionary History: Possible Implications for Archaeal Phylogeny and Eukaryogenesis. Mol Biol Evol 2022; 39:msac054. [PMID: 35275997 PMCID: PMC8997704 DOI: 10.1093/molbev/msac054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our understanding of microbial diversity and its evolutionary relationships has increased substantially over the last decade. Such an understanding has been greatly fueled by culture-independent metagenomics analyses. However, the outcome of some of these studies and their biological and evolutionary implications, such as the origin of the eukaryotic lineage from the recently discovered archaeal Asgard superphylum, is debated. The sequences of the ribosomal constituents are amongst the most used phylogenetic markers. However, the functional consequences underlying the analysed sequence diversity and their putative evolutionary implications are essentially not taken into consideration. Here, we propose to exploit additional functional hallmarks of ribosome biogenesis to help disentangle competing evolutionary hypotheses. Using selected examples, such as the multiple origins of halophily in archaea or the evolutionary relationship between the Asgard archaea and Eukaryotes, we illustrate and discuss how function-aware phylogenetic framework can contribute to refining our understanding of archaeal phylogeny and the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Michael Jüttner
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
49
|
Krause S, Gfrerer S, von Kügelgen A, Reuse C, Dombrowski N, Villanueva L, Bunk B, Spröer C, Neu TR, Kuhlicke U, Schmidt-Hohagen K, Hiller K, Bharat TAM, Rachel R, Spang A, Gescher J. The importance of biofilm formation for cultivation of a Micrarchaeon and its interactions with its Thermoplasmatales host. Nat Commun 2022; 13:1735. [PMID: 35365607 PMCID: PMC8975820 DOI: 10.1038/s41467-022-29263-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/28/2022] [Indexed: 01/05/2023] Open
Abstract
Micrarchaeota is a distinctive lineage assigned to the DPANN archaea, which includes poorly characterised microorganisms with reduced genomes that likely depend on interactions with hosts for growth and survival. Here, we report the enrichment of a stable co-culture of a member of the Micrarchaeota (Ca. Micrarchaeum harzensis) together with its Thermoplasmatales host (Ca. Scheffleriplasma hospitalis), as well as the isolation of the latter. We show that symbiont-host interactions depend on biofilm formation as evidenced by growth experiments, comparative transcriptomic analyses and electron microscopy. In addition, genomic, metabolomic, extracellular polymeric substances and lipid content analyses indicate that the Micrarchaeon symbiont relies on the acquisition of metabolites from its host. Our study of the cell biology and physiology of a Micrarchaeon and its host adds to our limited knowledge of archaeal symbioses. The Micrarchaeota lineage includes poorly characterized archaea with reduced genomes that likely depend on host interactions for survival. Here, the authors report a stable co-culture of a member of the Micrarchaeota and its host, and use multi-omic and physiological analyses to shed light on this symbiosis.
Collapse
Affiliation(s)
- Susanne Krause
- Department of Applied Biology, Karlsruhe, Institute of Technology (KIT), Karlsruhe, Germany
| | - Sabrina Gfrerer
- Department of Applied Biology, Karlsruhe, Institute of Technology (KIT), Karlsruhe, Germany.,Institute for Biological Interfaces, Karlsruhe, Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Carsten Reuse
- Bioinformatics & Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre for Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Boyke Bunk
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Thomas R Neu
- Helmholtz-Centre for Environmental, Research UFZ, Magdeburg, Germany
| | - Ute Kuhlicke
- Helmholtz-Centre for Environmental, Research UFZ, Magdeburg, Germany
| | - Kerstin Schmidt-Hohagen
- Bioinformatics & Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre for Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Bioinformatics & Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre for Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom.,Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Reinhard Rachel
- Center for Electron Microscopy, University of Regensburg, Regensburg, Germany
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands.,Department of Cell- and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johannes Gescher
- Department of Applied Biology, Karlsruhe, Institute of Technology (KIT), Karlsruhe, Germany. .,Institute for Biological Interfaces, Karlsruhe, Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany. .,Institute of Technical Microbiology, Technical University of Hamburg, Hamburg, Germany.
| |
Collapse
|
50
|
Moody ERR, Mahendrarajah TA, Dombrowski N, Clark JW, Petitjean C, Offre P, Szöllősi GJ, Spang A, Williams TA. An estimate of the deepest branches of the tree of life from ancient vertically-evolving genes. eLife 2022; 11:66695. [PMID: 35190025 PMCID: PMC8890751 DOI: 10.7554/elife.66695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Core gene phylogenies provide a window into early evolution, but different gene sets and analytical methods have yielded substantially different views of the tree of life. Trees inferred from a small set of universal core genes have typically supported a long branch separating the archaeal and bacterial domains. By contrast, recent analyses of a broader set of non-ribosomal genes have suggested that Archaea may be less divergent from Bacteria, and that estimates of inter-domain distance are inflated due to accelerated evolution of ribosomal proteins along the inter-domain branch. Resolving this debate is key to determining the diversity of the archaeal and bacterial domains, the shape of the tree of life, and our understanding of the early course of cellular evolution. Here, we investigate the evolutionary history of the marker genes key to the debate. We show that estimates of a reduced Archaea-Bacteria (AB) branch length result from inter-domain gene transfers and hidden paralogy in the expanded marker gene set. By contrast, analysis of a broad range of manually curated marker gene datasets from an evenly sampled set of 700 Archaea and Bacteria reveals that current methods likely underestimate the AB branch length due to substitutional saturation and poor model fit; that the best-performing phylogenetic markers tend to support longer inter-domain branch lengths; and that the AB branch lengths of ribosomal and non-ribosomal marker genes are statistically indistinguishable. Furthermore, our phylogeny inferred from the 27 highest-ranked marker genes recovers a clade of DPANN at the base of the Archaea and places the bacterial Candidate Phyla Radiation (CPR) within Bacteria as the sister group to the Chloroflexota.
Collapse
Affiliation(s)
- Edmund R R Moody
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - James W Clark
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Celine Petitjean
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|