1
|
Diokmetzidou A, Scorrano L. Mitochondria-membranous organelle contacts at a glance. J Cell Sci 2025; 138:jcs263895. [PMID: 40357586 DOI: 10.1242/jcs.263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial contact sites are specialized interfaces where mitochondria physically interact with other organelles. Stabilized by molecular tethers and defined by unique proteomic and lipidomic profiles, these sites enable direct interorganellar communication and functional coordination, playing crucial roles in cellular physiology and homeostasis. Recent advances have expanded our knowledge of contact site-resident proteins, illuminated the dynamic and adaptive nature of these interfaces, and clarified their contribution to pathophysiology. In this Cell Science at a Glance article and the accompanying poster, we summarize the mitochondrial contacts that have been characterized in mammals, the molecular mechanisms underlying their formation, and their principal functions.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
2
|
Thakur RS, O'Connor-Giles KM. PDZD8 promotes autophagy at ER-lysosome membrane contact sites to regulate activity-dependent synaptic growth. Cell Rep 2025; 44:115483. [PMID: 40156832 DOI: 10.1016/j.celrep.2025.115483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/07/2025] [Accepted: 03/07/2025] [Indexed: 04/01/2025] Open
Abstract
Building synaptic connections requires coordinating a host of cellular activities from cell signaling to protein turnover, placing a high demand on intracellular communication. Membrane contact sites (MCSs) formed between organelles have emerged as key signaling hubs for coordinating diverse cellular activities, yet their roles in the developing nervous system remain obscure. We investigate the in vivo function of the endoplasmic reticulum (ER) MCS tethering and lipid-transfer protein PDZD8, which was recently linked to intellectual disability, in the nervous system. We find that PDZD8 is required for activity-dependent synaptic bouton formation in multiple paradigms. PDZD8 is sufficient to drive excess synaptic bouton formation through an autophagy-dependent mechanism and required for synapse development when autophagy is limited. PDZD8 accelerates autophagic flux by promoting lysosome maturation at ER-late endosome/lysosome MCSs. We propose that PDZD8 functions in the nervous system to increase autophagy during periods of high demand, including activity-dependent synaptic growth.
Collapse
Affiliation(s)
- Rajan S Thakur
- Department of Neuroscience, Brown University, Providence, RI, USA.
| | - Kate M O'Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA; Carney Institute for Brain Science, Providence, RI, USA.
| |
Collapse
|
3
|
Nakamura K, Aoyama-Ishiwatari S, Nagao T, Paaran M, Obara CJ, Sakurai-Saito Y, Johnston J, Du Y, Suga S, Tsuboi M, Nakakido M, Tsumoto K, Kishi Y, Gotoh Y, Kwak C, Rhee HW, Seo JK, Kosako H, Potter C, Carragher B, Lippincott-Schwartz J, Polleux F, Hirabayashi Y. Mitochondrial complexity is regulated at ER-mitochondria contact sites via PDZD8-FKBP8 tethering. Nat Commun 2025; 16:3401. [PMID: 40246839 PMCID: PMC12006300 DOI: 10.1038/s41467-025-58538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identify the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-electron tomography, and correlative light-electron microscopy. Single molecule tracking reveals highly dynamic diffusion properties of PDZD8 along the ER membrane with significant pauses and captures at MERCS. Overexpression of FKBP8 is sufficient to narrow the ER-OMM distance, whereas independent versus combined deletions of these two proteins demonstrate their interdependence for MERCS formation. Furthermore, PDZD8 enhances mitochondrial complexity in a FKBP8-dependent manner. Our results identify a novel ER-mitochondria tethering complex that regulates mitochondrial morphology in mammalian cells.
Collapse
Affiliation(s)
- Koki Nakamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Saeko Aoyama-Ishiwatari
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Takahiro Nagao
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Mohammadreza Paaran
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA, USA
| | - Christopher J Obara
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Yui Sakurai-Saito
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Jake Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Columbia University Medical Center, New York, NY, 10032, USA
| | - Yudan Du
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shogo Suga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Masafumi Tsuboi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Makoto Nakakido
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Hyun-Woo Rhee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Kon Seo
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Clint Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA, USA
| | | | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
4
|
Guyard V, Giordano F. Three's company: Membrane waltz among organelles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149555. [PMID: 40180296 DOI: 10.1016/j.bbabio.2025.149555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
The study of membrane contact sites (MCS) has profoundly transformed our understanding of inter-organelle communication. These sites, where the membranes of two organelles are closely apposed, facilitate the transfer of small molecules such as lipids and ions. They are especially crucial for the maintenance of the structure and function of organelles like mitochondria and lipid droplets, which are largely excluded from vesicular trafficking. The significant advancements in imaging techniques, and molecular and cell biology research have shown that MCS are more complex than what originally thought and can involve more than two organelles. This has revealed the intricate nature and critical importance of these subcellular connections. Here, we provide an overview of newly described three-way inter-organelles associations, and the proteins involved in these MCS. We highlight the roles these contacts play in key cellular processes such as lipid droplet biogenesis and mitochondrial division. Additionally, we discuss the latest advances in super-resolution imaging that enable the study of these complex three-way interactions. Ongoing research, driven by technological innovations, promises to uncover further insights into their roles in fundamental cellular processes and their implications for health and disease.
Collapse
Affiliation(s)
- Valentin Guyard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; Inserm U1280, Gif-sur-Yvette cedex 91198, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; Inserm U1280, Gif-sur-Yvette cedex 91198, France.
| |
Collapse
|
5
|
Pantiru AD, Van de Sompele S, Ligneul C, Chatelain C, Barrea C, Lerch JP, Filippi BM, Alkan S, De Baere E, Johnston J, Clapcote SJ. Autistic behavior is a common outcome of biallelic disruption of PDZD8 in humans and mice. Mol Autism 2025; 16:14. [PMID: 40016860 PMCID: PMC11866840 DOI: 10.1186/s13229-025-00650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Intellectual developmental disorder with autism and dysmorphic facies (IDDADF) is a rare syndromic intellectual disability (ID) caused by homozygous disruption of PDZD8 (PDZ domain-containing protein 8), an integral endoplasmic reticulum (ER) protein. All four previously identified IDDADF cases exhibit autistic behavior, with autism spectrum disorder (ASD) diagnosed in three cases. To determine whether autistic behavior is a common outcome of PDZD8 disruption, we studied a third family with biallelic mutation of PDZD8 (family C) and further characterized PDZD8-deficient (Pdzd8tm1b) mice that exhibit stereotyped motor behavior relevant to ASD. METHODS Homozygosity mapping, whole-exome sequencing, and cosegregation analysis were used to identify the PDZD8 variant responsible for IDDADF, including diagnoses of ASD, in consanguineous family C. To assess the in vivo effect of PDZD8 disruption on social responses and related phenotypes, behavioral, structural magnetic resonance imaging, and microscopy analyses were conducted on the Pdzd8tm1b mouse line. Metabolic activity was profiled using sealed metabolic cages. RESULTS The discovery of a third family with IDDADF caused by biallelic disruption of PDZD8 permitted identification of a core clinical phenotype consisting of developmental delay, ID, autism, and facial dysmorphism. In addition to impairments in social recognition and social odor discrimination, Pdzd8tm1b mice exhibit increases in locomotor activity (dark phase only) and metabolic rate (both lights-on and dark phases), and decreased plasma triglyceride in males. In the brain, Pdzd8tm1b mice exhibit increased levels of accessory olfactory bulb volume, primary olfactory cortex volume, dendritic spine density, and ER stress- and mitochondrial fusion-related transcripts, as well as decreased levels of cerebellar nuclei volume and adult neurogenesis. LIMITATIONS The total number of known cases of PDZD8-related IDDADF remains low. Some mouse experiments in the study did not use balanced numbers of males and females. The assessment of ER stress and mitochondrial fusion markers did not extend beyond mRNA levels. CONCLUSIONS Our finding that the Pdzd8tm1b mouse model and all six known cases of IDDADF exhibit autistic behavior, with ASD diagnosed in five cases, identifies this trait as a common outcome of biallelic disruption of PDZD8 in humans and mice. Other abnormalities exhibited by Pdzd8tm1b mice suggest that the range of comorbidities associated with PDZD8 deficiency may be wider than presently recognized.
Collapse
Affiliation(s)
- Andreea D Pantiru
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Division of Neuroscience, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Stijn Van de Sompele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Clemence Ligneul
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3SR, UK
| | - Camille Chatelain
- Department of Human Genetics, University Hospital of Liege, Liege, Belgium
| | - Christophe Barrea
- Autism Resource Centre of Liege, University of Liege, Liege, Belgium
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3SR, UK
| | | | - Serpil Alkan
- Department of Human Genetics, University Hospital of Liege, Liege, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jamie Johnston
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
6
|
Liu Y, Wei Y, Jin X, Cai H, Chen Q, Zhang X. PDZD8 Augments Endoplasmic Reticulum-Mitochondria Contact and Regulates Ca2+ Dynamics and Cypd Expression to Induce Pancreatic β-Cell Death during Diabetes. Diabetes Metab J 2024; 48:1058-1072. [PMID: 39069376 PMCID: PMC11621647 DOI: 10.4093/dmj.2023.0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/26/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGRUOUND Diabetes mellitus (DM) is a chronic metabolic disease that poses serious threats to human physical and mental health worldwide. The PDZ domain-containing 8 (PDZD8) protein mediates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) formation in mammals. We explored the role of PDZD8 in DM and investigated its potential mechanism of action. METHODS High-fat diet (HFD)- and streptozotocin-induced mouse DM and palmitic acid (PA)-induced insulin 1 (INS-1) cell models were constructed. PDZD8 expression was detected using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. MAM formation, interactions between voltage-dependent anion-selective channel 1 (VDAC1) and inositol 1,4,5-triphosphate receptor type 1 (IP3R1), pancreatic β-cell apoptosis and proliferation were detected using transmission electron microscopy (TEM), proximity ligation assay (PLA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, immunofluorescence staining, and Western blotting. The mitochondrial membrane potential, cell apoptosis, cytotoxicity, and subcellular Ca2+ localization in INS-1 cells were detected using a JC-1 probe, flow cytometry, and an lactate dehydrogenase kit. RESULTS PDZD8 expression was up-regulated in the islets of HFD mice and PA-treated pancreatic β-cells. PDZD8 knockdown markedly shortened MAM perimeter, suppressed the expression of MAM-related proteins IP3R1, glucose-regulated protein 75 (GRP75), and VDAC1, inhibited the interaction between VDAC1 and IP3R1, alleviated mitochondrial dysfunction and ER stress, reduced the expression of ER stress-related proteins, and decreased apoptosis while increased proliferation of pancreatic β-cells. Additionally, PDZD8 knockdown alleviated Ca2+ flow into the mitochondria and decreased cyclophilin D (Cypd) expression. Cypd overexpression alleviated the promoting effect of PDZD8 knockdown on the apoptosis of β-cells. CONCLUSION PDZD8 knockdown inhibited pancreatic β-cell death in DM by alleviated ER-mitochondria contact and the flow of Ca2+ into the mitochondria.
Collapse
Affiliation(s)
- Yongxin Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yongqing Wei
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaolong Jin
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyu Cai
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qianqian Chen
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Shirane M. Pathogenic contribution of cholesteryl ester accumulation in the brain to neurodegenerative disorders. Neural Regen Res 2024; 19:2099-2100. [PMID: 38488537 PMCID: PMC11034598 DOI: 10.4103/1673-5374.392878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 04/24/2024] Open
Affiliation(s)
- Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
8
|
Kuijpers M, Nguyen PT, Haucke V. The Endoplasmic Reticulum and Its Contacts: Emerging Roles in Axon Development, Neurotransmission, and Degeneration. Neuroscientist 2024; 30:545-559. [PMID: 36960757 PMCID: PMC11420577 DOI: 10.1177/10738584231162810] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The neuronal endoplasmic reticulum (ER) consists of a dynamic, tubular network that extends all the way from the soma into dendrites, axons, and synapses. This morphology gives rise to an enormous membrane surface area that, through the presence of tethering proteins, lipid transfer proteins, and ion channels, plays critical roles in local calcium regulation, membrane dynamics, and the supply of ions and lipids to other organelles. Here, we summarize recent advances that highlight the various roles of the neuronal ER in axonal growth, repair, and presynaptic function. We review the variety of contact sites between the ER and other axonal organelles and describe their influence on neurodevelopment and neurotransmission.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Phuong T Nguyen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| |
Collapse
|
9
|
Hasegawa S, Nangaku M, Takenaka Y, Kitayama C, Li Q, Saipidin M, Hong YA, Shang J, Hirabayashi Y, Kubota N, Kadowaki T, Inagi R. Organelle communication maintains mitochondrial and endosomal homeostasis during podocyte lipotoxicity. JCI Insight 2024; 9:e182534. [PMID: 39115943 PMCID: PMC11457848 DOI: 10.1172/jci.insight.182534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Organelle stress exacerbates podocyte injury, contributing to perturbed lipid metabolism. Simultaneous organelle stresses can occur in the kidney in the diseased state; therefore, a thorough analysis of organelle communication is crucial for understanding the progression of kidney diseases. Although organelles closely interact with one another at membrane contact sites, limited studies have explored their involvement in kidney homeostasis. The endoplasmic reticulum (ER) protein, PDZ domain-containing 8 (PDZD8), is implicated in multiple-organelle-tethering processes and cellular lipid homeostasis. In this study, we aimed to elucidate the role of organelle communication in podocyte injury using podocyte-specific Pdzd8-knockout mice. Our findings demonstrated that Pdzd8 deletion exacerbated podocyte injury in an accelerated obesity-related kidney disease model. Proteomic analysis of isolated glomeruli revealed that Pdzd8 deletion exacerbated mitochondrial and endosomal dysfunction during podocyte lipotoxicity. Additionally, electron microscopy revealed the accumulation of abnormal, fatty endosomes in Pdzd8-deficient podocytes during obesity-related kidney diseases. Lipidomic analysis indicated that glucosylceramide accumulated in Pdzd8-deficient podocytes, owing to accelerated production and decelerated degradation. Thus, the organelle-tethering factor, PDZD8, plays a crucial role in maintaining mitochondrial and endosomal homeostasis during podocyte lipotoxicity. Collectively, our findings highlight the importance of organelle communication at the 3-way junction among the ER, mitochondria, and endosomes in preserving podocyte homeostasis.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuto Takenaka
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chigusa Kitayama
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Qi Li
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Madina Saipidin
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Ah Hong
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jin Shang
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
- Department of Diabetes and Metabolic Diseases, and
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, and
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology and
| |
Collapse
|
10
|
Nakamura K, Aoyama-Ishiwatari S, Nagao T, Paaran M, Obara CJ, Sakurai-Saito Y, Johnston J, Du Y, Suga S, Tsuboi M, Nakakido M, Tsumoto K, Kishi Y, Gotoh Y, Kwak C, Rhee HW, Seo JK, Kosako H, Potter C, Carragher B, Lippincott-Schwartz J, Polleux F, Hirabayashi Y. PDZD8-FKBP8 tethering complex at ER-mitochondria contact sites regulates mitochondrial complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554218. [PMID: 38895210 PMCID: PMC11185567 DOI: 10.1101/2023.08.22.554218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identified the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-Electron Microscopy (Cryo-EM) tomography, and correlative light-EM (CLEM). Single molecule tracking revealed highly dynamic diffusion properties of PDZD8 along the ER membrane with significant pauses and capture at MERCS. Overexpression of FKBP8 was sufficient to narrow the ER-OMM distance, whereas independent versus combined deletions of these two proteins demonstrated their interdependence for MERCS formation. Furthermore, PDZD8 enhances mitochondrial complexity in a FKBP8-dependent manner. Our results identify a novel ER-mitochondria tethering complex that regulates mitochondrial morphology in mammalian cells.
Collapse
|
11
|
Lee J, Pye N, Ellis L, Vos KD, Mortiboys H. Evidence of mitochondrial dysfunction in ALS and methods for measuring in model systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:269-325. [PMID: 38802177 DOI: 10.1016/bs.irn.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.
Collapse
Affiliation(s)
- James Lee
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Pye
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ellis
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Kurt De Vos
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
12
|
Wang Y, Yang J. ER-organelle contacts: A signaling hub for neurological diseases. Pharmacol Res 2024; 203:107149. [PMID: 38518830 DOI: 10.1016/j.phrs.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
13
|
Luo D, Ottesen E, Lee JH, Singh R. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. RESEARCH SQUARE 2024:rs.3.rs-3818622. [PMID: 38464174 PMCID: PMC10925445 DOI: 10.21203/rs.3.rs-3818622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2, produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4,172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/SMN2. These fifindings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/SMN2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/SMN2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, a universally expressed circRNA produced by SMN1/SMN2.
Collapse
|
14
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
15
|
Makio T, Simmen T. Not So Rare: Diseases Based on Mutant Proteins Controlling Endoplasmic Reticulum-Mitochondria Contact (MERC) Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241261228. [PMID: 39070058 PMCID: PMC11273598 DOI: 10.1177/25152564241261228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs), also called endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS), are the membrane domains, where these two organelles exchange lipids, Ca2+ ions, and reactive oxygen species. This crosstalk is a major determinant of cell metabolism, since it allows the ER to control mitochondrial oxidative phosphorylation and the Krebs cycle, while conversely, it allows the mitochondria to provide sufficient ATP to control ER proteostasis. MERC metabolic signaling is under the control of tethers and a multitude of regulatory proteins. Many of these proteins have recently been discovered to give rise to rare diseases if their genes are mutated. Surprisingly, these diseases share important hallmarks and cause neurological defects, sometimes paired with, or replaced by skeletal muscle deficiency. Typical symptoms include developmental delay, intellectual disability, facial dysmorphism and ophthalmologic defects. Seizures, epilepsy, deafness, ataxia, or peripheral neuropathy can also occur upon mutation of a MERC protein. Given that most MERC tethers and regulatory proteins have secondary functions, some MERC protein-based diseases do not fit into this categorization. Typically, however, the proteins affected in those diseases have dominant functions unrelated to their roles in MERCs tethering or their regulation. We are discussing avenues to pharmacologically target genetic diseases leading to MERC defects, based on our novel insight that MERC defects lead to common characteristics in rare diseases. These shared characteristics of MERCs disorders raise the hope that they may allow for similar treatment options.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Hu X, Cai Y, Ji WK. Recent Advances on Synaptotagmin-Like Mitochondrial-Lipid Binding Protein Domain Containing Lipid Transfer Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241273646. [PMID: 39139576 PMCID: PMC11320393 DOI: 10.1177/25152564241273646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
The Synaptotagmin-like mitochondrial-lipid binding protein (SMP) domain is found in a group of ER-resident lipid transfer proteins that are recruited to membrane contact sites (MCSs) by adaptors. Deciphering the molecular basis underlying the recruitment of SMP proteins to specific MCS sheds light not only on their cellular localization but also on their biological functions at these sites. Here we summarize recent advances in SMP domain-containing lipid transfer proteins, focusing on a recent study showing the localization, regulation and cellular function of a specific SMP protein named testis expressed protein 2 (Tex2). TMEM55, a potential PIP phosphatase on late endosome/lysosomal (LE/lys) membranes, was identified as an adaptor that enables the recruitment of Tex2 to ER- LE/lys MCS. In addition, we have summarized several important questions about the regulation and physiological functions of Tex2 that remained unanswered.
Collapse
Affiliation(s)
- Xuewen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yirui Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center; Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
17
|
Janer A, Morris JL, Krols M, Antonicka H, Aaltonen MJ, Lin ZY, Anand H, Gingras AC, Prudent J, Shoubridge EA. ESYT1 tethers the ER to mitochondria and is required for mitochondrial lipid and calcium homeostasis. Life Sci Alliance 2024; 7:e202302335. [PMID: 37931956 PMCID: PMC10627786 DOI: 10.26508/lsa.202302335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.
Collapse
Affiliation(s)
- Alexandre Janer
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michiel Krols
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Hana Antonicka
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari J Aaltonen
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hanish Anand
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
18
|
Thakur RS, O’Connor-Giles KM. PDZD8 promotes autophagy at ER-Lysosome contact sites to regulate synaptogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564828. [PMID: 37961523 PMCID: PMC10634952 DOI: 10.1101/2023.10.30.564828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Building synaptic connections, which are often far from the soma, requires coordinating a host of cellular activities from transcription to protein turnover, placing a high demand on intracellular communication. Membrane contact sites (MCSs) formed between cellular organelles have emerged as key signaling hubs for coordinating an array of cellular activities. We have found that the endoplasmic reticulum (ER) MCS tethering protein PDZD8 is required for activity-dependent synaptogenesis. PDZD8 is sufficient to drive ectopic synaptic bouton formation through an autophagy-dependent mechanism and required for basal synapse formation when autophagy biogenesis is limited. PDZD8 functions at ER-late endosome/lysosome (LEL) MCSs to promote lysosome maturation and accelerate autophagic flux. Mutational analysis of PDZD8's SMP domain further suggests a role for lipid transfer at ER-LEL MCSs. We propose that PDZD8-dependent lipid transfer from ER to LELs promotes lysosome maturation to increase autophagic flux during periods of high demand, including activity-dependent synapse formation.
Collapse
Affiliation(s)
- Rajan S. Thakur
- Department of Neuroscience, Brown University, Providence, RI
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI
- Carney Institute for Brain Science, Providence, RI
| |
Collapse
|
19
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
20
|
Ding K, Xu Q, Zhang X, Liu S. Metabolomic insights into neurological effects of BDE-47 exposure in the sea cucumber Apostichopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115558. [PMID: 37820477 DOI: 10.1016/j.ecoenv.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The persistent organic pollutant 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a prevalent congener among polybrominated diphenyl ethers (PBDEs), exhibits potent bioaccumulation and toxicity. Despite extensive research into the adverse effects of BDE-47, its neurotoxicity in sea cucumbers remains unexplored. Given the crucial role of the sea cucumber's nervous system in survival and adaptation, evaluating the impacts of BDE-47 is vital for sustainable aquaculture and consumption. In this study, we employed ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS) to analyze metabolomic changes in neuro-related tissues of Apostichopus japonicus exposed to low (0.1 µg/L), medium (1.0 µg/L), and high (10.0 µg/L) BDE-47 concentrations. We identified significantly changed metabolites in each exposure group (87 in low, 79 in medium, and 102 in high), affecting a variety of physiological processes such as steroid hormone balance, nucleotide metabolism, energy metabolism, neurotransmitter levels, and neuroprotection. In addition, we identified concentration-dependent, common, and some other metabolic responses in the neuro-related tissues. Our findings reveal critical insights into the neurotoxic effects of BDE-47 in sea cucumbers and contribute to risk assessment related to BDE-47 exposure in the sea cucumber industry, paving the way for future neurotoxicological research in invertebrates.
Collapse
Affiliation(s)
- Kui Ding
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
21
|
Dridi H, Santulli G, Bahlouli L, Miotto MC, Weninger G, Marks AR. Mitochondrial Calcium Overload Plays a Causal Role in Oxidative Stress in the Failing Heart. Biomolecules 2023; 13:1409. [PMID: 37759809 PMCID: PMC10527470 DOI: 10.3390/biom13091409] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Heart failure is a serious global health challenge, affecting more than 6.2 million people in the United States and is projected to reach over 8 million by 2030. Independent of etiology, failing hearts share common features, including defective calcium (Ca2+) handling, mitochondrial Ca2+ overload, and oxidative stress. In cardiomyocytes, Ca2+ not only regulates excitation-contraction coupling, but also mitochondrial metabolism and oxidative stress signaling, thereby controlling the function and actual destiny of the cell. Understanding the mechanisms of mitochondrial Ca2+ uptake and the molecular pathways involved in the regulation of increased mitochondrial Ca2+ influx is an ongoing challenge in order to identify novel therapeutic targets to alleviate the burden of heart failure. In this review, we discuss the mechanisms underlying altered mitochondrial Ca2+ handling in heart failure and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Laith Bahlouli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| |
Collapse
|
22
|
Rühmkorf A, Harbauer AB. Role of Mitochondria-ER Contact Sites in Mitophagy. Biomolecules 2023; 13:1198. [PMID: 37627263 PMCID: PMC10452924 DOI: 10.3390/biom13081198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondria are often referred to as the "powerhouse" of the cell. However, this organelle has many more functions than simply satisfying the cells' metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these functions require contact with the ER, which is mediated by several tether proteins located on the respective organellar surfaces, enabling the formation of mitochondria-ER contact sites (MERCS). Upon damage, mitochondria produce reactive oxygen species (ROS) that can harm the surrounding cell. To circumvent toxicity and to maintain a functional pool of healthy organelles, damaged and excess mitochondria can be targeted for degradation via mitophagy, a form of selective autophagy. Defects in mitochondria-ER tethers and the accumulation of damaged mitochondria are found in several neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis, which argues that the interplay between the two organelles is vital for neuronal health. This review provides an overview of the different mechanisms of mitochondrial quality control that are implicated with the different mitochondria-ER tether proteins, and also provides a novel perspective on how MERCS are involved in mediating mitophagy upon mitochondrial damage.
Collapse
Affiliation(s)
- Alina Rühmkorf
- TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, 82152 Planegg-Martinsried, Germany
| | - Angelika Bettina Harbauer
- Max Planck Institute for Biological Intelligence, 82152 Planegg-Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| |
Collapse
|
23
|
Guillén-Samander A, De Camilli P. Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration. Cold Spring Harb Perspect Biol 2023; 15:a041257. [PMID: 36123033 PMCID: PMC10071438 DOI: 10.1101/cshperspect.a041257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Endoplasmic Reticulum (ER) is an endomembrane system that plays a multiplicity of roles in cell physiology and populates even the most distal cell compartments, including dendritic tips and axon terminals of neurons. Some of its functions are achieved by a cross talk with other intracellular membranous organelles and with the plasma membrane at membrane contacts sites (MCSs). As the ER synthesizes most membrane lipids, lipid exchanges mediated by lipid transfer proteins at MCSs are a particularly important aspect of this cross talk, which synergizes with the cross talk mediated by vesicular transport. Several mutations of genes that encode proteins localized at ER MCSs result in familial neurodegenerative diseases, emphasizing the importance of the normal lipid traffic within cells for a healthy brain. Here, we provide an overview of such diseases, with a specific focus on proteins that directly or indirectly impact lipid transport.
Collapse
Affiliation(s)
- Andrés Guillén-Samander
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Pietro De Camilli
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
24
|
Overduin M, Kervin TA, Klarenbach Z, Adra TRC, Bhat RK. Comprehensive classification of proteins based on structures that engage lipids by COMPOSEL. Biophys Chem 2023; 295:106971. [PMID: 36801589 DOI: 10.1016/j.bpc.2023.106971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Structures can now be predicted for any protein using programs like AlphaFold and Rosetta, which rely on a foundation of experimentally determined structures of architecturally diverse proteins. The accuracy of such artificial intelligence and machine learning (AI/ML) approaches benefits from the specification of restraints which assist in navigating the universe of folds to converge on models most representative of a given protein's physiological structure. This is especially pertinent for membrane proteins, with structures and functions that depend on their presence in lipid bilayers. Structures of proteins in their membrane environments could conceivably be predicted from AI/ML approaches with user-specificized parameters that describe each element of the architecture of a membrane protein accompanied by its lipid environment. We propose the Classification Of Membrane Proteins based On Structures Engaging Lipids (COMPOSEL), which builds on existing nomenclature types for monotopic, bitopic, polytopic and peripheral membrane proteins as well as lipids. Functional and regulatory elements are also defined in the scripts, as shown with membrane fusing synaptotagmins, multidomain PDZD8 and Protrudin proteins that recognize phosphoinositide (PI) lipids, the intrinsically disordered MARCKS protein, caveolins, the β barrel assembly machine (BAM), an adhesion G-protein coupled receptor (aGPCR) and two lipid modifying enzymes - diacylglycerol kinase DGKε and fatty aldehyde dehydrogenase FALDH. This demonstrates how COMPOSEL communicates lipid interactivity as well as signaling mechanisms and binding of metabolites, drug molecules, polypeptides or nucleic acids to describe the operations of any protein. Moreover COMPOSEL can be scaled to express how genomes encode membrane structures and how our organs are infiltrated by pathogens such as SARS-CoV-2.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Trixie Rae C Adra
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Rakesh K Bhat
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Wang Y, Li Z, Wang X, Zhao Z, Jiao L, Liu R, Wang K, Ma R, Yang Y, Chen G, Wang Y, Bian X. Insights into membrane association of the SMP domain of extended synaptotagmin. Nat Commun 2023; 14:1504. [PMID: 36932127 PMCID: PMC10023780 DOI: 10.1038/s41467-023-37202-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
The Synaptotagmin-like Mitochondrial-lipid-binding Protein (SMP) domain is a newly identified lipid transfer module present in proteins that regulate lipid homeostasis at membrane contact sites (MCSs). However, how the SMP domain associates with the membrane to extract and unload lipids is unclear. Here, we performed in vitro DNA brick-assisted lipid transfer assays and in silico molecular dynamics simulations to investigate the molecular basis of the membrane association by the SMP domain of extended synaptotagmin (E-Syt), which tethers the tubular endoplasmic reticulum (ER) to the plasma membrane (PM). We demonstrate that the SMP domain uses its tip region to recognize the extremely curved subdomain of tubular ER and the acidic-lipid-enriched PM for highly efficient lipid transfer. Supporting these findings, disruption of these mechanisms results in a defect in autophagosome biogenesis contributed by E-Syt. Our results suggest a model that provides a coherent picture of the action of the SMP domain at MCSs.
Collapse
Affiliation(s)
- Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Zhenni Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Xinyu Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyuan Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Li Jiao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ruming Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Keying Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rui Ma
- College of Physical Science and Technology, Xiamen University, Xiamen, China
| | - Yang Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China.
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
| |
Collapse
|
26
|
Ling M, Tang C, Yang X, Yu N, Song Y, Ding W, Sun Y, Yan R, Wang S, Li X, Gao H, Zhang Z, Xing Y. Integrated metabolomics and phosphoproteomics reveal the protective role of exosomes from human umbilical cord mesenchymal stem cells in naturally aging mouse livers. Exp Cell Res 2023; 427:113566. [PMID: 37004949 DOI: 10.1016/j.yexcr.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Aging is characterized by a general decline in cellular function, which ultimately affects whole body homeostasis. This study aimed to investigate the effects and underlying mechanisms of exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-exos) on the livers of naturally aging mice. METHOD Twenty-two-month-old C57BL6 mice were used as a natural aging animal model, divided into a saline-treated wild-type aged control group (WT-AC) and a hUCMSC-exo-treated group (WT-AEX), and then detected by morphology, metabolomics and phosphoproteomics. RESULTS Morphological analysis showed that hUCMSC-exos ameliorated structural disorder and decreased markers of senescence and genome instability in aging livers. Metabolomics showed that hUCMSC-exos decreased the contents of saturated glycerophospholipids, palmitoyl-glycerols and eicosanoid derivatives associated with lipotoxicity and inflammation, consistent with the decreased phosphorylation of metabolic enzymes, such as propionate-CoA ligase (Acss2), at S267 detected by phosphoproteomics. Moreover, phosphoproteomics indicated that hUCMSC-exos reduced the phosphorylation of proteins participating in nuclear transport and cancer signaling, such as heat shock protein HSP90-beta (Hsp90ab1) at S226 and nucleoprotein TPR (Tpr) at S453 and S379, while increasing those involved in intracellular communication, such as calnexin (Canx) at S563 and PDZ domain-containing protein 8 (Pdzd8). Finally, phosphorylated HSP90β and Tpr were verified predominantly in hepatocytes. CONCLUSION HUCMSC-exos improved metabolic reprogramming and genome stability mainly associated with phosphorylated HSP90β in hepatocytes in natural aging livers. This work provides a comprehensive resource of biological data by omics to support future investigations of hUCMSC-exos in aging.
Collapse
Affiliation(s)
- Mingying Ling
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Congmin Tang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Xuechun Yang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, 250101, Jinan, Shandong, China; College of Clinical Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Yiping Song
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Wenjing Ding
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Yan Sun
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Rong Yan
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Shaopeng Wang
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, 250101, Jinan, Shandong, China
| | - Xuehui Li
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Yanqiu Xing
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
27
|
Kurihara Y, Mitsunari K, Mukae N, Shoji H, Miyakawa T, Shirane M. PDZD8-deficient mice manifest behavioral abnormalities related to emotion, cognition, and adaptation due to dyslipidemia in the brain. Mol Brain 2023; 16:11. [PMID: 36658656 PMCID: PMC9854033 DOI: 10.1186/s13041-023-01002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Although dyslipidemia in the brain has been implicated in neurodegenerative disorders, the molecular mechanisms underlying its pathogenesis have been largely unclear. PDZD8 is a lipid transfer protein and mice deficient in PDZD8 (PDZD8-KO mice) manifest abnormal accumulation of cholesteryl esters (CEs) in the brain due to impaired lipophagy, the degradation system of lipid droplets. Here we show the detailed mechanism of PDZD8-dependent lipophagy. PDZD8 transports cholesterol to lipid droplets (LDs), and eventually promotes fusion of LDs and lysosomes. In addition, PDZD8-KO mice exhibit growth retardation, hyperactivity, reduced anxiety and fear, increased sensorimotor gating, and impaired cued fear conditioned memory and working memory. These results indicate that abnormal CE accumulation in the brain caused by PDZD8 deficiency affects emotion, cognition and adaptive behavior, and that PDZD8 plays an important role in the maintenance of brain function through lipid metabolism.
Collapse
Affiliation(s)
- Yuji Kurihara
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Kotone Mitsunari
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Nagi Mukae
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Hirotaka Shoji
- grid.256115.40000 0004 1761 798XDivision of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi Japan
| | - Tsuyoshi Miyakawa
- grid.256115.40000 0004 1761 798XDivision of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi Japan
| | - Michiko Shirane
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| |
Collapse
|
28
|
Molecular machinery regulating organelle dynamics during axon growth and guidance. Semin Cell Dev Biol 2023; 133:3-9. [PMID: 35227625 DOI: 10.1016/j.semcdb.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
Abstract
Axon growth and guidance in the developing nervous system rely on intracellular membrane dynamics that involve endosome maturation and transport, as well as its regulated tethering to the endoplasmic reticulum (ER). Recent studies have identified several key molecules, such as protrudin, which plays a dynamic role at membrane contact sites between the ER and endosomes/lysosomes, and myosin Va, which acts as a sensor for ER-derived Ca2+ that triggers peri-ER membrane export. These molecules form different types of multiprotein complexes at the interface of organelles and, in response to their surrounding microenvironments, such as Ca2+ concentrations and lipid contents, regulate the directional movement of endosomal vesicles in extending axons. Here, we review the molecular mechanisms underlying membrane dynamics and inter-organelle interactions during neuronal morphogenesis.
Collapse
|
29
|
Overduin M, Tran A, Eekels DM, Overduin F, Kervin TA. Transmembrane Membrane Readers form a Novel Class of Proteins That Include Peripheral Phosphoinositide Recognition Domains and Viral Spikes. MEMBRANES 2022; 12:1161. [PMID: 36422153 PMCID: PMC9692390 DOI: 10.3390/membranes12111161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Membrane proteins are broadly classified as transmembrane (TM) or peripheral, with functions that pertain to only a single bilayer at a given time. Here, we explicate a class of proteins that contain both transmembrane and peripheral domains, which we dub transmembrane membrane readers (TMMRs). Their transmembrane and peripheral elements anchor them to one bilayer and reversibly attach them to another section of bilayer, respectively, positioning them to tether and fuse membranes while recognizing signals such as phosphoinositides (PIs) and modifying lipid chemistries in proximity to their transmembrane domains. Here, we analyze full-length models from AlphaFold2 and Rosetta, as well as structures from nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, using the Membrane Optimal Docking Area (MODA) program to map their membrane-binding surfaces. Eukaryotic TMMRs include phospholipid-binding C1, C2, CRAL-TRIO, FYVE, GRAM, GTPase, MATH, PDZ, PH, PX, SMP, StART and WD domains within proteins including protrudin, sorting nexins and synaptotagmins. The spike proteins of SARS-CoV-2 as well as other viruses are also TMMRs, seeing as they are anchored into the viral membrane while mediating fusion with host cell membranes. As such, TMMRs have key roles in cell biology and membrane trafficking, and include drug targets for diseases such as COVID-19.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Finn Overduin
- Institute of Nutritional Science, University of Potsdam, 14476 Potsdam, Germany
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
30
|
Hewitt VL, Miller-Fleming L, Twyning MJ, Andreazza S, Mattedi F, Prudent J, Polleux F, Vagnoni A, Whitworth AJ. Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Aβ 42 toxicity. Life Sci Alliance 2022; 5:5/11/e202201531. [PMID: 35831024 PMCID: PMC9279675 DOI: 10.26508/lsa.202201531] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondria-ER contact sites (MERCs) orchestrate many important cellular functions including regulating mitochondrial quality control through mitophagy and mediating mitochondrial calcium uptake. Here, we identify and functionally characterize the Drosophila ortholog of the recently identified mammalian MERC protein, Pdzd8. We find that reducing pdzd8-mediated MERCs in neurons slows age-associated decline in locomotor activity and increases lifespan in Drosophila. The protective effects of pdzd8 knockdown in neurons correlate with an increase in mitophagy, suggesting that increased mitochondrial turnover may support healthy aging of neurons. In contrast, increasing MERCs by expressing a constitutive, synthetic ER-mitochondria tether disrupts mitochondrial transport and synapse formation, accelerates age-related decline in locomotion, and reduces lifespan. Although depletion of pdzd8 prolongs the survival of flies fed with mitochondrial toxins, it is also sufficient to rescue locomotor defects of a fly model of Alzheimer's disease expressing Amyloid β42 (Aβ42). Together, our results provide the first in vivo evidence that MERCs mediated by the tethering protein pdzd8 play a critical role in the regulation of mitochondrial quality control and neuronal homeostasis.
Collapse
Affiliation(s)
- Victoria L Hewitt
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Leonor Miller-Fleming
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Madeleine J Twyning
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Simonetta Andreazza
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Francesca Mattedi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Julien Prudent
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY, USA
| | - Alessio Vagnoni
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Alexander J Whitworth
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Wenzel EM, Elfmark LA, Stenmark H, Raiborg C. ER as master regulator of membrane trafficking and organelle function. J Cell Biol 2022; 221:e202205135. [PMID: 36108241 PMCID: PMC9481738 DOI: 10.1083/jcb.202205135] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER), which occupies a large portion of the cytoplasm, is the cell's main site for the biosynthesis of lipids and carbohydrate conjugates, and it is essential for folding, assembly, and biosynthetic transport of secreted proteins and integral membrane proteins. The discovery of abundant membrane contact sites (MCSs) between the ER and other membrane compartments has revealed that, in addition to its biosynthetic and secretory functions, the ER plays key roles in the regulation of organelle dynamics and functions. In this review, we will discuss how the ER regulates endosomes, lysosomes, autophagosomes, mitochondria, peroxisomes, and the Golgi apparatus via MCSs. Such regulation occurs via lipid and Ca2+ transfer and also via control of in trans dephosphorylation reactions and organelle motility, positioning, fusion, and fission. The diverse controls of other organelles via MCSs manifest the ER as master regulator of organelle biology.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Al-Amri AH, Armstrong P, Amici M, Ligneul C, Rouse J, El-Asrag ME, Pantiru A, Vancollie VE, Ng HW, Ogbeta JA, Goodchild K, Ellegood J, Lelliott CJ, Mullins JG, Bretman A, Al-Ali R, Beetz C, Al-Gazali L, Al Shamsi A, Lerch JP, Mellor JR, Al Sayegh A, Ali M, Inglehearn CF, Clapcote SJ. PDZD8 Disruption Causes Cognitive Impairment in Humans, Mice, and Fruit Flies. Biol Psychiatry 2022; 92:323-334. [PMID: 35227461 PMCID: PMC9302898 DOI: 10.1016/j.biopsych.2021.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The discovery of coding variants in genes that confer risk of intellectual disability (ID) is an important step toward understanding the pathophysiology of this common developmental disability. METHODS Homozygosity mapping, whole-exome sequencing, and cosegregation analyses were used to identify gene variants responsible for syndromic ID with autistic features in two independent consanguineous families from the Arabian Peninsula. For in vivo functional studies of the implicated gene's function in cognition, Drosophila melanogaster and mice with targeted interference of the orthologous gene were used. Behavioral, electrophysiological, and structural magnetic resonance imaging analyses were conducted for phenotypic testing. RESULTS Homozygous premature termination codons in PDZD8, encoding an endoplasmic reticulum-anchored lipid transfer protein, showed cosegregation with syndromic ID in both families. Drosophila melanogaster with knockdown of the PDZD8 ortholog exhibited impaired long-term courtship-based memory. Mice homozygous for a premature termination codon in Pdzd8 exhibited brain structural, hippocampal spatial memory, and synaptic plasticity deficits. CONCLUSIONS These data demonstrate the involvement of homozygous loss-of-function mutations in PDZD8 in a neurodevelopmental cognitive disorder. Model organisms with manipulation of the orthologous gene replicate aspects of the human phenotype and suggest plausible pathophysiological mechanisms centered on disrupted brain development and synaptic function. These findings are thus consistent with accruing evidence that synaptic defects are a common denominator of ID and other neurodevelopmental conditions.
Collapse
Affiliation(s)
- Ahmed H. Al-Amri
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom,Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom,National Genetic Centre, Royal Hospital, Muscat, Oman
| | - Paul Armstrong
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Mascia Amici
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clemence Ligneul
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - James Rouse
- School of Biology, University of Leeds, Leeds, United Kingdom
| | - Mohammed E. El-Asrag
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom,Department of Zoology, Faculty of Science, Benha University, Benha, Egypt,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Andreea Pantiru
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Hannah W.Y. Ng
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jennifer A. Ogbeta
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Kirstie Goodchild
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Amanda Bretman
- School of Biology, University of Leeds, Leeds, United Kingdom
| | | | | | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aisha Al Shamsi
- Pediatrics Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Jack R. Mellor
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Abeer Al Sayegh
- Genetics Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Manir Ali
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Chris F. Inglehearn
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Steven J. Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom,Address correspondence to Steven J. Clapcote, Ph.D.
| |
Collapse
|
33
|
Ubap1 knock-in mice reproduced the phenotype of SPG80. J Hum Genet 2022; 67:679-686. [PMID: 35962060 DOI: 10.1038/s10038-022-01073-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/03/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022]
Abstract
SPG80 is a neurodegenerative disorder characterized by a pure type of juvenile-onset hereditary spastic paraplegia and is caused by a heterozygous mutation of the UBAP1 (ubiquitin-associated protein 1) gene. UBAP1 is one of the subunits of the endosomal sorting complex required for transport I and plays a role in endosome sorting by binding to ubiquitin-tagged proteins. In this study, we generated novel Ubap1+/E176Efx23 knock-in mice, in which the SOUBA domain of Ubap1 was completely deleted with the UMA domain being intact, as an animal model of SPG80. The knock-in mice with this heterozygous Ubap1 truncated mutation appeared normal at birth, but they developed progressive hind limb dysfunction several months later. Molecular pathologically, loss of neurons in the spinal cord and accumulation of ubiquitinated proteins were observed in Ubap1+/E176Efx23 knock-in mice. In addition, changes in the distributions of Rab5 and Rab7 in the spinal cord suggest that this mutation in Ubap1 disturbs endosome-mediated vesicular trafficking. This is the first report of a mouse model that reproduces the phenotype of SPG80. Our knock-in mice may provide a clue for understanding the molecular pathogenesis underlying UBAP1-related HSP and screening of therapeutic agents.
Collapse
|
34
|
Lv Y, Cheng L, Peng F. Compositions and Functions of Mitochondria-Associated Endoplasmic Reticulum Membranes and Their Contribution to Cardioprotection by Exercise Preconditioning. Front Physiol 2022; 13:910452. [PMID: 35733995 PMCID: PMC9207531 DOI: 10.3389/fphys.2022.910452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are important components of intracellular signaling and contribute to the regulation of intracellular Ca2+/lipid homeostasis, mitochondrial dynamics, autophagy/mitophagy, apoptosis, and inflammation. Multiple studies have shown that proteins located on MAMs mediate cardioprotection. Exercise preconditioning (EP) has been shown to protect the myocardium from adverse stimuli, but these mechanisms are still being explored. Recently, a growing body of evidence points to MAMs, suggesting that exercise or EP may be involved in cardioprotection by modulating proteins on MAMs and subsequently affecting MAMs. In this review, we summarize the latest findings on MAMs, analyzing the structure and function of MAMs and the role of MAM-related proteins in cardioprotection. We focused on the possible mechanisms by which exercise or EP can modulate the involvement of MAMs in cardioprotection. We found that EP may affect MAMs by regulating changes in MFN2, MFN1, AMPK, FUNDC1, BECN1, VDAC1, GRP75, IP3R, CYPD, GSK3β, AKT, NLRP3, GRP78, and LC3, thus playing a cardioprotective role. We also provided direction for future studies that may be of interest so that more in-depth studies can be conducted to elucidate the relationship between EP and cardioprotection.
Collapse
|
35
|
Protrudin regulates FAK activation, endothelial cell migration and angiogenesis. Cell Mol Life Sci 2022; 79:220. [PMID: 35368213 PMCID: PMC8977271 DOI: 10.1007/s00018-022-04251-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
During angiogenesis, endothelial cells form protrusive sprouts and migrate towards the angiogenic stimulus. In this study, we investigate the role of the endoplasmic reticulum (ER)-anchored protein, Protrudin, in endothelial cell protrusion, migration and angiogenesis. Our results demonstrate that Protrudin regulates angiogenic tube formation in primary endothelial cells, Human umbilical vein endothelial cells (HUVECs). Analysis of RNA sequencing data and its experimental validation revealed cell migration as a prominent cellular function affected in HUVECs subjected to Protrudin knockdown. Further, our results demonstrate that knockdown of Protrudin inhibits focal adhesion kinase (FAK) activation in HUVECs and human aortic endothelial cells (HAECs). This is associated with a loss of polarized phospho-FAK distribution upon Protrudin knockdown as compared to Protrudin expressing HUVECs. Reduction of Protrudin also results in a perinuclear accumulation of mTOR and a decrease in VEGF-mediated S6K activation. However, further experiments suggest that the observed inhibition of angiogenesis in Protrudin knockdown cells is not affected by mTOR disturbance. Therefore, our findings suggest that defects in FAK activation and its abnormal subcellular distribution upon Protrudin knockdown are associated with a detrimental effect on endothelial cell migration and angiogenesis. Furthermore, mice with global Protrudin deletion demonstrate reduced retinal vascular progression. To conclude, our results provide evidence for a novel key role of Protrudin in endothelial cell migration and angiogenesis.
Collapse
|
36
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Annexins Bridging the Gap: Novel Roles in Membrane Contact Site Formation. Front Cell Dev Biol 2022; 9:797949. [PMID: 35071237 PMCID: PMC8770259 DOI: 10.3389/fcell.2021.797949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 01/16/2023] Open
Abstract
Membrane contact sites (MCS) are specialized small areas of close apposition between two different organelles that have led researchers to reconsider the dogma of intercellular communication via vesicular trafficking. The latter is now being challenged by the discovery of lipid and ion transfer across MCS connecting adjacent organelles. These findings gave rise to a new concept that implicates cell compartments not to function as individual and isolated entities, but as a dynamic and regulated ensemble facilitating the trafficking of lipids, including cholesterol, and ions. Hence, MCS are now envisaged as metabolic platforms, crucial for cellular homeostasis. In this context, well-known as well as novel proteins were ascribed functions such as tethers, transporters, and scaffolds in MCS, or transient MCS companions with yet unknown functions. Intriguingly, we and others uncovered metabolic alterations in cell-based disease models that perturbed MCS size and numbers between coupled organelles such as endolysosomes, the endoplasmic reticulum, mitochondria, or lipid droplets. On the other hand, overexpression or deficiency of certain proteins in this narrow 10-30 nm membrane contact zone can enable MCS formation to either rescue compromised MCS function, or in certain disease settings trigger undesired metabolite transport. In this "Mini Review" we summarize recent findings regarding a subset of annexins and discuss their multiple roles to regulate MCS dynamics and functioning. Their contribution to novel pathways related to MCS biology will provide new insights relevant for a number of human diseases and offer opportunities to design innovative treatments in the future.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
37
|
Abstract
Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.
Collapse
|
38
|
Terasawa K, Kato Y, Ikami Y, Sakamoto K, Ohtake K, Kusano S, Tomabechi Y, Kukimoto-Niino M, Shirouzu M, Guan JL, Kobayashi T, Iwata T, Watabe T, Yokoyama S, Hara-Yokoyama M. Direct homophilic interaction of LAMP2A with the two-domain architecture revealed by site-directed photo-crosslinks and steric hindrances in mammalian cells. Autophagy 2021; 17:4286-4304. [PMID: 33849387 PMCID: PMC8726616 DOI: 10.1080/15548627.2021.1911017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/25/2022] Open
Abstract
LAMP1 (lysosomal-associated membrane protein 1) and LAMP2 are the most abundant protein components of lysosome membranes. Both LAMPs have common structures consisting of a large lumenal domain composed of two domains (N-domain and C-domain, which are membrane-distal and -proximal, respectively), both with the β-prism fold, a transmembrane domain, and a short cytoplasmic tail. LAMP2 is involved in various aspects of autophagy, and reportedly forms high-molecular weight complexes at the lysosomal membrane. We previously showed that LAMP2 molecules coimmunoprecipitated with each other, but whether the homophilic interaction is direct or indirect has remained to be elucidated. In the present study, we demonstrated the direct homophilic interaction of mouse LAMP2A molecules, using expanded genetic code technologies that generate photo-crosslinking and/or steric hindrance at specified interfaces. Specifically, the results suggested that LAMP2A molecules assemble by facing each other with one side of the β-prism (defined as side A) of the C-domains. The N-domain truncation, which increased the coimmunoprecipitation of LAMP2A molecules in our previous study, permitted the nonspecific involvement of both sides of the β-prism (side A and side B). Thus, the presence of the N-domain restricts the LAMP2A interactions to side A-specific. The truncation of LAMP2A impaired the recruitment of GAPDH (a CMA-substrate) fused to the HaloTag protein to the surface of late endosomes/lysosomes (LE/Lys) and affected a process that generates LE/Lys. The present study revealed that the homophilic interaction of LAMP2A is direct, and the side A-specific, homophilic interaction of LAMP2A is required for the functional aspects of LAMP2A.Abbreviations: Aloc-Lys: Nε-allyloxycarbonyl-l-lysine; CMA: chaperone-mediated autophagy; FFE: free-flow electrophoresis; GAPDH-HT: glyceraldehyde-3-phosphate dehydrogenase fused to HaloTag protein; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LBPA: lysobisphosphatidic acid; LE/Lys: late endosome/lysosomes; MEFs: mouse embryonic fibroblasts; pBpa: p-benzoyl- l-phenylalanine.
Collapse
Affiliation(s)
- Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuji Kato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Ikami
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kazumasa Ohtake
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Seisuke Kusano
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Yuri Tomabechi
- Laboratory for Protein Function and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Function and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Function and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Toshihide Kobayashi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Miki Hara-Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
39
|
Liu X, Wei Q, Yang X, Wang X, Zhang J, Xu R, Zhang H, Wang S, Wan X, Jiang L, He Y, Li S, Chen R, Wang Y, Chen Y, Qin F, Chen Y, Dai Y, Li H, Zhao Y, Zhang H, Bu Q, Wang H, Tian J, Zhao Y, Cen X. Lipidomics Reveals Dysregulated Glycerophospholipid Metabolism in the Corpus Striatum of Mice Treated with Cefepime. ACS Chem Neurosci 2021; 12:4449-4464. [PMID: 34762393 DOI: 10.1021/acschemneuro.1c00608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cefepime exhibits a broad spectrum of antimicrobial activity and thus is a widely used treatment for severe bacterial infections. Adverse effects on the central nervous system (CNS) have been reported in patients treated with cefepime. Current explanation for the adverse neurobehavioral effect of cefepime is mainly attributed to its ability to cross the blood-brain barrier and competitively bind to the GABAergic receptor; however, the underlying mechanism is largely unknown. In this study, mice were intraperitoneally administered 80 mg/kg cefepime for different periods, followed by neurobehavioral tests and a brain lipidomic analysis. LC/MS-MS-based metabolomics was used to investigate the effect of cefepime on the brain lipidomic profile and metabolic pathways. Repeated cefepime treatment time-dependently caused anxiety-like behaviors, which were accompanied by reduced locomotor activity in the open field test. Cefepime profoundly altered the lipid profile, acyl chain length, and unsaturation of fatty acids in the corpus striatum, and glycerophospholipids accounted for a large proportion of those significantly modified lipids. In addition, cefepime treatment caused obvious alteration in the lipid-enriched membrane structure, neurites, mitochondria, and synaptic vesicles of primary cultured striatal neurons; moreover, the spontaneous electrical activity of striatal neurons was significantly reduced. Collectively, cefepime reprograms glycerophospholipid metabolism in the corpus striatum, which may interfere with neuronal structure and activity, eventually leading to aberrant neurobehaviors in mice.
Collapse
Affiliation(s)
- Xiaocong Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Qingfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Xiaowei Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Xiaojie Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Jiamei Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Rui Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Haoluo Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Shaomin Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Xuemei Wan
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Yuman He
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Yonghai Wang
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People’s Republic of China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Feng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Huaqin Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Hongbo Wang
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People’s Republic of China
| | - Jingwei Tian
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People’s Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People’s Republic of China
| |
Collapse
|
40
|
Egea PF. Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Front Cell Dev Biol 2021; 9:784367. [PMID: 34912813 PMCID: PMC8667587 DOI: 10.3389/fcell.2021.784367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic cells are characterized by their exquisite compartmentalization resulting from a cornucopia of membrane-bound organelles. Each of these compartments hosts a flurry of biochemical reactions and supports biological functions such as genome storage, membrane protein and lipid biosynthesis/degradation and ATP synthesis, all essential to cellular life. Acting as hubs for the transfer of matter and signals between organelles and throughout the cell, membrane contacts sites (MCSs), sites of close apposition between membranes from different organelles, are essential to cellular homeostasis. One of the now well-acknowledged function of MCSs involves the non-vesicular trafficking of lipids; its characterization answered one long-standing question of eukaryotic cell biology revealing how some organelles receive and distribute their membrane lipids in absence of vesicular trafficking. The endoplasmic reticulum (ER) in synergy with the mitochondria, stands as the nexus for the biosynthesis and distribution of phospholipids (PLs) throughout the cell by contacting nearly all other organelle types. MCSs create and maintain lipid fluxes and gradients essential to the functional asymmetry and polarity of biological membranes throughout the cell. Membrane apposition is mediated by proteinaceous tethers some of which function as lipid transfer proteins (LTPs). We summarize here the current state of mechanistic knowledge of some of the major classes of LTPs and tethers based on the available atomic to near-atomic resolution structures of several "model" MCSs from yeast but also in Metazoans; we describe different models of lipid transfer at MCSs and analyze the determinants of their specificity and directionality. Each of these systems illustrate fundamental principles and mechanisms for the non-vesicular exchange of lipids between eukaryotic membrane-bound organelles essential to a wide range of cellular processes such as at PL biosynthesis and distribution, lipid storage, autophagy and organelle biogenesis.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
41
|
Coronas-Serna JM, del Val E, Kagan JC, Molina M, Cid VJ. Heterologous Expression and Assembly of Human TLR Signaling Components in Saccharomyces cerevisiae. Biomolecules 2021; 11:1737. [PMID: 34827735 PMCID: PMC8615643 DOI: 10.3390/biom11111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptor (TLR) signaling is key to detect pathogens and initiating inflammation. Ligand recognition triggers the assembly of supramolecular organizing centers (SMOCs) consisting of large complexes composed of multiple subunits. Building such signaling hubs relies on Toll Interleukin-1 Receptor (TIR) and Death Domain (DD) protein-protein interaction domains. We have expressed TIR domain-containing components of the human myddosome (TIRAP and MyD88) and triffosome (TRAM and TRIF) SMOCs in Saccharomyces cerevisiae, as a platform for their study. Interactions between the TLR4 TIR domain, TIRAP, and MyD88 were recapitulated in yeast. Human TIRAP decorated the yeast plasma membrane (PM), except for the bud neck, whereas MyD88 was found at cytoplasmic spots, which were consistent with endoplasmic reticulum (ER)-mitochondria junctions, as evidenced by co-localization with Mmm1 and Mdm34, components of the ER and Mitochondria Encounter Structures (ERMES). The formation of MyD88-TIRAP foci at the yeast PM was reinforced by co-expression of a membrane-bound TLR4 TIR domain. Mutations in essential residues of their TIR domains aborted MyD88 recruitment by TIRAP, but their respective subcellular localizations were unaltered. TRAM and TRIF, however, did not co-localize in yeast. TRAM assembled long PM-bound filaments that were disrupted by co-expression of the TLR4 TIR domain. Our results evidence that the yeast model can be exploited to study the interactions and subcellular localization of human SMOC components in vivo.
Collapse
Affiliation(s)
- Julia María Coronas-Serna
- Departament of Microbiology and Parasitology, Faculty of Pharmacy, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (J.M.C.-S.); (E.d.V.)
| | - Elba del Val
- Departament of Microbiology and Parasitology, Faculty of Pharmacy, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (J.M.C.-S.); (E.d.V.)
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - María Molina
- Departament of Microbiology and Parasitology, Faculty of Pharmacy, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (J.M.C.-S.); (E.d.V.)
| | - Víctor J. Cid
- Departament of Microbiology and Parasitology, Faculty of Pharmacy, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (J.M.C.-S.); (E.d.V.)
| |
Collapse
|
42
|
Liu Q, Zhang G, Ji Z, Lin H. Molecular and cellular mechanisms of spastin in neural development and disease (Review). Int J Mol Med 2021; 48:218. [PMID: 34664680 PMCID: PMC8547542 DOI: 10.3892/ijmm.2021.5051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Spastin is a microtubule (MT)‑severing enzyme identified from mutations of hereditary spastic paraplegia in 1999 and extensive studies indicate its vital role in various cellular activities. In the past two decades, efforts have been made to understand the underlying molecular mechanisms of how spastin is linked to neural development and disease. Recent studies on spastin have unraveled the mechanistic processes of its MT‑severing activity and revealed that spastin acts as an MT amplifier to mediate its remodeling, thus providing valuable insight into the molecular roles of spastin under physiological conditions. In addition, recent research has revealed multiple novel molecular mechanisms of spastin in cellular biological pathways, including endoplasmic reticulum shaping, calcium trafficking, fatty acid trafficking, as well as endosomal fission and trafficking. These processes are closely involved in axonal and dendritic development and maintenance. The current review presents recent biological advances regarding the molecular mechanisms of spastin at the cellular level and provides insight into how it affects neural development and disease.
Collapse
Affiliation(s)
- Qiuling Liu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
43
|
Jeyasimman D, Ercan B, Dharmawan D, Naito T, Sun J, Saheki Y. PDZD-8 and TEX-2 regulate endosomal PI(4,5)P 2 homeostasis via lipid transport to promote embryogenesis in C. elegans. Nat Commun 2021; 12:6065. [PMID: 34663803 PMCID: PMC8523718 DOI: 10.1038/s41467-021-26177-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
Different types of cellular membranes have unique lipid compositions that are important for their functional identity. PI(4,5)P2 is enriched in the plasma membrane where it contributes to local activation of key cellular events, including actomyosin contraction and cytokinesis. However, how cells prevent PI(4,5)P2 from accumulating in intracellular membrane compartments, despite constant intermixing and exchange of lipid membranes, is poorly understood. Using the C. elegans early embryo as our model system, we show that the evolutionarily conserved lipid transfer proteins, PDZD-8 and TEX-2, act together with the PI(4,5)P2 phosphatases, OCRL-1 and UNC-26/synaptojanin, to prevent the build-up of PI(4,5)P2 on endosomal membranes. In the absence of these four proteins, large amounts of PI(4,5)P2 accumulate on endosomes, leading to embryonic lethality due to ectopic recruitment of proteins involved in actomyosin contractility. PDZD-8 localizes to the endoplasmic reticulum and regulates endosomal PI(4,5)P2 levels via its lipid harboring SMP domain. Accumulation of PI(4,5)P2 on endosomes is accompanied by impairment of their degradative capacity. Thus, cells use multiple redundant systems to maintain endosomal PI(4,5)P2 homeostasis.
Collapse
Affiliation(s)
- Darshini Jeyasimman
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Bilge Ercan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dennis Dharmawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jingbo Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
44
|
Structural basis of human PDZD8-Rab7 interaction for the ER-late endosome tethering. Sci Rep 2021; 11:18859. [PMID: 34552186 PMCID: PMC8458453 DOI: 10.1038/s41598-021-98419-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023] Open
Abstract
The membrane contact sites (MCSs) between the ER and late endosomes (LEs) are essential for the regulation of endosomal protein sorting, dynamics, and motility. PDZD8 is an ER transmembrane protein containing a Synaptotagmin-like Mitochondrial lipid-binding Proteins (SMP) domain. PDZD8 tethers the ER to late endosomes and lysosomes by associating its C-terminal coiled-coil (CC) with the LE Rab7. To identify the structural determinants for the PDZD8–Rab7 interaction, we determined the crystal structure of the human PDZD8 CC domain in complex with the GTP-bound form of Rab7. The PDZD8 CC contains one short helix and the two helices forming an antiparallel coiled-coil. Two Rab7 molecules bind to the opposite sides of the PDZD8 CC in a 2:1 ratio. The switch I/II and interswitch regions of the GTP-loaded Rab7 form the binding interfaces, which correlates with the GTP-dependent interaction of PDZD8 and Rab7. Analysis of the protein interaction by isothermal titration calorimetry confirms that two Rab7 molecules bind the PDZD8 CC in a GTP-dependent manner. The structural model of the PDZD8 CC–Rab7 complex correlates with the recruitment of PDZD8 at the LE–ER interface and its role in lipid transport and regulation.
Collapse
|
45
|
Bodakuntla S, Nedozralova H, Basnet N, Mizuno N. Cytoskeleton and Membrane Organization at Axon Branches. Front Cell Dev Biol 2021; 9:707486. [PMID: 34540830 PMCID: PMC8440873 DOI: 10.3389/fcell.2021.707486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Axon branching is a critical process ensuring a high degree of interconnectivity for neural network formation. As branching occurs at sites distant from the soma, it is necessary that axons have a local system to dynamically control and regulate axonal growth. This machinery depends on the orchestration of cellular functions such as cytoskeleton, subcellular transport, energy production, protein- and membrane synthesis that are adapted for branch formation. Compared to the axon shaft, branching sites show a distinct and dynamic arrangement of cytoskeleton components, endoplasmic reticulum and mitochondria. This review discusses the regulation of axon branching in the context of cytoskeleton and membrane remodeling.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hana Nedozralova
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nirakar Basnet
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
46
|
Boutry M, Kim PK. ORP1L mediated PI(4)P signaling at ER-lysosome-mitochondrion three-way contact contributes to mitochondrial division. Nat Commun 2021; 12:5354. [PMID: 34504082 PMCID: PMC8429648 DOI: 10.1038/s41467-021-25621-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial division is not an autonomous event but involves multiple organelles, including the endoplasmic reticulum (ER) and lysosomes. Whereas the ER drives the constriction of mitochondrial membranes, the role of lysosomes in mitochondrial division is not known. Here, using super-resolution live-cell imaging, we investigate the recruitment of lysosomes to the site of mitochondrial division. We find that the ER recruits lysosomes to the site of division through the interaction of VAMP-associated proteins (VAPs) with the lysosomal lipid transfer protein ORP1L to induce a three-way contact between the ER, lysosome, and the mitochondrion. We also show that ORP1L might transport phosphatidylinositol-4-phosphate (PI(4)P) from lysosomes to mitochondria, as inhibiting its transfer or depleting PI(4)P at the mitochondrial division site impairs fission, demonstrating a direct role for PI(4)P in the division process. Our findings support a model where the ER recruits lysosomes to act in concert at the fission site for the efficient division of mitochondria.
Collapse
Affiliation(s)
- Maxime Boutry
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
| | - Peter K Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases. Cells 2021; 10:cells10092341. [PMID: 34571990 PMCID: PMC8472773 DOI: 10.3390/cells10092341] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle that is responsible for many essential subcellular processes. Interconnected narrow tubules at the periphery and thicker sheet-like regions in the perinuclear region are linked to the nuclear envelope. It is becoming apparent that the complex morphology and dynamics of the ER are linked to its function. Mutations in the proteins involved in regulating ER structure and movement are implicated in many diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS). The ER is also hijacked by pathogens to promote their replication. Bacteria such as Legionella pneumophila and Chlamydia trachomatis, as well as the Zika virus, bind to ER morphology and dynamics-regulating proteins to exploit the functions of the ER to their advantage. This review covers our understanding of ER morphology, including the functional subdomains and membrane contact sites that the organelle forms. We also focus on ER dynamics and the current efforts to quantify ER motion and discuss the diseases related to ER morphology and dynamics.
Collapse
|
48
|
Navas P, Cascajo MV, Alcázar-Fabra M, Hernández-Camacho JD, Sánchez-Cuesta A, Rodríguez ABC, Ballesteros-Simarro M, Arroyo-Luque A, Rodríguez-Aguilera JC, Fernández-Ayala DJM, Brea-Calvo G, López-Lluch G, Santos-Ocaña C. Secondary CoQ 10 deficiency, bioenergetics unbalance in disease and aging. Biofactors 2021; 47:551-569. [PMID: 33878238 DOI: 10.1002/biof.1733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q10 (CoQ10 ) deficiency is a rare disease characterized by a decreased accumulation of CoQ10 in cell membranes. Considering that CoQ10 synthesis and most of its functions are carried out in mitochondria, CoQ10 deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ10 deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ10 supplementation. Defects in components of the synthesis machinery caused by mutations in COQ genes generate the primary deficiency of CoQ10 . Mutations in genes that are not directly related to the synthesis machinery cause secondary deficiency. Cases of CoQ10 deficiency without genetic origin are also considered a secondary deficiency. Both types of deficiency can lead to similar clinical manifestations, but the knowledge about primary deficiency is deeper than secondary. However, secondary deficiency cases may be underestimated since many of their clinical manifestations are shared with other pathologies. This review shows the current state of secondary CoQ10 deficiency, which could be even more relevant than primary deficiency for clinical activity. The analysis covers the fundamental features of CoQ10 deficiency, which are necessary to understand the biological and clinical differences between primary and secondary CoQ10 deficiencies. Further, a more in-depth analysis of CoQ10 secondary deficiency was undertaken to consider its origins, introduce a new way of classification, and include aging as a form of secondary deficiency.
Collapse
Affiliation(s)
- Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - María V Cascajo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan D Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Cortés Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Fisiopatología Celular y Bioenergética, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Manuel Ballesteros-Simarro
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Arroyo-Luque
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Rodríguez-Aguilera
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Fisiopatología Celular y Bioenergética, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Daniel J M Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Aoyama-Ishiwatari S, Hirabayashi Y. Endoplasmic Reticulum-Mitochondria Contact Sites-Emerging Intracellular Signaling Hubs. Front Cell Dev Biol 2021; 9:653828. [PMID: 34095118 PMCID: PMC8172986 DOI: 10.3389/fcell.2021.653828] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
It has become apparent that our textbook illustration of singular isolated organelles is obsolete. In reality, organelles form complex cooperative networks involving various types of organelles. Light microscopic and ultrastructural studies have revealed that mitochondria-endoplasmic reticulum (ER) contact sites (MERCSs) are abundant in various tissues and cell types. Indeed, MERCSs have been proposed to play critical roles in various biochemical and signaling functions such as Ca2+ homeostasis, lipid transfer, and regulation of organelle dynamics. While numerous proteins involved in these MERCS-dependent functions have been reported, how they coordinate and cooperate with each other has not yet been elucidated. In this review, we summarize the functions of mammalian proteins that localize at MERCSs and regulate their formation. We also discuss potential roles of the MERCS proteins in regulating multiple organelle contacts.
Collapse
Affiliation(s)
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Venditti R, Wilson C, De Matteis MA. Regulation and physiology of membrane contact sites. Curr Opin Cell Biol 2021; 71:148-157. [PMID: 33932623 DOI: 10.1016/j.ceb.2021.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Membrane contact sites (MCSs) in addition to impacting the functions of membrane-limited organelles also have a role in the spatial and functional organization of cells, tissues and whole organisms. MCSs have been identified between all organelles and the identification of their molecular composition has progressed significantly in recent years. Equally important is how MCSs respond dynamically to physiological stimuli, how this is regulated, and the physiological roles of MCSs in tissues and at the organismal level, an area that still remains relatively unexplored. In the present review, we focus on the regulation of MCSs, considerations of their function at the organismal level, and how mutations of MCS components linked to genetic diseases might inform us about their physiological relevance.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II-Medical School, Naples, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II-Medical School, Naples, Italy.
| |
Collapse
|