1
|
Zhang S, Zhang Z, Wang F, Huang X, Chen X, Wang Y, Li C, Li H. Advancing the comprehensive understanding of soil organic carbon priming effect: definitions, mechanisms, influencing factors, and future perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:201. [PMID: 40343583 DOI: 10.1007/s10653-025-02516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
The soil carbon (C) priming effect (PE), an important phenomenon in soil C cycle research, has garnered extensive attention in recent years. Soil C PE refers to the stimulation or inhibition of the original soil organic C (SOC) decomposition rate by newly added organic matter in the soil. Its mechanism of action involves the activity of soil microorganisms. Fresh organic matter input provides an additional source of energy and nutrients for soil microorganisms, prompting changes in microbial community structure and activity, which in turn affects SOC decomposition. Easily decomposable organic matter may stimulate rapid microbial growth and metabolic activity of microorganisms, thereby the decomposition accelerating of original SOC and producing a positive PE, whereas recalcitrant organic matter may lead microorganisms to preferentially utilise the newly added C source, thereby inhibiting original SOC decomposition and producing a negative PE. There are numerous factors influencing soil C PE, including organic matter properties such as chemical composition, C:N ratio, and lignin content; soil environmental factors such as temperature, humidity, and pH value; and land-use patterns and vegetation types. Research on soil C PE is crucial for an in-depth understanding of the soil C cycle, the accurate assessment of dynamic changes in the soil C pool, and the development of sustainable soil management strategies. This study introduces the definition, change mechanism, influencing factors, and research methods of soil C PE and elaborates on the status and deficiencies of PE research, which is helpful for predicting soil C responses to global climate change and provides a scientific basis for improving soil fertility and reducing greenhouse gas emissions.
Collapse
Affiliation(s)
- Shengman Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, China
| | - Ziyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuchun Wang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Chunyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
von Hippel B, Stoof-Leichsenring KR, Çabuk U, Liu S, Melles M, Herzschuh U. Postglacial bioweathering, soil nutrient cycling, and podzolization from palaeometagenomics of plants, fungi, and bacteria. SCIENCE ADVANCES 2025; 11:eadj5527. [PMID: 40333974 PMCID: PMC12057668 DOI: 10.1126/sciadv.adj5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
Warming-induced glacier retreat exposes bare rocks and glacial sediments, facilitating the establishment of soils. The dynamic interplay between climate, vegetation cover, and soil formation is poorly understood as time-series data are lacking. Here, we present postglacial soil formation during the past 23,000 years inferred from ancient DNA shotgun analyses of Lake Lama sediments targeting plants, soil-associated fungi, and bacteria showing postmortem damage signatures that verify their ancient origin. In the Late Glacial, we reveal basaltic weathering with high abundances of lichens, carbon, and arsenic cyclers, shifting to mycorrhizae domination and N cycling in the Holocene. We reconstruct podzolization starting with spruce forest migration in the Holocene, resulting in soil acidification and increased iron cycling. Our reconstruction of soil formation also contributes basic knowledge for the design of carbon-capture strategies using basalt weathering.
Collapse
Affiliation(s)
- Barbara von Hippel
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
| | - Kathleen R. Stoof-Leichsenring
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
| | - Uğur Çabuk
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Sisi Liu
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
| | - Martin Melles
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
| | - Ulrike Herzschuh
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Zheng H, Chu J, Li S, Tang X, Bi S, Chen K, Zhou A, Yang Y, Ning X, Xu Y. An Optimized Aerogel-Based Apheresis Device for Targeted Lipid Clearance in Elderly Hyperlipidemia Patients. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420091. [PMID: 40255169 DOI: 10.1002/adma.202420091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Elderly patients with hyperlipidemia often exhibit resistance to conventional hypolipidemic treatments, underscoring the need for more effective strategies to address lipid imbalances in this high-risk group. This study introduces LipClean, an aerogel-based apheresis device specifically designed to remove harmful plasma lipids. LipClean is constructed using hydrophilic cellulose fibers, which serve as a supramolecular platform for synthesizing hydrophobic conjugated polymers through a Sonogashira-Hagihara reaction. These conjugated polymers are then cross-linked with the cellulose fibers via phosphorylation, generating an aerogel monolith with an interpenetrating network of hydrophilic fibers and hydrophobic polymers. Unlike bilayer aerogels that separate hydrophilic and hydrophobic layers, LipClean's interpenetrating structure is precisely engineered through polymer design and gradient cross-linking. This optimization enhances both bodily fluid flow and lipid adsorption while minimizing the removal of essential plasma components and ensuring unobstructed cell passage. In preclinical testing, LipClean significantly reduced triglyceride and cholesterol levels in an elderly rat model of hyperlipidemia and normalized lipid levels in blood samples from hypertensive patients. Importantly, purified blood maintained normal levels of blood cells and physiological and biochemical indicators after apheresis, highlighting LipClean's potential for managing hyperlipidemia-related disorders. This study, therefore, underscores the importance of interdisciplinary collaboration in driving medical device innovation.
Collapse
Affiliation(s)
- Hao Zheng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center at Nanjing University, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Jiangbangrui Chu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Shikang Li
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xun Tang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, China
| | - Shicheng Bi
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center at Nanjing University, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center at Nanjing University, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Youwen Yang
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang, 330013, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center at Nanjing University, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center at Nanjing University, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
4
|
Galluzzi G, Plaza C, Giannetta B, Priori S, Zaccone C. Time and climate roles in driving soil carbon distribution and stability in particulate and mineral-associated organic matter pools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178511. [PMID: 39824109 DOI: 10.1016/j.scitotenv.2025.178511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/20/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Understanding the accumulation and stability of soil organic matter (SOM) pools as a function of time (i.e., soil age) and climate (i.e., precipitation and temperature) represents a crucial challenge. This study aims at investigating the effect of both climate and time on SOM distribution into particulate and mineral-associated organic matter (POM and MAOM, respectively), using two chronosequences located along a climate gradient. The contribution of POM and MAOM to soil organic carbon (SOC) storage differs between the climo-chronosequences and with depth. The ratio between MAOM and POM pools (MAOM/POM) ranges from 0.9 to 2.0 and from 1.4 to 3.5 in the wetter and cooler and in the drier and warmer chronosequence, respectively. Regardless of the chronosequence, the MAOM/POM ratio increases with depth, highlighting a more important role of the mineral-associated fraction in carbon storage in deeper soils. The concentration of organic carbon in mineral-associated (MAOC) and particulate (POC) pools along the soil profile in the wetter and cooler chronosequence is 2× and 3× higher, respectively, than in soils from the drier and warmer one. In particular, in the wetter and cooler chronosequence, MAOC and POC concentrations decrease with soil age. In the drier and warmer chronosequence, only POC concentration decreases with soil age, whereas MAOC concentration generally increases. The thermal stability of the MAOM fraction increases with soil age and depth only in the drier and warmer climatic conditions, whereas no differences with depth occur in the wetter and cooler chronosequence. Furthermore, the MAOM energy density decreases with soil depth and age in both chronosequences. Independently of the chronosequence, POM represents the most labile pool with higher energy density. In conclusion, time and climate play a different role in SOC distribution between the pools and on their relative stability. Soil age drives MAOM stability in drier and warmer conditions, whereas a wetter and cooler climate determines a higher SOC accumulation in both pools, although these greater carbon stocks are negatively correlated with their stability.
Collapse
Affiliation(s)
- Giorgio Galluzzi
- Department of Biotechnology, University of Verona, strada Le Grazie 15, 37134 Verona, Italy
| | - Cesar Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Serrano 115 bis, 28006 Madrid, Spain
| | - Beatrice Giannetta
- Department of Biotechnology, University of Verona, strada Le Grazie 15, 37134 Verona, Italy
| | - Simone Priori
- Department of Agriculture and Forest Sciences, University of Tuscia, via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
5
|
Peddle SD, Hodgson RJ, Borrett RJ, Brachmann S, Davies TC, Erickson TE, Liddicoat C, Muñoz‐Rojas M, Robinson JM, Watson CD, Krauss SL, Breed MF. Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol Rev Camb Philos Soc 2025; 100:1-18. [PMID: 39075839 PMCID: PMC11718600 DOI: 10.1111/brv.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Soil microbiota are important components of healthy ecosystems. Greater consideration of soil microbiota in the restoration of biodiverse, functional, and resilient ecosystems is required to address the twin global crises of biodiversity decline and climate change. In this review, we discuss available and emerging practical applications of soil microbiota into (i) restoration planning, (ii) direct interventions for shaping soil biodiversity, and (iii) strategies for monitoring and predicting restoration trajectories. We show how better planning of restoration activities to account for soil microbiota can help improve progress towards restoration targets. We show how planning to embed soil microbiota experiments into restoration projects will permit a more rigorous assessment of the effectiveness of different restoration methods, especially when complemented by statistical modelling approaches that capitalise on existing data sets to improve causal understandings and prioritise research strategies where appropriate. In addition to recovering belowground microbiota, restoration strategies that include soil microbiota can improve the resilience of whole ecosystems. Fundamentally, restoration planning should identify appropriate reference target ecosystem attributes and - from the perspective of soil microbiota - comprehensibly consider potential physical, chemical and biological influences on recovery. We identify that inoculating ecologically appropriate soil microbiota into degraded environments can support a range of restoration interventions (e.g. targeted, broad-spectrum and cultured inoculations) with promising results. Such inoculations however are currently underutilised and knowledge gaps persist surrounding successful establishment in light of community dynamics, including priority effects and community coalescence. We show how the ecological trajectories of restoration sites can be assessed by characterising microbial diversity, composition, and functions in the soil. Ultimately, we highlight practical ways to apply the soil microbiota toolbox across the planning, intervention, and monitoring stages of ecosystem restoration and address persistent open questions at each stage. With continued collaborations between researchers and practitioners to address knowledge gaps, these approaches can improve current restoration practices and ecological outcomes.
Collapse
Affiliation(s)
- Shawn D. Peddle
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Riley J. Hodgson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Ryan J. Borrett
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures InstituteMurdoch University90 South StreetMurdochWestern Australia6150Australia
| | - Stella Brachmann
- University of Waikato Te Whare Wananga o Waikato Gate 1Knighton RoadHamilton3240New Zealand
| | - Tarryn C. Davies
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Todd E. Erickson
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- Centre for Engineering Innovation, School of Agriculture and EnvironmentThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Miriam Muñoz‐Rojas
- Department of Plant Biology and EcologyUniversity of SevilleC. San FernandoSevillaSpain
- School of Biological, Earth and Environmental Sciences, Centre for Ecosystem ScienceUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Carl D. Watson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Siegfried L. Krauss
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- School of Biological SciencesThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| |
Collapse
|
6
|
Wang Q, Bauke SL, Wang D, Zhao Y, Reichel R, Jones DL, Chadwick DR, Tietema A, Bol R. Amino acid-sulphur decomposition in agricultural soil profile along a long-term recultivation chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175409. [PMID: 39142402 DOI: 10.1016/j.scitotenv.2024.175409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The significance of sulphur (S) availability for crop yield and quality is highlighted under the global S deficiency scenario. However, little is known about the temporal trend in belowground organic S mineralisation when restoring land to productive agricultural systems, particularly for the deeper soil parts. Therefore, we investigated the decomposition of 35S-labelled methionine in surface (0-30 cm) and subsurface soil (30-60 cm and 60-90 cm) over a 48-year recultivation chronosequence (sampled after1, 8, 14, 24 and 48 years). Soil total sulphur (TS) significantly (p < 0.05) increased in surface soil but not in subsurface soils after 48 years of recultivation. Overall, the immobilisation of 35S-methionine (35S-MB) in subsurface soils relative to year 1 significantly decreased over the chronosequence but did not change in the surface samples. The 35S-MB values in subsurface soils were positively corrected with soil carbon (C) stoichiometry (Pearson correlation, p < 0.05), suggesting the immobilisation of methionine was likely constrained by microbial C demand in deep soil. Compared to year 1, 35S-SO42- released from 35S-methionine significantly declined throughout the older (≥ 8 years) soil profiles. Significant (p < 0.05) changes in the organic 35S partition (35S immobilisation and 35S released as sulphate) were observed in year 8 after the soil was recultivated with N-fixing alfalfa or fertilisers. Whereas, after that (≥ 14 years), soil organic S partition remained affected when conventional tillage and agricultural crops dominated this site. Indicating that the effect of recultivation on organic S decomposition depends on the manner of recultivation management. Our study contributes to an improved understanding of amino acid S and organic S mineralisation under severe anthropogenic disturbance.
Collapse
Affiliation(s)
- Qiqi Wang
- Institute of Bio- and Geosciences - Agrosphere (IBG-3), Forschungszentrum Juelich GmbH, 52425 Juelich, Germany; Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090, GE, Amsterdam, the Netherlands.
| | - Sara L Bauke
- Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
| | - Deying Wang
- School of Environmental and Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | - Yi Zhao
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Rüdiger Reichel
- Institute of Bio- and Geosciences - Agrosphere (IBG-3), Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | - David R Chadwick
- School of Environmental and Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | - Albert Tietema
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090, GE, Amsterdam, the Netherlands
| | - Roland Bol
- Institute of Bio- and Geosciences - Agrosphere (IBG-3), Forschungszentrum Juelich GmbH, 52425 Juelich, Germany; Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090, GE, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Zhang M, Yu X, Jiang G, Zhou L, Liu Z, Li X, Zhang T, Wen J, Xia L, Liu X, Yin H, Meng D. Response of bacterial ecological and functional properties to anthropogenic interventions during maturation of mine sand soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173354. [PMID: 38796007 DOI: 10.1016/j.scitotenv.2024.173354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Soil formation is a complex process that starts from the biological development. The ecological principles and biological function in soil are of great importance, whereas their response to anthropogenic intervention has been poorly understood. In this study, a 150-day microcosmic experiment was conducted with the addition of sludge and/or fermented wood chips (FWC) to promote the soil maturation. The results showed that, compared to the control (natural development without anthropogenic intervention), sludge, FWC, and their combination increased the availability of carbon, nitrogen, and potassium, and promoted the soil aggregation. They also enhanced the cellulase activity, microbial biomass carbon (MBC) and bacterial diversity, indicating that anthropogenic interventions promoted the maturation of sand soil. Molecular ecology network and functional analyses indicated that soil maturation was accomplished with the enhancement of ecosystem functionality and stability. Specifically, sludge promoted a transition in bacterial community function from denitrification to nitrification, facilitated the degradation of easily degradable organic matter, and enhanced the autotrophic nutritional mode. FWC facilitated the transition of bacterial function from denitrification to ammonification, promoted the degradation of recalcitrant organic matter, and simultaneously enhanced both autotrophic and heterotrophic nutritional modes. Although both sludge and FWC promoted the soil functionality, they showed distinct mechanistic actions, with sludge enhancing the physical structure, and FWC altering chemical composition. It is also worth emphasizing that sludge and FWC exhibited a synergistic effect in promoting biological development and ecosystem stability, thereby providing an effective avenue for soil maturation.
Collapse
Affiliation(s)
- Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Xi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Guoping Jiang
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Xing Li
- Hunan HIKEE Environmental Technology CO., LTD, Changsha 410221, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan urban and Rural Environmental Construction Co., Ltd, Changsha 410118, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Jing Wen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Shenzhen Zhongrui Construction Engineering Co., Ltd, Shenzhen 518126, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China.
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
8
|
Galluzzi G, Plaza C, Priori S, Giannetta B, Zaccone C. Soil organic matter dynamics and stability: Climate vs. time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172441. [PMID: 38614327 DOI: 10.1016/j.scitotenv.2024.172441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Climate and time are among the most important factors driving soil organic carbon (SOC) stability and accrual in mineral soils; however, their relative importance on SOC dynamics is still unclear. Therefore, understanding how these factors covary over a range of soil developmental stages is crucial to improve our knowledge of climate change impact on SOC accumulation and persistence. Two chronosequences located along a climate gradient were investigated to determine the main interactions among time (age) and climate (precipitation and temperature) on SOC stability and stock with depth. Considering a common depth (0-15 or 0-30 cm), in the drier chronosequence, the older soil showed the highest SOC stock, while the younger exhibited the lowest carbon accumulation. Considering the whole profile, the SOC stock increased with age. In the wetter chronosequence, the younger soil showed the highest SOC stock considering a common depth, whereas, when the entire profile is taken into account, the older one accumulated 2-3 times more SOC than the others. In both chronosequences, significant stocks of SOC (∼42 %) were accumulated below 30 cm. Soil organic matter stability, assessed by thermal analysis and heterotrophic respiration, increases with depth and age only in the drier chronosequence. Soils from the wetter chronosequence were instead characterized by a greater quantity of labile and/or not-stabilized SOC; here, the amorphous Fe/Al-rich secondary mineral weathering products showed an essential predictor function of SOC storage, although they do not seem to be involved in SOC stabilization mechanisms. Otherwise, the interaction of SOC with fine particles, short-range order minerals, and organo-metal complexes represent the significant stabilization mechanisms in soils from drier climate. The results highlighted how the age factor plays an unassuming role in geochemical processes influencing SOC dynamics; however, climate determines different trajectories of soil development and SOC dynamics for a given soil age. Thus, soil age shows a key role in SOC stabilization especially in drier climatic conditions, while wetter conditions determine an accumulation of a higher yet more labile amount of SOC.
Collapse
Affiliation(s)
- Giorgio Galluzzi
- Department of Biotechnology, University of Verona, strada Le Grazie 15, 37134 Verona, Italy
| | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Serrano 115 bis, 28006 Madrid, Spain
| | - Simone Priori
- Department of Agriculture and Forest Sciences, University of Tuscia, via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Beatrice Giannetta
- Department of Biotechnology, University of Verona, strada Le Grazie 15, 37134 Verona, Italy
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
9
|
Feng J, Liu YR, Eldridge D, Huang Q, Tan W, Delgado-Baquerizo M. Geologically younger ecosystems are more dependent on soil biodiversity for supporting function. Nat Commun 2024; 15:4141. [PMID: 38755127 PMCID: PMC11099028 DOI: 10.1038/s41467-024-48289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Soil biodiversity contains the metabolic toolbox supporting organic matter decomposition and nutrient cycling in the soil. However, as soil develops over millions of years, the buildup of plant cover, soil carbon and microbial biomass may relax the dependence of soil functions on soil biodiversity. To test this hypothesis, we evaluate the within-site soil biodiversity and function relationships across 87 globally distributed ecosystems ranging in soil age from centuries to millennia. We found that within-site soil biodiversity and function relationship is negatively correlated with soil age, suggesting a stronger dependence of ecosystem functioning on soil biodiversity in geologically younger than older ecosystems. We further show that increases in plant cover, soil carbon and microbial biomass as ecosystems develop, particularly in wetter conditions, lessen the critical need of soil biodiversity to sustain function. Our work highlights the importance of soil biodiversity for supporting function in drier and geologically younger ecosystems with low microbial biomass.
Collapse
Affiliation(s)
- Jiao Feng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| | - David Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain.
| |
Collapse
|
10
|
Wang X, Zhu J, Liu Q, Fu Q, Hu H, Huang Q. Role of genes encoding microbial carbohydrate-active enzymes in the accumulation and dynamics of organic carbon in subtropical forest soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170295. [PMID: 38278240 DOI: 10.1016/j.scitotenv.2024.170295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Microbial anabolism and catabolism regulate the accumulation and dynamics of soil organic carbon (SOC). However, very little attention has been paid to the role of microbial functional traits in the accumulation and dynamics of SOC in forest soils. In this study, nine forest soils were selected at three altitudes (600 m, 1200 m, and 1500 m) and three soil depths (0-15 cm, 15-30 cm, and 30-45 cm) located in Jiugong Mountain. Vertical traits of functional genes encoding microbial carbohydrate-active enzymes (CAZymes) were observed using metagenomic sequencing. Soil amino sugars were used as biomarkers to indicate microbial residue carbon (MRC). The results showed that GH1 (β-glucosidase: 147.49 TPM) and GH3 (β-glucosidase: 109.09 TPM) were the dominant genes for plant residue decomposition, and their abundance increased with soil depth and peaked in the deep soil at 600 m (GH1: 147.89 TPM; GH3: 109.59 TPM). The highest abundance of CAZymes for fungal and bacterial residue decomposition were GH18 (chitinase: 30.81 TPM) and GH23 (lysozyme: 58.02 TPM), respectively. The abundance of GH18 increased with soil depth, while GH23 showed the opposite trend. Moreover, MRC accumulation was significantly positively correlated with CAZymes involved in the degradation of hemicellulose (r = 0.577, p = 0.002). Compared with the soil before incubation, MRC in the topsoil at the low and middle altitudes after incubation increased by 4 % and 8 %, respectively, while MRC in the soils at 1500 m tended to decrease (p > 0.05). The mineralization capacity of SOC at 1500 m was significantly higher than that at 1200 m and 600 m (p < 0.05). Our results suggested that microbial function for degrading plant residue components, especially hemicellulose and lignin, contributed greatly to SOC accumulation and dynamics. These results were vital for understanding the roles of microbial functional traits in C cycling in forest.
Collapse
Affiliation(s)
- Xinran Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qianru Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Hou M, Zhao X, Wang Y, Lv X, Chen Y, Jiao X, Sui Y. Pedogenesis of typical zonal soil drives belowground bacterial communities of arable land in the Northeast China Plain. Sci Rep 2023; 13:14555. [PMID: 37666914 PMCID: PMC10477331 DOI: 10.1038/s41598-023-41401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
Belowground bacterial communities play essential roles in maintaining ecosystem multifunction, while our understanding of how and why their distribution patterns and community compositions may change with the distinct pedogenetic conditions of different soil types is still limited. Here, we evaluated the roles of soil physiochemical properties and biotic interactions in driving belowground bacterial community composition across three typical zonal soil types, including black calcium soil (QS), typical black soil (HL) and dark brown soil (BQL), with distinct pedogenesis on the Northeast China Plain. Changes in soil bacterial diversity and community composition in these three zonal soil types were strongly correlated with soil pedogenetic features. SOC concentrations in HL were higher than in QS and BQL, but bacterial diversity was low, and the network structure revealed greater stability and connectivity. The composition of the bacterial community correlated significantly with soil pH in QS but with soil texture in BQL. The bacterial co-occurrence network of HL had higher density and clustering coefficients but lower edges, and different keystone species of networks were also detected. This work provides a basic understanding of the driving mechanisms responsible for belowground bacterial biodiversity and distribution patterns over different pedogenetic conditions in agroecosystems.
Collapse
Affiliation(s)
- Meng Hou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Xiaorui Zhao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
| | - Yao Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Xuemei Lv
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, 150080, Harbin, People's Republic of China
| | - Yimin Chen
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China
| | - Xiaoguang Jiao
- College of Modern Agriculture and Eco-Environment, Heilongjiang University, 150080, Harbin, People's Republic of China.
| | - Yueyu Sui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, People's Republic of China.
- University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Jiang Y, Wang Z, Liu Y, Han Y, Wang Y, Wang Q, Liu T. Nematodes and their bacterial prey improve phosphorus acquisition by wheat. THE NEW PHYTOLOGIST 2023; 237:974-986. [PMID: 36285379 DOI: 10.1111/nph.18569] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Plant growth is greatly influenced by the rhizosphere microbiome, which has been traditionally investigated from a bottom-up perspective assessing how resources such as root exudates stimulate microbial growth and drive microbiome assembly. However, the importance of predation as top-down force on the soil microbiome remains largely underestimated. Here, we planted wheat both in natural and in sterilized soils inoculated with the key microbiome predators - bacterivorous nematodes - to assess how plant performance responds to top-down predation of the soil microbiome and specific plant growth-promoting bacteria, namely phosphate-solubilizing bacteria. We found that nematodes enriched certain groups (e.g. Actinobacteria, Chloroflexi, and Firmicutes) and strengthened microbial connectance (e.g. Actinobacteria and Proteobacteria). These changes in microbiome structure were associated with phosphate-solubilizing bacteria that facilitated phosphorus (P) cycling, leading to greater P uptake and biomass of wheat in both soils. However, the enhancement varied between nematode species, which may be attributed to the divergence of feeding behavior, as nematodes with weaker grazing intensity supported greater abundance of phosphate-solubilizing bacteria and better plant performance compared with nematodes with greater grazing intensity. These results confirmed the ecological importance of soil nematodes for ecosystem functions via microbial co-occurrence networks and suggested that the predation strength of nematodes determines the soil bacteria contribution to P biogeochemical cycling and plant growth.
Collapse
Affiliation(s)
- Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhonghua Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ye Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanlai Han
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yi Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiang Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ting Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
13
|
Rocha FI, Jesus EDC, Teixeira WG, Lumbreras JF, Clemente EDP, da Motta PEF, Borsanelli AC, Dutra IDS, de Oliveira AP. Soil type determines the magnitude of soil fertility changes by forest-to-pasture conversion in Western Amazonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158955. [PMID: 36155034 DOI: 10.1016/j.scitotenv.2022.158955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The deforestation of tropical forests raises environmental concerns worldwide. Removing the pristine forest impacts the soil, consequently affecting the environmental services it provides. Within this context, the main goal of this study was to determine how the conversion of the tropical rainforest to pasture affects soil fertility across an extended range of soil heterogeneity, including different soil types. We sampled 13 sites, among forests, recent pastures (≤7-year-old), and old pastures (≥10-year-old), on Acrisols, Ferralsols, Plinthosols, and Luvisols, across a ± 800 km geographical range in the Western Brazilian Amazon. Soils were classified taxonomically, and their superficial layer's chemical and physical properties (0-10 cm) were analyzed. Furthermore, we tested the sensibility of Actinobacteria and Proteobacteria to detect changes in these soil properties based on their ecological habitat. An inter-regional gradient of soil fertility was observed, and the sampling sites were clustered mostly by soil type and associated land use than by spatial distance. The Sum of bases, Ca + Mg, base saturation, Al saturation, and pH were consistently affected by land use, increasing after conversion to pasture, at different degrees and with a more pronounced effect on oxidic soils. The Sum of bases was the only property that increased significantly among the study sites (Radj = 0.860, p < 0.001), being able to detect the effect of anthropic land use on a larger coverage of soil types. Finally, the Actinobacteria:Proteobacteria ratio was also sensitive to the impact of forest-to-pasture conversion, with a higher ratio observed in pasture systems, and it was positively correlated with soil pH (rho = 0.469, p < 0.001). Our results consistently show that the forest-to-pasture conversion leads to strong alterations in the soil environment, with varying intensities depending on soil type.
Collapse
Affiliation(s)
- Fernando Igne Rocha
- Department of Soil Science, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil; National Agrobiology Research Center, Embrapa Agrobiologia, Seropédica, RJ, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fan K, Chu H, Eldridge DJ, Gaitan JJ, Liu YR, Sokoya B, Wang JT, Hu HW, He JZ, Sun W, Cui H, Alfaro FD, Abades S, Bastida F, Díaz-López M, Bamigboye AR, Berdugo M, Blanco-Pastor JL, Grebenc T, Duran J, Illán JG, Makhalanyane TP, Mukherjee A, Nahberger TU, Peñaloza-Bojacá GF, Plaza C, Verma JP, Rey A, Rodríguez A, Siebe C, Teixido AL, Trivedi P, Wang L, Wang J, Yang T, Zhou XQ, Zhou X, Zaady E, Tedersoo L, Delgado-Baquerizo M. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat Ecol Evol 2023; 7:113-126. [PMID: 36631668 DOI: 10.1038/s41559-022-01935-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023]
Abstract
While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation. Plant diversity only indirectly influenced multifunctionality in urban greenspaces via changes in soil conditions that were associated with soil biodiversity. These findings were maintained after controlling for climate, spatial context, soil properties, vegetation and management practices. This study provides solid evidence that conserving soil biodiversity in urban greenspaces is key to supporting multiple dimensions of ecosystem functioning, which is critical for the sustainability of urban ecosystems and human wellbeing.
Collapse
Affiliation(s)
- Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Juan J Gaitan
- National Institute of Agricultural Technology (INTA), Institute of Soil Science, Hurlingham, Argentina.,National University of Luján, Department of Technology, Luján, Argentina.,National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Blessing Sokoya
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Jun-Tao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Wei Sun
- Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Haiying Cui
- Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago, Chile
| | - Sebastian Abades
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago, Chile
| | | | | | - Adebola R Bamigboye
- Natural History Museum (Botany Unit), Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Miguel Berdugo
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain.,Institute of Integrative Biology, Department of Environment Systems Science, ETH Zurich, Univeritätstrasse, Zurich, Switzerland
| | | | - Tine Grebenc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Jorge Duran
- Misión Biolóxica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Spain.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Javier G Illán
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Arpan Mukherjee
- Plant-Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tina U Nahberger
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Gabriel F Peñaloza-Bojacá
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Brazil
| | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jay Prakash Verma
- Plant-Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Soil Microbiology Lab, Department of Soil Science, Federal University of Ceara, Fortaleza, Brazil
| | - Ana Rey
- Department of Biogeography and Global Change, National Museum of Natural History (MNCN), Spanish National Research Council (CSIC) C/ Serrano 115bis, Madrid, Spain
| | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
| | - Alberto L Teixido
- Departamento de Botância e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Boa Esperança, Cuiabá, Brazil
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Ling Wang
- Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Jianyong Wang
- Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Tianxue Yang
- Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Institute of Plant Sciences, Gilat Research Center, Negev, Israel
| | - Leho Tedersoo
- Department of Mycology and Microbiology, University of Tartu, Tartu, Estonia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain. .,Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
15
|
Moreno-Jiménez E, Maestre FT, Flagmeier M, Guirado E, Berdugo M, Bastida F, Dacal M, Díaz-Martínez P, Ochoa-Hueso R, Plaza C, Rillig MC, Crowther TW, Delgado-Baquerizo M. Soils in warmer and less developed countries have less micronutrients globally. GLOBAL CHANGE BIOLOGY 2023; 29:522-532. [PMID: 36305858 DOI: 10.1111/gcb.16478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Soil micronutrients are capital for the delivery of ecosystem functioning and food provision worldwide. Yet, despite their importance, the global biogeography and ecological drivers of soil micronutrients remain virtually unknown, limiting our capacity to anticipate abrupt unexpected changes in soil micronutrients in the face of climate change. Here, we analyzed >1300 topsoil samples to examine the global distribution of six metallic micronutrients (Cu, Fe, Mn, Zn, Co and Ni) across all continents, climates and vegetation types. We found that warmer arid and tropical ecosystems, present in the least developed countries, sustain the lowest contents of multiple soil micronutrients. We further provide evidence that temperature increases may potentially result in abrupt and simultaneous reductions in the content of multiple soil micronutrients when a temperature threshold of 12-14°C is crossed, which may be occurring on 3% of the planet over the next century. Altogether, our findings provide fundamental understanding of the global distribution of soil micronutrients, with direct implications for the maintenance of ecosystem functioning, rangeland management and food production in the warmest and poorest regions of the planet.
Collapse
Affiliation(s)
- Eduardo Moreno-Jiménez
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Maren Flagmeier
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Emilio Guirado
- Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Alicante, Spain
| | - Miguel Berdugo
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Felipe Bastida
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Murcia, Spain
| | - Marina Dacal
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Paloma Díaz-Martínez
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Raúl Ochoa-Hueso
- Department of Biology, Botany Area, University of Cádiz, Vitivinicultural and Agri-Food Research Institute (IVAGRO), Cádiz, Spain
| | - César Plaza
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Matthias C Rillig
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Thomas W Crowther
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Manuel Delgado-Baquerizo
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC., Sevilla, Spain
| |
Collapse
|
16
|
The neglected role of micronutrients in predicting soil microbial structure. NPJ Biofilms Microbiomes 2022; 8:103. [PMID: 36575178 PMCID: PMC9794713 DOI: 10.1038/s41522-022-00363-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Predicting the distribution patterns of soil microbial communities requires consideration of more environmental drivers. The effects of soil micronutrients on composition of microbial communities are largely unknown despite micronutrients closely relating to soil fertility and plant communities. Here we used data from 228 agricultural fields to identify the importance of micronutrients (iron, zinc, copper and manganese) in shaping structure of soil microbial communities (bacteria, fungi and protist) along latitudinal gradient over 3400 km, across diverse edaphic conditions and climatic gradients. We found that micronutrients explained more variations in the structure of microbial communities than macronutrients in maize soils. Moreover, micronutrients, particularly iron and copper, explained a unique percentage of the variation in structure of microbial communities in maize soils even after controlling for climate, soil physicochemical properties and macronutrients, but these effects were stronger for fungi and protist than for bacteria. The ability of micronutrients to predict the structure of soil microbial communities declined greatly in paddy soils. Machine learning approach showed that the addition of micronutrients substantially increased the predictive power by 9-17% in predicting the structure of soil microbial communities with up to 69-78% accuracy. These results highlighted the considerable contributions of soil micronutrients to microbial community structure, and advocated that soil micronutrients should be considered when predicting the structure of microbial communities in a changing world.
Collapse
|
17
|
Duniway MC, Benson C, Nauman TW, Knight A, Bradford JB, Munson SM, Witwicki D, Livensperger C, Van Scoyoc M, Fisk TT, Thoma D, Miller ME. Geologic, geomorphic, and edaphic underpinnings of dryland ecosystems: Colorado Plateau landscapes in a changing world. Ecosphere 2022. [DOI: 10.1002/ecs2.4273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | - Travis W. Nauman
- US Geological Survey Southwest Biological Science Center Moab Utah USA
| | - Anna Knight
- US Geological Survey Southwest Biological Science Center Moab Utah USA
| | - John B. Bradford
- US Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Seth M. Munson
- US Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Dana Witwicki
- National Park Service Northern Colorado Plateau Network Moab Utah USA
- National Park Service Natural Resource Condition Assessment Fort Collins Colorado USA
| | - Carolyn Livensperger
- National Park Service Northern Colorado Plateau Network Moab Utah USA
- National Park Service Capitol Reef National Park Fruita Utah USA
| | | | - Terry T. Fisk
- National Park Service Southeast Utah Group Parks Moab Utah USA
- National Park Service Water Resources Division Fort Collins Colorado USA
| | - David Thoma
- National Park Service Northern Colorado Plateau Network Moab Utah USA
| | - Mark E. Miller
- National Park Service Southeast Utah Group Parks Moab Utah USA
- National Park Service Wrangell‐St. Elias National Park and Preserve Copper Center Alaska USA
| |
Collapse
|
18
|
Abstract
Building highway and its biological protection system in a drought-affected shifting-sand desert is a great challenge. This challenge was completed by the construction of the Taklimakan Desert Highway Shelterbelt (TDHS)—the longest of its kind in the world (436 km). The TDHS can serve as a model for highway construction and desertification control using eco-friendly and cost-effective approaches in other desert regions. Notably, we proved that local saline groundwater irrigation offers potential advantages and opportunities for the growth of halophytes and sandy soil development in hyper-arid desert environments. Here, we systematically (1) summarize the project, its results, and vital technical issues of saline water irrigation; (2) address soil hydrological processes that play a crucial role in maintaining those systems; and (3) highlight useful insights for soil development, plant survival, and soil–plant–water–biota synergy mechanisms. Indeed, the TDHS project has provided a proof of concept for restoration and desert greening initiatives.
Collapse
|
19
|
Xiong W, Delgado-Baquerizo M, Shen Q, Geisen S. Pedogenesis shapes predator-prey relationships within soil microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154405. [PMID: 35276178 DOI: 10.1016/j.scitotenv.2022.154405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Pedogenesis determines soil physicochemical properties and many biodiversity facets, including belowground microbial bacteria and fungi. At the local scale, top-down predation by microbial protists regulates the soil microbiome, while the microbiome also affects protistan communities. However, it remains unknown how pedogenesis affects protistan communities and the potential protist-microbiome predator-prey relationships. With 435 soil samples representing different stages of pedogenesis ranging in soil age from centuries to millennia, we examined the influence of pedogenesis on the main protistan groups, and the interrelationships between protistan predators and microbial prey biomass. We revealed an enrichment in the diversity of total protists across pedogenesis and increasing richness of phototrophic protists in the medium compared with the early stages of pedogenesis. The richness of predatory protists accumulated throughout pedogenesis, which was more strongly determined by microbial biomass than environmental factors. Predator-prey associations were stronger in the young and the medium soils than in the older soils, likely because prey biomass accumulated in the latter and might be no longer limit predators. Together, our work provides evidence that pedogenesis shapes predatory protists differently than their prey, leading to shifts in predator-prey relationships. This knowledge is critical to better understand how soil food webs develop across soil development which might lead to changes in ecosystem functions.
Collapse
Affiliation(s)
- Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain; Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, 6700 ES Wageningen, the Netherlands.
| |
Collapse
|
20
|
Chen QL, Hu HW, Yan ZZ, Zhu YG, He JZ, Delgado-Baquerizo M. Cross-biome antibiotic resistance decays after millions of years of soil development. THE ISME JOURNAL 2022; 16:1864-1867. [PMID: 35354945 PMCID: PMC9213521 DOI: 10.1038/s41396-022-01225-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 05/27/2023]
Abstract
Soils harbor the most diverse naturally evolved antibiotic resistance genes (ARGs) on Earth, with implications for human health and ecosystem functioning. How ARGs evolve as soils develop over centuries, to millennia (i.e., pedogenesis), remains poorly understood, which introduces uncertainty in predictions of the dynamics of ARGs under changing environmental conditions. Here we investigated changes in the soil resistome by analyzing 16 globally distributed soil chronosequences, from centuries to millennia, spanning a wide range of ecosystem types and substrate age ranges. We show that ARG abundance and diversity decline only after millions of years of soil development as observed in very old chronosequences. Moreover, our data show increases in soil organic carbon content and microbial biomass as soil develops that were negatively correlated with the abundance and diversity of soil ARGs. This work reveals natural dynamics of soil ARGs during pedogenesis and suggests that such ecological patterns are predictable, which together advances our understanding of the environmental drivers of ARGs in terrestrial environments.
Collapse
Affiliation(s)
- Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Zhen-Zhen Yan
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Manuel Delgado-Baquerizo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain.
| |
Collapse
|
21
|
A Pantropical Overview of Soils across Tropical Dry Forest Ecoregions. SUSTAINABILITY 2022. [DOI: 10.3390/su14116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Pantropical variation in soils of the tropical dry forest (TDF) biome is enormously high but has been poorly characterized. To quantify variation in the global distribution of TDF soil physical and chemical properties in relation to climate and geology, we produced a synthesis using 7500 points of data with gridded fields representing lithologic, edaphic, and climatic characteristics. Our analyses reveal that 75 TDF ecoregions across five biogeographic domains (Afrotropical, Australasian, Indo-Malayan, Neotropical, and Oceanian) varied strongly with respect to parent material: sediment (57%), metamorphic (22%), volcanic (13%), and plutonic (7%). TDF ecoregions support remarkably high variability in soil suborders (32), with the Neotropical and Oceanian realms being especially diverse. As a whole, TDF soils trend strongly toward low fertility with strong variation across biogeographic domains. Similarly, the exhibited soil properties marked heterogeneity across biogeographic domains, with soil depth varying by an order of magnitude and total organic C, N, and P pools varying threefold. Organic C and N pool sizes were negatively correlated with mean annual temperature (MAT) and positively correlated with mean annual precipitation (MAP). By contrast, the distribution of soil P pools was positively influenced by both MAT and MAP and likely by soil geochemistry, due to high variations in soil parent material across the biogeographic domains. The results summarized here raise important questions as to how climate and parent material control soil biogeochemical processes in TDFs.
Collapse
|
22
|
Liu S, García-Palacios P, Tedersoo L, Guirado E, van der Heijden MGA, Wagg C, Chen D, Wang Q, Wang J, Singh BK, Delgado-Baquerizo M. Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nat Ecol Evol 2022; 6:900-909. [PMID: 35534625 DOI: 10.1038/s41559-022-01756-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/30/2022] [Indexed: 12/25/2022]
Abstract
Soil fungi are fundamental to plant productivity, yet their influence on the temporal stability of global terrestrial ecosystems, and their capacity to buffer plant productivity against extreme drought events, remain uncertain. Here we combined three independent global field surveys of soil fungi with a satellite-derived temporal assessment of plant productivity, and report that phylotype richness within particular fungal functional groups drives the stability of terrestrial ecosystems. The richness of fungal decomposers was consistently and positively associated with ecosystem stability worldwide, while the opposite pattern was found for the richness of fungal plant pathogens, particularly in grasslands. We further demonstrated that the richness of soil decomposers was consistently positively linked with higher resistance of plant productivity in response to extreme drought events, while that of fungal plant pathogens showed a general negative relationship with plant productivity resilience/resistance patterns. Together, our work provides evidence supporting the critical role of soil fungal diversity to secure stable plant production over time in global ecosystems, and to buffer against extreme climate events.
Collapse
Affiliation(s)
- Shengen Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China.,Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain.,Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, PR China
| | - Pablo García-Palacios
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Emilio Guirado
- Multidisciplinary Institute for Environment Studies 'Ramon Margalef', University of Alicante, Alicante, Spain.,Andalusian Center for Assessment and Monitoring of Global Change (CAESCG), University of Almeria, Almeria, Spain
| | - Marcel G A van der Heijden
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Cameron Wagg
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | - Dima Chen
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
| | - Qingkui Wang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, PR China.,School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain. .,Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
23
|
Pérez CA, Kim M, Aravena JC, Silva W. Diazotrophic activity and denitrification in two long-term chronosequences of maritime Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152234. [PMID: 34896140 DOI: 10.1016/j.scitotenv.2021.152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The main goals of this study were to identify whether key processes involved in microbial soil nitrogen transformations, such as diazotrophic activity and denitrification, the chemical properties of limiting elements in the soil, and microbial community structure, differ in the different successional stages of two long term chronosequences in maritime Antarctica. Moreover, we expect the rates of diazotrophic activity and denitrification to be stimulated by increases in air temperature and moisture. To answer these questions, we selected three stages in the succession (early, mid and late) in each of two well established chronosequences: three raised beaches in Ardley Island; and the Barton Peninsula, which includes two cosmogenically dated sites and the forefield of the Fourcade glacier. In the Ardley chronosequence, higher diazotrophic activity was found in the older successional stages, concomitant with an increase in the abundance of Cyanobacteria. In the Barton chronosequence, Cyanobacteria were only present and abundant (Microcoleus) in the early successional stage, coinciding with the highest diazotrophic activity. Denitrification in the Barton chronosequence tended to be highest at the mid successional sites, associated with the highest abundance of Rhodanobacter. In the Ardley chronosequence, the lowest abundance of Rhodanobacter was linked to lower denitrification rates in the mid successional stage. In the Ardley chronosequence, significant positive effects of passive warming and water addition on diazotrophic activity were detected in the first and the second years of the study respectively. In the Barton chronosequence on the other hand, there was no response to either passive warming or water addition, probably a manifestation of the higher nutrient limitation in this site. Denitrification showed no response to either warming or water addition. Thus, the response of microbial nitrogen transformations to global change is highly dependent on the environmental setting, such as soil origin, age and climate regime.
Collapse
Affiliation(s)
- Cecilia A Pérez
- Institute of Ecology and Biodiversity (IEB), Las Palmeras, 3425 Santiago, Chile.
| | - Mincheol Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Juan Carlos Aravena
- Centro de Investigación Gaia Antártica (CIGA), Universidad de Magallanes, Punta Arenas, Chile
| | - Wladimir Silva
- Institute of Ecology and Biodiversity (IEB), Las Palmeras, 3425 Santiago, Chile
| |
Collapse
|
24
|
Zhang H, Yu Y, Zha T, Rodrigo-Comino J. Assessing previous land-vegetation productivity relationships on mountainous areas hosting coming Winter Olympics Games in 2022. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147870. [PMID: 34134366 DOI: 10.1016/j.scitotenv.2021.147870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
In order to prevent land degradation in areas before hosting big events such as the Winter Olympic Games (WOG), developing strategic vegetation restoration plans is key. To evaluate four experimental areas with different degrees of human impacts located in the Chongli District, northern Hebei Province, China, where the coming WOG 2022 will take considering: i) the feedback mechanisms between vegetation and soil in the process of future vegetation restoration; ii) the vegetation productivity of land in different land-use types; iii) the management mode considering the sustainable development as the primary goal. To achieve these goals, we applied a minimum soil data set (MDS) to screen the most relevant indicators (soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), available potassium (AK), available nitrogen (AN), soil bulk density (BD), soil porosity (SP), pH, clay, silt, sand and gravel), and the nonlinear scoring method to establish a soil quality index (SQI). For this purpose, 400 soil samples (0-20 cm depth), the total biomass of one natural grassland (NG) and abandoned farmland (AF), and the growing stock of natural secondary forest (NF) and a larch plantation (LP). The results showed that the SQI can be established based on TN, silt, TP and gravel. Under LP and AF land-use type, vegetation showing a poor effect on the improvement of soil quality (SQIs were significantly lower than the NF and NG). It was also observed that above 1700 m, the growing stock of artificial vegetation exceeds the range of vegetation productivity (about 165 m3·h-1) that the land can carry under the LP. We concluded that the main reason is the excessive depletion of N and P after human impacts. On the other hand, the SQI of NF and NG were higher, which is due to the significant improvement of soil quality by the conservation of the vegetation, so that no longer limited by the spatial distribution law, also showing higher vegetation productivity of land at different altitudes. This demonstrates that it is key to develop effective restoration plans considering the soil-vegetation relationship status of the NF and NG land-use types in this area in the territories used by the activities of the WOG 2022.
Collapse
Affiliation(s)
- Hengshuo Zhang
- School of Soil and Water Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China; Jixian National Forest Ecosystem Research Network Station, CNERN, Beijing Forestry University, Beijing 100083, China
| | - Yang Yu
- School of Soil and Water Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China; Jixian National Forest Ecosystem Research Network Station, CNERN, Beijing Forestry University, Beijing 100083, China.
| | - Tonggang Zha
- School of Soil and Water Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China; Jixian National Forest Ecosystem Research Network Station, CNERN, Beijing Forestry University, Beijing 100083, China.
| | - Jesús Rodrigo-Comino
- Department of Physical Geography, University of Trier, 54296 Trier, Germany; Soil Erosion and Degradation Research Group, Department of Geography, Valencia University, Blasco Ibàñez, 28, 46010 Valencia, Spain
| |
Collapse
|
25
|
De Deyn GB, Kooistra L. The role of soils in habitat creation, maintenance and restoration. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200170. [PMID: 34365817 PMCID: PMC8349624 DOI: 10.1098/rstb.2020.0170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Soils are the fundament of terrestrial ecosystems. Across the globe we find different soil types with different properties resulting from the interacting soil forming factors: parent material, climate, topography, organisms and time. Here we present the role of soils in habitat formation and maintenance in natural systems, and reflect on how humans have modified soils from local to global scale. Soils host a tremendous diversity of life forms, most of them microscopic in size. We do not yet know all the functionalities of this diversity at the level of individual taxa or through their interactions. However, we do know that the interactions and feedbacks between soil life, plants and soil chemistry and physics are essential for soil and habitat formation, maintenance and restoration. Moreover, the couplings between soils and major cycles of carbon, nutrients and water are essential for supporting the production of food, feed and fibre, drinking water and greenhouse gas balances. Soils take thousands of years to form, yet are lost very quickly through a multitude of stressors. The current status of our soils globally is worrisome, yet with concerted action we can bend the curve and create win-wins of soil and habitat conservation, regeneration and sustainable development. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Gerlinde B De Deyn
- Soil Biology Group, Environmental Sciences, Wageningen University, Droevendaalsesteeg 3, 6700PB Wageningen, The Netherlands
| | - Lammert Kooistra
- Laboratory of Geo-Information Science and Remote Sensing, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
26
|
Liu YR, Eldridge DJ, Zeng XM, Wang J, Singh BK, Delgado-Baquerizo M. Global diversity and ecological drivers of lichenised soil fungi. THE NEW PHYTOLOGIST 2021; 231:1210-1219. [PMID: 33914920 DOI: 10.1111/nph.17433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/16/2021] [Indexed: 05/26/2023]
Abstract
Lichens play crucial roles in sustaining the functioning of terrestrial ecosystems; however, the diversity and ecological factors associated with lichenised soil fungi remain poorly understood. To address this knowledge gap, we used a global field survey including information on fungal sequences of topsoils from 235 terrestrial ecosystems. We identified 880 lichenised fungal phylotypes across nine biomes ranging from deserts to tropical forests. The diversity and proportion of lichenised soil fungi peaked in shrublands and dry grasslands. Aridity index, plant cover and soil pH were the most important factors associated with the distribution of lichenised soil fungi. Furthermore, we identified Endocarpon, Verrucaria and Rinodina as some of the most dominant lichenised genera across the globe, and they had similar environmental preferences to the lichenised fungal community. In addition, precipitation seasonality and mean diurnal temperature range were also important in predicting the proportion of these dominant genera. Using this information, we were able to create the first global maps of the richness and the proportion of dominant genera of lichenised fungi. This work provides new insight into the global distribution and ecological preferences of lichenised soil fungi, and supports their dominance in drylands across the globe.
Collapse
Affiliation(s)
- Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiao-Min Zeng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith South DC, NSW, 2751, Australia
| | - Manuel Delgado-Baquerizo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, 41013, Spain
| |
Collapse
|
27
|
Guo Y, Xu T, Cheng J, Wei G, Lin Y. Above- and belowground biodiversity drives soil multifunctionality along a long-term grassland restoration chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145010. [PMID: 33578173 DOI: 10.1016/j.scitotenv.2021.145010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Restoring degraded land is an efficient strategy for improving biodiversity and ecosystem functioning. However, the effects of aboveground and belowground biodiversity on multiple ecosystem functions (multifunctionality) during ecological restoration are not well understood. Here, the relationships between plant and microbial communities and soil multifunctionality were assessed in a 30-year natural grassland restoration chronosequence on the Loess Plateau, China. Soil multifunctionality, in relation to the carbon, nitrogen, phosphorus, and sulfur cycles, was quantified. Soil bacterial and fungal communities were analyzed by high-throughput sequencing using the Illumina HiSeq platform. The results showed that soil multifunctionality was significantly increased with the increasing period of grassland restoration. Plant and bacterial diversity, rather than fungal diversity, were significantly and positively correlated with soil multifunctionality based on single functions, averaging, and multiple threshold approaches. Random forest and structural equation modeling analyses showed that soil multifunctionality was affected by both biotic and abiotic factors. Plant diversity and bacterial community composition had direct effects, whereas plant community composition had both direct and indirect effects on soil multifunctionality. Restoration period and soil pH indirectly affected soil multifunctionality by altering plant and bacterial communities. This work demonstrates the importance of aboveground and belowground biodiversity in driving soil multifunctionality during grassland restoration. The results provide empirical evidence that conserving biodiversity is crucial for maintaining ecosystem functions in restored areas.
Collapse
Affiliation(s)
- Yanqing Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tengqi Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jimin Cheng
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, PR China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yanbing Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
28
|
Dacal M, Delgado-Baquerizo M, Barquero J, Berhe AA, Gallardo A, Maestre FT, García-Palacios P. Temperature Increases Soil Respiration Across Ecosystem Types and Soil Development, But Soil Properties Determine the Magnitude of This Effect. Ecosystems 2021. [DOI: 10.1007/s10021-021-00648-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Eisenhauer N, Buscot F, Heintz-Buschart A, Jurburg SD, Küsel K, Sikorski J, Vogel HJ, Guerra CA. The multidimensionality of soil macroecology. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2021; 30:4-10. [PMID: 33692654 PMCID: PMC7116881 DOI: 10.1111/geb.13211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one-quarter of the biodiversity of the Earth. Building on these important developments, a recent paper in Global Ecology and Biogeography outlined promising methods and approaches to advance soil macroecology. Among other recommendations, White and colleagues introduced the concept of a spatial three-dimensionality in soil macroecology by considering the different spheres of influence and scales, as soil organism size ranges vary from bacteria to macro- and megafauna. Here, we extend this concept by discussing three additional dimensions (biological, physical, and societal) that are crucial to steer soil macroecology from pattern description towards better mechanistic understanding. In our view, these are the requirements to establish it as a predictive science that can inform policy about relevant nature and management conservation actions. We highlight the need to explore temporal dynamics of soil biodiversity and functions across multiple temporal scales, integrating different facets of biodiversity (i.e., variability in body size, life-history traits, species identities, and groups of taxa) and their relationships to multiple ecosystem functions, in addition to the feedback effects between humans and soil biodiversity. We also argue that future research needs to consider effective soil conservation policy and management in combination with higher awareness of the contributions of soil-based nature's contributions to people. To verify causal relationships, soil macroecology should be paired with local and globally distributed experiments. The present paper expands the multidimensional perspective on soil macroecology to guide future research contents and funding. We recommend considering these multiple dimensions in projected global soil biodiversity monitoring initiatives.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - François Buscot
- Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
| | - Stephanie D. Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kirsten Küsel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Johannes Sikorski
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Hans-Jörg Vogel
- Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
| | - Carlos A. Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle Wittenberg, Halle (Saale), Germany
| |
Collapse
|