1
|
Wang JY, Xie ZX, Cui YZ, Li BZ, Yuan YJ. Artificial design of the genome: from sequences to the 3D structure of chromosomes. Trends Biotechnol 2025; 43:304-317. [PMID: 39299833 DOI: 10.1016/j.tibtech.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Genome design is the foundation of genome synthesis, which provides a new platform for deepening our understanding of biological systems by exploring the fundamental components and structure of the genome. Artificial genome designs can endow unnatural genomes with desired functions. We provide a comprehensive overview of genome design principles ranging from DNA sequences to the 3D structure of chromosomes. Furthermore, we highlight applications of genome design in gene expression, genome structure, genome function, and biocontainment, and discuss the potential of artificial intelligence (AI) in genome design.
Collapse
Affiliation(s)
- Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ze-Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Lin Z, Yao Q, Lai K, Jiao K, Zeng X, Lei G, Zhang T, Dai H. Cas12f1 gene drives propagate efficiently in herpesviruses and induce minimal resistance. Genome Biol 2024; 25:311. [PMID: 39696608 DOI: 10.1186/s13059-024-03455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Synthetic CRISPR-Cas9 gene drive has been developed to control harmful species. However, resistance to Cas9 gene drive can be acquired easily when DNA repair mechanisms patch up the genetic insults introduced by Cas9 and incorporate mutations to the sgRNA target. Although many strategies to reduce the occurrence of resistance have been developed so far, they are difficult to implement and not always effective. RESULTS Here, Cas12f1, a recently developed CRISPR-Cas system with minimal potential for causing mutations within target sequences, has been explored as a potential platform for yielding low-resistance in gene drives. We construct Cas9 and Cas12f1 gene drives in a fast-replicating DNA virus, HSV1. Cas9 and Cas12f1 gene drives are able to spread among the HSV1 population with specificity towards their target sites, and their transmission among HSV1 viruses is not significantly affected by the reduced fitness incurred by the viral carriers. Cas12f1 gene drives spread similarly as Cas9 gene drives at high introduction frequency but transmit more slowly than Cas9 gene drives at low introduction frequency. However, Cas12f1 gene drives outperform Cas9 gene drives because they reach higher penetration and induce lower resistance than Cas9 gene drives in all cases. CONCLUSIONS Due to lower resistance and higher penetration, Cas12f1 gene drives could potentially supplant Cas9 gene drives for population control.
Collapse
Affiliation(s)
- Zhuangjie Lin
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qiaorui Yao
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Keyuan Lai
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Kehua Jiao
- Department of Geriatric Medicine, Shanghai Health and Medical Center, Wuxi, Jiangshu Province, China
| | - Xianying Zeng
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guanxiong Lei
- Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Chenzhou, Hunan Province, China
| | - Tongwen Zhang
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
- Vaccine Biotech (Shenzhen) LTD, Shenzhen, China, & Boji Biopharmaceutical, Guangzhou, China.
| | - Hongsheng Dai
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Bai S, Luo H, Tong H, Wu Y, Yuan Y. Advances on transfer and maintenance of large DNA in bacteria, fungi, and mammalian cells. Biotechnol Adv 2024; 76:108421. [PMID: 39127411 DOI: 10.1016/j.biotechadv.2024.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/07/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Advances in synthetic biology allow the design and manipulation of DNA from the scale of genes to genomes, enabling the engineering of complex genetic information for application in biomanufacturing, biomedicine and other areas. The transfer and subsequent maintenance of large DNA are two core steps in large scale genome rewriting. Compared to small DNA, the high molecular weight and fragility of large DNA make its transfer and maintenance a challenging process. This review outlines the methods currently available for transferring and maintaining large DNA in bacteria, fungi, and mammalian cells. It highlights their mechanisms, capabilities and applications. The transfer methods are categorized into general methods (e.g., electroporation, conjugative transfer, induced cell fusion-mediated transfer, and chemical transformation) and specialized methods (e.g., natural transformation, mating-based transfer, virus-mediated transfection) based on their applicability to recipient cells. The maintenance methods are classified into genomic integration (e.g., CRISPR/Cas-assisted insertion) and episomal maintenance (e.g., artificial chromosomes). Additionally, this review identifies the major technological advantages and disadvantages of each method and discusses the development for large DNA transfer and maintenance technologies.
Collapse
Affiliation(s)
- Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Han Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanze Tong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China. @tju.edu.cn
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Chen XR, Cui YZ, Li BZ, Yuan YJ. Genome engineering on size reduction and complexity simplification: A review. J Adv Res 2024; 60:159-171. [PMID: 37442424 PMCID: PMC11156615 DOI: 10.1016/j.jare.2023.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Genome simplification is an important topic in the field of life sciences that has attracted attention from its conception to the present day. It can help uncover the essential components of the genome and, in turn, shed light on the underlying operating principles of complex biological systems. This has made it a central focus of both basic and applied research in the life sciences. With the recent advancements in related technologies and our increasing knowledge of the genome, now is an opportune time to delve into this topic. AIM OF REVIEW Our review investigates the progress of genome simplification from two perspectives: genome size reduction and complexity simplification. In addition, we provide insights into the future development trends of genome simplification. KEY SCIENTIFIC CONCEPTS OF REVIEW Reducing genome size requires eliminating non-essential elements as much as possible. This process has been facilitated by advances in genome manipulation and synthesis techniques. However, we still need a better and clearer understanding of living systems to reduce genome complexity. As there is a lack of quantitative and clearly defined standards for this task, we have opted to approach the topic from various perspectives and present our findings accordingly.
Collapse
Affiliation(s)
- Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Ma Y, Su S, Fu Z, Zhou C, Qiao B, Wu Y, Yuan YJ. Convenient synthesis and delivery of a megabase-scale designer accessory chromosome empower biosynthetic capacity. Cell Res 2024; 34:309-322. [PMID: 38332200 PMCID: PMC10978979 DOI: 10.1038/s41422-024-00934-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Synthetic biology confers new functions to hosts by introducing exogenous genetic elements, yet rebuilding complex traits that are based on large-scale genetic information remains challenging. Here, we developed a CRISPR/Cas9-mediated haploidization method that bypasses the natural process of meiosis. Based on the programmed haploidization in yeast, we further developed an easy-to-use method designated HAnDy (Haploidization-based DNA Assembly and Delivery in yeast) that enables efficient assembly and delivery of large DNA, with no need for any fussy in vitro manipulations. Using HAnDy, a de novo designed 1.024 Mb synthetic accessory chromosome (synAC) encoding 542 exogenous genes was parallelly assembled and then directly transferred to six phylogenetically diverse yeasts. The synAC significantly promotes hosts' adaptations and increases the scope of the metabolic network, which allows the emergence of valuable compounds. Our approach should facilitate the assembly and delivery of large-scale DNA for expanding and deciphering complex biological functions.
Collapse
Affiliation(s)
- Yuan Ma
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Shuxin Su
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Zongheng Fu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Chu Zhou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
6
|
Bai S, Luo H, Tong H, Wu Y. Application and Technical Challenges in Design, Cloning, and Transfer of Large DNA. Bioengineering (Basel) 2023; 10:1425. [PMID: 38136016 PMCID: PMC10740618 DOI: 10.3390/bioengineering10121425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In the field of synthetic biology, rapid advancements in DNA assembly and editing have made it possible to manipulate large DNA, even entire genomes. These advancements have facilitated the introduction of long metabolic pathways, the creation of large-scale disease models, and the design and assembly of synthetic mega-chromosomes. Generally, the introduction of large DNA in host cells encompasses three critical steps: design-cloning-transfer. This review provides a comprehensive overview of the three key steps involved in large DNA transfer to advance the field of synthetic genomics and large DNA engineering.
Collapse
Affiliation(s)
- Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Han Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanze Tong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Liu L, Helal SE, Peng N. CRISPR-Cas-Based Engineering of Probiotics. BIODESIGN RESEARCH 2023; 5:0017. [PMID: 37849462 PMCID: PMC10541000 DOI: 10.34133/bdr.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/19/2023] Open
Abstract
Probiotics are the treasure of the microbiology fields. They have been widely used in the food industry, clinical treatment, and other fields. The equivocal health-promoting effects and the unknown action mechanism were the largest obstacles for further probiotic's developed applications. In recent years, various genome editing techniques have been developed and applied to explore the mechanisms and functional modifications of probiotics. As important genome editing tools, CRISPR-Cas systems that have opened new improvements in genome editing dedicated to probiotics. The high efficiency, flexibility, and specificity are the advantages of using CRISPR-Cas systems. Here, we summarize the classification and distribution of CRISPR-Cas systems in probiotics, as well as the editing tools developed on the basis of them. Then, we discuss the genome editing of probiotics based on CRISPR-Cas systems and the applications of the engineered probiotics through CRISPR-Cas systems. Finally, we proposed a design route for CRISPR systems that related to the genetically engineered probiotics.
Collapse
Affiliation(s)
- Ling Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Shimaa Elsayed Helal
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
8
|
He B, Ma Y, Tian F, Zhao GR, Wu Y, Yuan YJ. YLC-assembly: large DNA assembly via yeast life cycle. Nucleic Acids Res 2023; 51:8283-8292. [PMID: 37486765 PMCID: PMC10450165 DOI: 10.1093/nar/gkad599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
As an enabling technique of synthetic biology, the scale of DNA assembly largely determines the scale of genetic manipulation. However, large DNA assembly technologies are generally cumbersome and inefficient. Here, we developed a YLC (yeast life cycle)-assembly method that enables in vivo iterative assembly of large DNA by nesting cell-cell transfer of assembled DNA in the cycle of yeast mating and sporulation. Using this method, we successfully assembled a hundred-kilobase (kb)-sized endogenous yeast DNA and a megabase (Mb)-sized exogenous DNA. For each round, over 104 positive colonies per 107 cells could be obtained, with an accuracy ranging from 67% to 100%. Compared with other Mb-sized DNA assembly methods, this method exhibits a higher success rate with an easy-to-operate workflow that avoid in vitro operations of large DNA. YLC-assembly lowers the technical difficulty of Mb-sized DNA assembly and could be a valuable tool for large-scale genome engineering and synthetic genomics.
Collapse
Affiliation(s)
- Bo He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yuan Ma
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Fangfang Tian
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Guang-Rong Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Stepchenkova EI, Zadorsky SP, Shumega AR, Aksenova AY. Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification. Int J Mol Sci 2023; 24:11960. [PMID: 37569333 PMCID: PMC10419131 DOI: 10.3390/ijms241511960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
The yeast S. cerevisiae is a unique genetic object for which a wide range of relatively simple, inexpensive, and non-time-consuming methods have been developed that allow the performing of a wide variety of genome modifications. Among the latter, one can mention point mutations, disruptions and deletions of particular genes and regions of chromosomes, insertion of cassettes for the expression of heterologous genes, targeted chromosomal rearrangements such as translocations and inversions, directed changes in the karyotype (loss or duplication of particular chromosomes, changes in the level of ploidy), mating-type changes, etc. Classical yeast genome manipulations have been advanced with CRISPR/Cas9 technology in recent years that allow for the generation of multiple simultaneous changes in the yeast genome. In this review we discuss practical applications of both the classical yeast genome modification methods as well as CRISPR/Cas9 technology. In addition, we review methods for ploidy changes, including aneuploid generation, methods for mating type switching and directed DSB. Combined with a description of useful selective markers and transformation techniques, this work represents a nearly complete guide to yeast genome modification.
Collapse
Affiliation(s)
- Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Sergey P. Zadorsky
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Andrey R. Shumega
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
| | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
10
|
Abdullah M, Greco BM, Laurent JM, Garge RK, Boutz DR, Vandeloo M, Marcotte EM, Kachroo AH. Rapid, scalable, combinatorial genome engineering by marker-less enrichment and recombination of genetically engineered loci in yeast. CELL REPORTS METHODS 2023; 3:100464. [PMID: 37323580 PMCID: PMC10261898 DOI: 10.1016/j.crmeth.2023.100464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
A major challenge to rationally building multi-gene processes in yeast arises due to the combinatorics of combining all of the individual edits into the same strain. Here, we present a precise and multi-site genome editing approach that combines all edits without selection markers using CRISPR-Cas9. We demonstrate a highly efficient gene drive that selectively eliminates specific loci by integrating CRISPR-Cas9-mediated double-strand break (DSB) generation and homology-directed recombination with yeast sexual assortment. The method enables marker-less enrichment and recombination of genetically engineered loci (MERGE). We show that MERGE converts single heterologous loci to homozygous loci at ∼100% efficiency, independent of chromosomal location. Furthermore, MERGE is equally efficient at converting and combining multiple loci, thus identifying compatible genotypes. Finally, we establish MERGE proficiency by engineering a fungal carotenoid biosynthesis pathway and most of the human α-proteasome core into yeast. Therefore, MERGE lays the foundation for scalable, combinatorial genome editing in yeast.
Collapse
Affiliation(s)
- Mudabir Abdullah
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Brittany M. Greco
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Jon M. Laurent
- Institute of Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Riddhiman K. Garge
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R. Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michelle Vandeloo
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Edward M. Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Aashiq H. Kachroo
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| |
Collapse
|
11
|
Zhu MC, Cui YZ, Wang JY, Xu H, Li BZ, Yuan YJ. Cross-species microbial genome transfer: a Review. Front Bioeng Biotechnol 2023; 11:1183354. [PMID: 37214278 PMCID: PMC10194841 DOI: 10.3389/fbioe.2023.1183354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Synthetic biology combines the disciplines of biology, chemistry, information science, and engineering, and has multiple applications in biomedicine, bioenergy, environmental studies, and other fields. Synthetic genomics is an important area of synthetic biology, and mainly includes genome design, synthesis, assembly, and transfer. Genome transfer technology has played an enormous role in the development of synthetic genomics, allowing the transfer of natural or synthetic genomes into cellular environments where the genome can be easily modified. A more comprehensive understanding of genome transfer technology can help to extend its applications to other microorganisms. Here, we summarize the three host platforms for microbial genome transfer, review the recent advances that have been made in genome transfer technology, and discuss the obstacles and prospects for the development of genome transfer.
Collapse
|
12
|
Zhang H, Xiong Y, Xiao W, Wu Y. Investigation of Genome Biology by Synthetic Genome Engineering. Bioengineering (Basel) 2023; 10:271. [PMID: 36829765 PMCID: PMC9952402 DOI: 10.3390/bioengineering10020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Synthetic genomes were designed based on an understanding of natural genomic information, offering an opportunity to engineer and investigate biological systems on a genome-wide scale. Currently, the designer version of the M. mycoides genome and the E. coli genome, as well as most of the S. cerevisiae genome, have been synthesized, and through the cycles of design-build-test and the following engineering of synthetic genomes, many fundamental questions of genome biology have been investigated. In this review, we summarize the use of synthetic genome engineering to explore the structure and function of genomes, and highlight the unique values of synthetic genomics.
Collapse
Affiliation(s)
- Hui Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Verkuijl SAN, Gonzalez E, Li M, Ang JXD, Kandul NP, Anderson MAE, Akbari OS, Bonsall MB, Alphey L. A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias. Nat Commun 2022; 13:7145. [PMID: 36414618 PMCID: PMC9681865 DOI: 10.1038/s41467-022-34739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR/Cas gene drives can bias transgene inheritance through different mechanisms. Homing drives are designed to replace a wild-type allele with a copy of a drive element on the homologous chromosome. In Aedes aegypti, the sex-determining locus is closely linked to the white gene, which was previously used as a target for a homing drive element (wGDe). Here, through an analysis using this linkage we show that in males inheritance bias of wGDe did not occur by homing, rather through increased propagation of the donor drive element. We test the same wGDe drive element with transgenes expressing Cas9 with germline regulatory elements sds3, bgcn, and nup50. We only find inheritance bias through homing, even with the identical nup50-Cas9 transgene. We propose that DNA repair outcomes may be more context dependent than anticipated and that other previously reported homing drives may, in fact, bias their inheritance through other mechanisms.
Collapse
Affiliation(s)
- Sebald A N Verkuijl
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ming Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Nikolay P Kandul
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
14
|
Guo Z, Yin H, Ma L, Li J, Ma J, Wu Y, Yuan Y. Direct Transfer and Consolidation of Synthetic Yeast Chromosomes by Abortive Mating and Chromosome Elimination. ACS Synth Biol 2022; 11:3264-3272. [PMID: 36217876 DOI: 10.1021/acssynbio.2c00174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Large DNA transfer technology has been challenged with the rapid development of large DNA assembly technology. The research and application of synthetic yeast chromosomes have been mostly limited in the assembled host itself. The mutant of KAR1 prevents nuclear fusion during yeast mating, and occasionally single chromosome can be transferred from one parental nucleus to another. Using the kar1 mutant method, four synthetic yeast chromosomes of Sc2.0 (synIII, synV, synX, synXII) were transferred to wild-type yeasts separately. SynIII was also transferred into an industrial strain Y12, resulting in an improvement of thermotolerance. Moreover, by combining abortive mating and chromosome elimination by CRISPR-Cas9, which has been reported in our previous study, we developed a strategy for consolidation of multiple synthetic yeast chromosomes. Compared to the previous pyramidal strategy using endoreduplication backcross, our method is a linear process independent of meiosis, providing a convenient path for accelerating consolidation of Sc2.0 chromosomes. Overall, the method of transfer and consolidation of synthetic yeast chromosomes by abortive mating and chromosome elimination enables a novel route that large DNA was assembled in donor yeast and then in vivo directly transferred to receptor yeasts, enriching the manipulation tools for synthetic genomics.
Collapse
Affiliation(s)
- Zhou Guo
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongyi Yin
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lu Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jieyi Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiajun Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Jia B, Jin J, Han M, Li B, Yuan Y. Directed yeast genome evolution by controlled introduction of trans-chromosomic structural variations. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1703-1717. [PMID: 35633480 DOI: 10.1007/s11427-021-2084-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Naturally occurring structural variations (SVs) are a considerable source of genomic variation that can reshape the 3D architecture of chromosomes. Controllable methods aimed at introducing the complex SVs and their related molecular mechanisms have remained farfetched. In this study, an SV-prone yeast strain was developed using Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) technology with two synthetic chromosomes, namely synV and synX. The biosynthesis of astaxanthin is used as a readout and a proof of concept for the application of SVs in industries. Our findings showed that complex SVs, including a pericentric inversion and a trans-chromosome translocation between synV and synX, resulted in two neo-chromosomes and a 2.7-fold yield of astaxanthin. Also, genetic targets were mapped, which resulted in a higher astaxanthin yield, thus demonstrating the SVs' ability to reorganize genetic information along the chromosomes. The rational design of trans-chromosome translocation and pericentric inversion enabled precise induction of these phenomena. Collectively, this study provides an effective tool to not only accelerate the directed genome evolution but also to reveal the mechanistic insight of complex SVs for altering phenotypes.
Collapse
Affiliation(s)
- Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jin Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mingzhe Han
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingzhi Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
16
|
Artificial nondirectional site-specific recombination systems. iScience 2022; 25:103716. [PMID: 35072008 PMCID: PMC8762395 DOI: 10.1016/j.isci.2021.103716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/23/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Abstract
Site-specific recombination systems (SRSs) are widely used in studies on synthetic biology and related disciplines. Nondirectional SRSs can randomly trigger excision, integration, reversal, and translocation, which are effective tools to achieve large-scale genome recombination. In this study, we designed 6 new nondirectional SRSs named Vika/voxsym1-4 and Dre/roxsym1-2. All 6 artificial nondirectional SRSs were able to generate random deletion and inversion in Saccharomyces cerevisiae. Moreover, all six SRSs were orthogonal to Cre/loxPsym. The pairwise orthogonal nondirected SRSs can simultaneously initiate large-scale and independent gene recombination in two different regions of the genome, which could not be accomplished using previous orthogonal systems. These SRSs were found to be robust while working in the cells at different growth stages, as well as in the different spatial structure of the chromosome. These artificial pairwise orthogonal nondirected SRSs offer newfound potential for site-specific recombination in synthetic biology. Designed six new artificial nondirectional site-specific recombination systems Pairwise orthogonal nondirected recombination systems in yeast The deletion efficiency of systems is far greater than the inversion efficiency These nondirectional recombination systems were found to be robust
Collapse
|
17
|
Liao B, Chen X, Zhou X, Zhou Y, Shi Y, Ye X, Liao M, Zhou Z, Cheng L, Ren B. Applications of CRISPR/Cas gene-editing technology in yeast and fungi. Arch Microbiol 2021; 204:79. [DOI: 10.1007/s00203-021-02723-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
|
18
|
Microbial cell factories for the production of polyhydroxyalkanoates. Essays Biochem 2021; 65:337-353. [PMID: 34132340 DOI: 10.1042/ebc20200142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Pollution caused by persistent petro-plastics is the most pressing problem currently, with 8 million tons of plastic waste dumped annually in the oceans. Plastic waste management is not systematized in many countries, because it is laborious and expensive with secondary pollution hazards. Bioplastics, synthesized by microorganisms, are viable alternatives to petrochemical-based thermoplastics due to their biodegradable nature. Polyhydroxyalkanoates (PHAs) are a structurally and functionally diverse group of storage polymers synthesized by many microorganisms, including bacteria and Archaea. Some of the most important PHA accumulating bacteria include Cupriavidus necator, Burkholderia sacchari, Pseudomonas sp., Bacillus sp., recombinant Escherichia coli, and certain halophilic extremophiles. PHAs are synthesized by specialized PHA polymerases with assorted monomers derived from the cellular metabolite pool. In the natural cycle of cellular growth, PHAs are depolymerized by the native host for carbon and energy. The presence of these microbial PHA depolymerases in natural niches is responsible for the degradation of bioplastics. Polyhydroxybutyrate (PHB) is the most common PHA with desirable thermoplastic-like properties. PHAs have widespread applications in various industries including biomedicine, fine chemicals production, drug delivery, packaging, and agriculture. This review provides the updated knowledge on the metabolic pathways for PHAs synthesis in bacteria, and the major microbial hosts for PHAs production. Yeasts are presented as a potential candidate for industrial PHAs production, with their high amenability to genetic engineering and the availability of industrial-scale technology. The major bottlenecks in the commercialization of PHAs as an alternative for plastics and future perspectives are also critically discussed.
Collapse
|
19
|
Schindler D. Genetic Engineering and Synthetic Genomics in Yeast to Understand Life and Boost Biotechnology. Bioengineering (Basel) 2020; 7:E137. [PMID: 33138080 PMCID: PMC7711850 DOI: 10.3390/bioengineering7040137] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The field of genetic engineering was born in 1973 with the "construction of biologically functional bacterial plasmids in vitro". Since then, a vast number of technologies have been developed allowing large-scale reading and writing of DNA, as well as tools for complex modifications and alterations of the genetic code. Natural genomes can be seen as software version 1.0; synthetic genomics aims to rewrite this software with "build to understand" and "build to apply" philosophies. One of the predominant model organisms is the baker's yeast Saccharomyces cerevisiae. Its importance ranges from ancient biotechnologies such as baking and brewing, to high-end valuable compound synthesis on industrial scales. This tiny sugar fungus contributed greatly to enabling humankind to reach its current development status. This review discusses recent developments in the field of genetic engineering for budding yeast S. cerevisiae, and its application in biotechnology. The article highlights advances from Sc1.0 to the developments in synthetic genomics paving the way towards Sc2.0. With the synthetic genome of Sc2.0 nearing completion, the article also aims to propose perspectives for potential Sc3.0 and subsequent versions as well as its implications for basic and applied research.
Collapse
Affiliation(s)
- Daniel Schindler
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany; ; Tel.: +49-6421-178533
| |
Collapse
|