1
|
Contemori G, Guenot J, Cottereau BR, Trotter Y, Battaglini L, Bertamini M. Neural and Perceptual Adaptations in Bilateral Macular Degeneration: An Integrative Review. Neuropsychologia 2025:109165. [PMID: 40345486 DOI: 10.1016/j.neuropsychologia.2025.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/03/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Bilateral age-related macular degeneration (AMD) results in central vision loss, affecting the fovea-associated cortical regions. This review examines neuroimaging and psychophysical evidence of spontaneous neural adaptation in acquired bilateral central scotoma. Early visual brain areas show reduced cortical thickness and axonal integrity due to postsynaptic (anterograde) degeneration. Contrary to animal models, evidence for spontaneous adaptation in the primary visual cortex (V1) is limited. Activity in the lesion projection zone (LPZ), previously seen as extensive cortical remapping, may result from non-retinotopic peripheral-to-foveal feedback, sharing substrates with healthy retinal feedforward processes. Preferred retinal loci (PRLs) are influenced more by location and task than by residual vision quality. Reduced lateral masking in the PRL may reflect decreased contrast sensitivity from retinal damage, rather than genuine adaptive mechanisms. Weakened crowding in the PRL is explained by transient adaptation in healthy subjects to artificial scotomas, not by long-term plasticity. Higher visual areas may show compensatory mechanisms enhancing complex tasks like symmetry, face, and motion discrimination. Leveraging spontaneous adaptation through perceptual learning-based treatments can preserve residual visual abilities. Because of limited evidence for spontaneous reorganization in AMD, behavioural training and emerging techniques are crucial for optimal treatment efficacy.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Jade Guenot
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| | - Benoit R Cottereau
- CerCo UMR 5549, CNRS - Université Toulouse III, Toulouse, France; IPAL, CNRS IRL 2955, Singapore, Singapore
| | - Yves Trotter
- CerCo UMR 5549, CNRS - Université Toulouse III, Toulouse, France
| | - Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy; Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy; Neuro.Vis.U.S, University of Padova, Padova, Italy
| | - Marco Bertamini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Ofir N, Landau AN. Motor preparation tracks decision boundary crossing rather than accumulated evidence in temporal decision-making. J Neurosci 2025; 45:e1675242025. [PMID: 40068870 PMCID: PMC12019114 DOI: 10.1523/jneurosci.1675-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 02/01/2025] [Indexed: 04/26/2025] Open
Abstract
Interval timing, the ability of animals to estimate the passage of time, is thought to involve diverse neural processes rather than a single central "clock" (Paton & Buonomano, 2018). Each of the different processes engaged in interval timing follows a different dynamic path, according to its specific function. For example, attention tracks anticipated events, such as offsets of intervals (Rohenkohl & Nobre, 2011), while motor processes control the timing of the behavioral output (De Lafuente et al., 2024). However, which processes are involved and how they are orchestrated over time to produce a temporal decision remains unknown. Here, we study motor preparation in the temporal bisection task, in which Human (Female and male) participants categorized intervals as "long" or "short". In contrast to typical perceptual decisions, where motor plans for all response alternatives are prepared simultaneously (Shadlen & Kiani, 2013), we find that temporal bisection decisions develop sequentially. While preparation for "long" responses was already underway before interval offset, no preparation was found for "short" responses. Furthermore, within intervals categorized as "long", motor preparation was stronger at interval offset for faster responses. Our findings support the two-stage model of temporal decisions, where "long" decisions are considered during the interval itself, while "short" decisions are only considered after the interval is over. Viewed from a wider perspective, our study offers methods to study the neural mechanisms of temporal decisions, by studying the multiple processes that produce them.Significance Statement Interval timing is thought to rely on multiple neural processes, yet little is known about which processes are involved, and how they are organized in time. We recorded the EEG of Human participants while they performed a simple temporal decision task, and focused on mu-beta activity, a signature of motor preparation. In typical non-temporal perceptual decisions, mu-beta activity reflects the accumulation of evidence. We find that in temporal decision-making, mu-beta reflects the commitment of the decision instead. This distinction stems from the uniqueness of temporal decisions, in which alternatives are considered sequentially rather than simultaneously. Studying temporal decisions as the dynamic orchestration of multiple neural processes offers a new approach to study the neural mechanisms underlying the perception of time.
Collapse
Affiliation(s)
- Nir Ofir
- Departments of Psychology, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayelet N. Landau
- Departments of Psychology, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom
| |
Collapse
|
3
|
O’Reilly D, Bolam J, Delis I, Utley A. Effect of a Plant-Based Nootropic Supplement on Perceptual Decision-Making and Brain Network Interdependencies: A Randomised, Double-Blinded, and Placebo-Controlled Study. Brain Sci 2025; 15:226. [PMID: 40149748 PMCID: PMC11940127 DOI: 10.3390/brainsci15030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Natural nootropic compounds are evidenced to restore brain function in clinical and older populations and are purported to enhance cognitive abilities in healthy cohorts. This study aimed to provide neurocomputational insight into the discrepancies between the remarkable self-reports and growing interest in nootropics among healthy adults and the inconclusive performance-enhancing effects found in the literature. METHODS Towards this end, we devised a randomised, double-blinded, and placebo-controlled study where participants performed a visual categorisation task prior to and following 60 days of supplementation with a plant-based nootropic, while electroencephalographic (EEG) signals were concurrently captured. RESULTS We found that although no improvements in choice accuracy or reaction times were observed, the application of multivariate information-theoretic measures to the EEG source space showed broadband increases in similar and complementary interdependencies across brain networks of various spatial scales. These changes not only resulted in localised increases in the redundancy among brain network interactions but also more significant and widespread increases in synergy, especially within the delta frequency band. CONCLUSIONS Our findings suggest that natural nootropics can improve overall brain network cohesion and energetic efficiency, computationally demonstrating the beneficial effects of natural nootropics on brain health. However, these effects could not be related to enhanced rapid perceptual decision-making performance in a healthy adult sample. Future research investigating these specific compounds as cognitive enhancers in healthy populations should focus on complex cognition in deliberative tasks (e.g., creativity, learning) and over longer supplementation durations. CLINICAL TRIALS REGISTRATION NUMBER NCT06689644.
Collapse
Affiliation(s)
- David O’Reilly
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (J.B.); (I.D.); (A.U.)
| | - Joshua Bolam
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (J.B.); (I.D.); (A.U.)
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Ioannis Delis
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (J.B.); (I.D.); (A.U.)
| | - Andrea Utley
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (J.B.); (I.D.); (A.U.)
| |
Collapse
|
4
|
Gao Y, Cai YC, Liu DY, Yu J, Wang J, Li M, Xu B, Wang T, Chen G, Northoff G, Bai R, Song XM. GABAergic inhibition in human hMT+ predicts visuo-spatial intelligence mediated through the frontal cortex. eLife 2024; 13:RP97545. [PMID: 39352734 PMCID: PMC11444681 DOI: 10.7554/elife.97545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
The prevailing opinion emphasizes fronto-parietal network (FPN) is key in mediating general fluid intelligence (gF). Meanwhile, recent studies show that human MT complex (hMT+), located at the occipito-temporal border and involved in 3D perception processing, also plays a key role in gF. However, the underlying mechanism is not clear, yet. To investigate this issue, our study targets visuo-spatial intelligence, which is considered to have high loading on gF. We use ultra-high field magnetic resonance spectroscopy (MRS) to measure GABA/Glu concentrations in hMT+ combining resting-state fMRI functional connectivity (FC), behavioral examinations including hMT+ perception suppression test and gF subtest in visuo-spatial component. Our findings show that both GABA in hMT+ and frontal-hMT+ functional connectivity significantly correlate with the performance of visuo-spatial intelligence. Further, serial mediation model demonstrates that the effect of hMT+ GABA on visuo-spatial gF is fully mediated by the hMT+ frontal FC. Together our findings highlight the importance in integrating sensory and frontal cortices in mediating the visuo-spatial component of general fluid intelligence.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Chun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Yu Liu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Juan Yu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jue Wang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Bin Xu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tengfei Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Gang Chen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Hangzhou, China
| | - Ruiliang Bai
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Park H, Arazi A, Talluri BC, Celotto M, Panzeri S, Stocker AA, Donner TH. Confirmation Bias through Selective Use of Evidence in Human Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600060. [PMID: 38979146 PMCID: PMC11230165 DOI: 10.1101/2024.06.21.600060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Decision-makers often process new evidence selectively, depending on their current beliefs about the world. We asked whether such confirmation biases result from biases in the encoding of sensory evidence in the brain, or alternatively in the utilization of encoded evidence for behavior. Human participants estimated the source of a sequence of visual-spatial evidence samples while we measured cortical population activity with magnetoencephalography (MEG). Halfway through the sequence, participants were prompted to judge the more likely source category. Their processing of subsequent evidence depended on its consistency with the previously chosen category, but the encoding of evidence in cortical activity did not. Instead, the encoded evidence in parietal and primary visual cortex contributed less to the estimation report when that evidence was inconsistent with the previous choice. We conclude that confirmation bias originates from the way in which decision-makers utilize information encoded in the brain. This provides room for deliberative control.
Collapse
Affiliation(s)
- Hame Park
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Ayelet Arazi
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Bharath Chandra Talluri
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, USA
| | - Marco Celotto
- Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano Di Tecnologia, 38068, Rovereto, Italy
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Alan A Stocker
- Department of Psychology, University of Pennsylvania, 3710 Hamilton walk Philadelphia, PA 19106 USA
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-University Berlin, Philippstr. 13, Haus 6, 10115 Berlin
| |
Collapse
|
6
|
Monov G, Stein H, Klock L, Gallinat J, Kühn S, Lincoln T, Krkovic K, Murphy PR, Donner TH. Linking Cognitive Integrity to Working Memory Dynamics in the Aging Human Brain. J Neurosci 2024; 44:e1883232024. [PMID: 38760163 PMCID: PMC11211717 DOI: 10.1523/jneurosci.1883-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
Aging is accompanied by a decline of working memory, an important cognitive capacity that involves stimulus-selective neural activity that persists after stimulus presentation. Here, we unraveled working memory dynamics in older human adults (male and female) including those diagnosed with mild cognitive impairment (MCI) using a combination of behavioral modeling, neuropsychological assessment, and MEG recordings of brain activity. Younger adults (male and female) were studied with behavioral modeling only. Participants performed a visuospatial delayed match-to-sample task under systematic manipulation of the delay and distance between sample and test stimuli. Their behavior (match/nonmatch decisions) was fit with a computational model permitting the dissociation of noise in the internal operations underlying the working memory performance from a strategic decision threshold. Task accuracy decreased with delay duration and sample/test proximity. When sample/test distances were small, older adults committed more false alarms than younger adults. The computational model explained the participants' behavior well. The model parameters reflecting internal noise (not decision threshold) correlated with the precision of stimulus-selective cortical activity measured with MEG during the delay interval. The model uncovered an increase specifically in working memory noise in older compared with younger participants. Furthermore, in the MCI group, but not in the older healthy controls, internal noise correlated with the participants' clinically assessed cognitive integrity. Our results are consistent with the idea that the stability of working memory contents deteriorates in aging, in a manner that is specifically linked to the overall cognitive integrity of individuals diagnosed with MCI.
Collapse
Affiliation(s)
- Gina Monov
- Section of Computational Cognitive Neuroscience, Department of Neurophysiology & Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Henrik Stein
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Leonie Klock
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Juergen Gallinat
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Simone Kühn
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tania Lincoln
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg 20146, Germany
| | - Katarina Krkovic
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg 20146, Germany
| | - Peter R Murphy
- Section of Computational Cognitive Neuroscience, Department of Neurophysiology & Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Department of Psychology, Maynooth University, Co. Kildare, Ireland
| | - Tobias H Donner
- Section of Computational Cognitive Neuroscience, Department of Neurophysiology & Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin 10115, Germany
| |
Collapse
|
7
|
Toso A, Wermuth AP, Arazi A, Braun A, Jong TG', Uhlhaas PJ, Donner TH. 40 Hz Steady-State Response in Human Auditory Cortex Is Shaped by Gabaergic Neuronal Inhibition. J Neurosci 2024; 44:e2029232024. [PMID: 38670804 PMCID: PMC11170946 DOI: 10.1523/jneurosci.2029-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 04/28/2024] Open
Abstract
The 40 Hz auditory steady-state response (ASSR), an oscillatory brain response to periodically modulated auditory stimuli, is a promising, noninvasive physiological biomarker for schizophrenia and related neuropsychiatric disorders. The 40 Hz ASSR might be amplified by synaptic interactions in cortical circuits, which are, in turn, disturbed in neuropsychiatric disorders. Here, we tested whether the 40 Hz ASSR in the human auditory cortex depends on two key synaptic components of neuronal interactions within cortical circuits: excitation via N-methyl-aspartate glutamate (NMDA) receptors and inhibition via gamma-amino-butyric acid (GABA) receptors. We combined magnetoencephalography (MEG) recordings with placebo-controlled, low-dose pharmacological interventions in the same healthy human participants (13 males, 7 females). All participants exhibited a robust 40 Hz ASSR in auditory cortices, especially in the right hemisphere, under a placebo. The GABAA receptor-agonist lorazepam increased the amplitude of the 40 Hz ASSR, while no effect was detectable under the NMDA blocker memantine. Our findings indicate that the 40 Hz ASSR in the auditory cortex involves synaptic (and likely intracortical) inhibition via the GABAA receptor, thus highlighting its utility as a mechanistic signature of cortical circuit dysfunctions involving GABAergic inhibition.
Collapse
Affiliation(s)
- Alessandro Toso
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| | - Annika P Wermuth
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| | - Ayelet Arazi
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| | - Anke Braun
- Department of Psychiatry, Charité Universitätsmedizin, Berlin 10117, Germany
| | - Tineke Grent-'t Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin 13353, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin 13353, Germany
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg- Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
8
|
Xie T, Adamek M, Cho H, Adamo MA, Ritaccio AL, Willie JT, Brunner P, Kubanek J. Graded decisions in the human brain. Nat Commun 2024; 15:4308. [PMID: 38773117 PMCID: PMC11109249 DOI: 10.1038/s41467-024-48342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Decision-makers objectively commit to a definitive choice, yet at the subjective level, human decisions appear to be associated with a degree of uncertainty. Whether decisions are definitive (i.e., concluding in all-or-none choices), or whether the underlying representations are graded, remains unclear. To answer this question, we recorded intracranial neural signals directly from the brain while human subjects made perceptual decisions. The recordings revealed that broadband gamma activity reflecting each individual's decision-making process, ramped up gradually while being graded by the accumulated decision evidence. Crucially, this grading effect persisted throughout the decision process without ever reaching a definite bound at the time of choice. This effect was most prominent in the parietal cortex, a brain region traditionally implicated in decision-making. These results provide neural evidence for a graded decision process in humans and an analog framework for flexible choice behavior.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Markus Adamek
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Hohyun Cho
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Matthew A Adamo
- Department of Neurosurgery, Albany Medical College, Albany, NY, 12208, USA
| | - Anthony L Ritaccio
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jon T Willie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Peter Brunner
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
9
|
Dijkstra N. Uncovering the Role of the Early Visual Cortex in Visual Mental Imagery. Vision (Basel) 2024; 8:29. [PMID: 38804350 PMCID: PMC11130976 DOI: 10.3390/vision8020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
The question of whether the early visual cortex (EVC) is involved in visual mental imagery remains a topic of debate. In this paper, I propose that the inconsistency in findings can be explained by the unique challenges associated with investigating EVC activity during imagery. During perception, the EVC processes low-level features, which means that activity is highly sensitive to variation in visual details. If the EVC has the same role during visual mental imagery, any change in the visual details of the mental image would lead to corresponding changes in EVC activity. Within this context, the question should not be whether the EVC is 'active' during imagery but how its activity relates to specific imagery properties. Studies using methods that are sensitive to variation in low-level features reveal that imagery can recruit the EVC in similar ways as perception. However, not all mental images contain a high level of visual details. Therefore, I end by considering a more nuanced view, which states that imagery can recruit the EVC, but that does not mean that it always does so.
Collapse
Affiliation(s)
- Nadine Dijkstra
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1E 6BT, UK
| |
Collapse
|
10
|
Gherman S, Markowitz N, Tostaeva G, Espinal E, Mehta AD, O'Connell RG, Kelly SP, Bickel S. Intracranial electroencephalography reveals effector-independent evidence accumulation dynamics in multiple human brain regions. Nat Hum Behav 2024; 8:758-770. [PMID: 38366105 DOI: 10.1038/s41562-024-01824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024]
Abstract
Neural representations of perceptual decision formation that are abstracted from specific motor requirements have previously been identified in humans using non-invasive electrophysiology; however, it is currently unclear where these originate in the brain. Here we capitalized on the high spatiotemporal precision of intracranial EEG to localize such abstract decision signals. Participants undergoing invasive electrophysiological monitoring for epilepsy were asked to judge the direction of random-dot stimuli and respond either with a speeded button press (N = 24), or vocally, after a randomized delay (N = 12). We found a widely distributed motor-independent network of regions where high-frequency activity exhibited key characteristics consistent with evidence accumulation, including a gradual buildup that was modulated by the strength of the sensory evidence, and an amplitude that predicted participants' choice accuracy and response time. Our findings offer a new view on the brain networks governing human decision-making.
Collapse
Affiliation(s)
- Sabina Gherman
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| | - Noah Markowitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Gelana Tostaeva
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Elizabeth Espinal
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Ashesh D Mehta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Departments of Neurology and Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Redmond G O'Connell
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Simon P Kelly
- School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland
| | - Stephan Bickel
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Departments of Neurology and Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
| |
Collapse
|
11
|
Contemori G, Oletto CM, Battaglini L, Bertamini M. On the relationship between foveal mask interference and mental imagery in peripheral object recognition. Proc Biol Sci 2024; 291:20232867. [PMID: 38471562 DOI: 10.1098/rspb.2023.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
A delayed foveal mask affects perception of peripheral stimuli. The effect is determined by the timing of the mask and by the similarity with the peripheral stimulus. A congruent mask enhances performance, while an incongruent one impairs it. It is hypothesized that foveal masks disrupt a feedback mechanism reaching the foveal cortex. This mechanism could be part of a broader circuit associated with mental imagery, but this hypothesis has not as yet been tested. We investigated the link between mental imagery and foveal feedback. We tested the relationship between performance fluctuations caused by the foveal mask-measured in terms of discriminability (d') and criterion (C)-and the scores from two questionnaires designed to assess mental imagery vividness (VVIQ) and another exploring object imagery, spatial imagery and verbal cognitive styles (OSIVQ). Contrary to our hypotheses, no significant correlations were found between VVIQ and the mask's impact on d' and C. Neither the object nor spatial subscales of OSIVQ correlated with the mask's impact. In conclusion, our findings do not substantiate the existence of a link between foveal feedback and mental imagery. Further investigation is needed to determine whether mask interference might occur with more implicit measures of imagery.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, Padova, Italy
| | | | - Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marco Bertamini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Braun A, Donner TH. Adaptive biasing of action-selective cortical build-up activity by stimulus history. eLife 2023; 12:RP86740. [PMID: 38054952 DOI: 10.7554/elife.86740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Decisions under uncertainty are often biased by the history of preceding sensory input, behavioral choices, or received outcomes. Behavioral studies of perceptual decisions suggest that such history-dependent biases affect the accumulation of evidence and can be adapted to the correlation structure of the sensory environment. Here, we systematically varied this correlation structure while human participants performed a canonical perceptual choice task. We tracked the trial-by-trial variations of history biases via behavioral modeling and of a neural signature of decision formation via magnetoencephalography (MEG). The history bias was flexibly adapted to the environment and exerted a selective effect on the build-up (not baseline level) of action-selective motor cortical activity during decision formation. This effect added to the impact of the current stimulus. We conclude that the build-up of action plans in human motor cortical circuits is shaped by dynamic prior expectations that result from an adaptive interaction with the environment.
Collapse
Affiliation(s)
- Anke Braun
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Barbieri R, Töpfer FM, Soch J, Bogler C, Sprekeler H, Haynes JD. Encoding of continuous perceptual choices in human early visual cortex. Front Hum Neurosci 2023; 17:1277539. [PMID: 38021249 PMCID: PMC10679739 DOI: 10.3389/fnhum.2023.1277539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Research on the neural mechanisms of perceptual decision-making has typically focused on simple categorical choices, say between two alternative motion directions. Studies on such discrete alternatives have often suggested that choices are encoded either in a motor-based or in an abstract, categorical format in regions beyond sensory cortex. Methods In this study, we used motion stimuli that could vary anywhere between 0° and 360° to assess how the brain encodes choices for features that span the full sensory continuum. We employed a combination of neuroimaging and encoding models based on Gaussian process regression to assess how either stimuli or choices were encoded in brain responses. Results We found that single-voxel tuning patterns could be used to reconstruct the trial-by-trial physical direction of motion as well as the participants' continuous choices. Importantly, these continuous choice signals were primarily observed in early visual areas. The tuning properties in this region generalized between choice encoding and stimulus encoding, even for reports that reflected pure guessing. Discussion We found only little information related to the decision outcome in regions beyond visual cortex, such as parietal cortex, possibly because our task did not involve differential motor preparation. This could suggest that decisions for continuous stimuli take can place already in sensory brain regions, potentially using similar mechanisms to the sensory recruitment in visual working memory.
Collapse
Affiliation(s)
- Riccardo Barbieri
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Felix M. Töpfer
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Joram Soch
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Carsten Bogler
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Henning Sprekeler
- Department for Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin School of Mind and Brain and Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Sandhaeger F, Omejc N, Pape AA, Siegel M. Abstract perceptual choice signals during action-linked decisions in the human brain. PLoS Biol 2023; 21:e3002324. [PMID: 37816222 PMCID: PMC10564462 DOI: 10.1371/journal.pbio.3002324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Humans can make abstract choices independent of motor actions. However, in laboratory tasks, choices are typically reported with an associated action. Consequentially, knowledge about the neural representation of abstract choices is sparse, and choices are often thought to evolve as motor intentions. Here, we show that in the human brain, perceptual choices are represented in an abstract, motor-independent manner, even when they are directly linked to an action. We measured MEG signals while participants made choices with known or unknown motor response mapping. Using multivariate decoding, we quantified stimulus, perceptual choice, and motor response information with distinct cortical distributions. Choice representations were invariant to whether the response mapping was known during stimulus presentation, and they occupied a distinct representational space from motor signals. As expected from an internal decision variable, they were informed by the stimuli, and their strength predicted decision confidence and accuracy. Our results demonstrate abstract neural choice signals that generalize to action-linked decisions, suggesting a general role of an abstract choice stage in human decision-making.
Collapse
Affiliation(s)
- Florian Sandhaeger
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Nina Omejc
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Anna-Antonia Pape
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Markus Siegel
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
15
|
Talley J, Pusdekar S, Feltenberger A, Ketner N, Evers J, Liu M, Gosh A, Palmer SE, Wardill TJ, Gonzalez-Bellido PT. Predictive saccades and decision making in the beetle-predating saffron robber fly. Curr Biol 2023:S0960-9822(23)00770-4. [PMID: 37379842 DOI: 10.1016/j.cub.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Internal predictions about the sensory consequences of self-motion, encoded by corollary discharge, are ubiquitous in the animal kingdom, including for fruit flies, dragonflies, and humans. In contrast, predicting the future location of an independently moving external target requires an internal model. With the use of internal models for predictive gaze control, vertebrate predatory species compensate for their sluggish visual systems and long sensorimotor latencies. This ability is crucial for the timely and accurate decisions that underpin a successful attack. Here, we directly demonstrate that the robber fly Laphria saffrana, a specialized beetle predator, also uses predictive gaze control when head tracking potential prey. Laphria uses this predictive ability to perform the difficult categorization and perceptual decision task of differentiating a beetle from other flying insects with a low spatial resolution retina. Specifically, we show that (1) this predictive behavior is part of a saccade-and-fixate strategy, (2) the relative target angular position and velocity, acquired during fixation, inform the subsequent predictive saccade, and (3) the predictive saccade provides Laphria with additional fixation time to sample the frequency of the prey's specular wing reflections. We also demonstrate that Laphria uses such wing reflections as a proxy for the wingbeat frequency of the potential prey and that consecutively flashing LEDs to produce apparent motion elicits attacks when the LED flicker frequency matches that of the beetle's wingbeat cycle.
Collapse
Affiliation(s)
- Jennifer Talley
- Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542, USA.
| | - Siddhant Pusdekar
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Aaron Feltenberger
- Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542, USA
| | - Natalie Ketner
- Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542, USA
| | - Johnny Evers
- Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542, USA
| | - Molly Liu
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Atishya Gosh
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA; Department of Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie E Palmer
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Trevor J Wardill
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA; Department of Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paloma T Gonzalez-Bellido
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA; Department of Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Celotto M, Bím J, Tlaie A, De Feo V, Lemke S, Chicharro D, Nili H, Bieler M, Hanganu-Opatz IL, Donner TH, Brovelli A, Panzeri S. An information-theoretic quantification of the content of communication between brain regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544903. [PMID: 37398375 PMCID: PMC10312682 DOI: 10.1101/2023.06.14.544903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Quantifying the amount, content and direction of communication between brain regions is key to understanding brain function. Traditional methods to analyze brain activity based on the Wiener-Granger causality principle quantify the overall information propagated by neural activity between simultaneously recorded brain regions, but do not reveal the information flow about specific features of interest (such as sensory stimuli). Here, we develop a new information theoretic measure termed Feature-specific Information Transfer (FIT), quantifying how much information about a specific feature flows between two regions. FIT merges the Wiener-Granger causality principle with information-content specificity. We first derive FIT and prove analytically its key properties. We then illustrate and test them with simulations of neural activity, demonstrating that FIT identifies, within the total information flowing between regions, the information that is transmitted about specific features. We then analyze three neural datasets obtained with different recording methods, magneto- and electro-encephalography, and spiking activity, to demonstrate the ability of FIT to uncover the content and direction of information flow between brain regions beyond what can be discerned with traditional anaytical methods. FIT can improve our understanding of how brain regions communicate by uncovering previously hidden feature-specific information flow.
Collapse
Affiliation(s)
- Marco Celotto
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto (TN), Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jan Bím
- Datamole, s. r. o, Vitezne namesti 577/2 Dejvice, 160 00 Praha 6, The Czech Republic
| | - Alejandro Tlaie
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto (TN), Italy
| | - Vito De Feo
- Artificial Intelligence Team, Future Health Technology, and Brain-Computer Interfaces laboratories, School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Stefan Lemke
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
| | - Daniel Chicharro
- Department of Computer Science, City, University of London, London, UK
| | - Hamed Nili
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Malte Bieler
- Mobile Technology Lab, School of Economics, Innovation and Technology, University College Kristiania, Oslo, Norway
| | - Ileana L. Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias H. Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto (TN), Italy
| |
Collapse
|
17
|
Alilović J, Lampers E, Slagter HA, van Gaal S. Illusory object recognition is either perceptual or cognitive in origin depending on decision confidence. PLoS Biol 2023; 21:e3002009. [PMID: 36862734 PMCID: PMC10013920 DOI: 10.1371/journal.pbio.3002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2023] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
We occasionally misinterpret ambiguous sensory input or report a stimulus when none is presented. It is unknown whether such errors have a sensory origin and reflect true perceptual illusions, or whether they have a more cognitive origin (e.g., are due to guessing), or both. When participants performed an error-prone and challenging face/house discrimination task, multivariate electroencephalography (EEG) analyses revealed that during decision errors (e.g., mistaking a face for a house), sensory stages of visual information processing initially represent the presented stimulus category. Crucially however, when participants were confident in their erroneous decision, so when the illusion was strongest, this neural representation flipped later in time and reflected the incorrectly reported percept. This flip in neural pattern was absent for decisions that were made with low confidence. This work demonstrates that decision confidence arbitrates between perceptual decision errors, which reflect true illusions of perception, and cognitive decision errors, which do not.
Collapse
Affiliation(s)
- Josipa Alilović
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Eline Lampers
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Heleen A. Slagter
- Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam, the Netherlands
- Institute for Brain and Behavior, Vrije Universiteit Amsterdam, the Netherlands
| | - Simon van Gaal
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
18
|
van den Brink RL, Hagena K, Wilming N, Murphy PR, Büchel C, Donner TH. Flexible sensory-motor mapping rules manifest in correlated variability of stimulus and action codes across the brain. Neuron 2023; 111:571-584.e9. [PMID: 36476977 DOI: 10.1016/j.neuron.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Humans and non-human primates can flexibly switch between different arbitrary mappings from sensation to action to solve a cognitive task. It has remained unknown how the brain implements such flexible sensory-motor mapping rules. Here, we uncovered a dynamic reconfiguration of task-specific correlated variability between sensory and motor brain regions. Human participants switched between two rules for reporting visual orientation judgments during fMRI recordings. Rule switches were either signaled explicitly or inferred by the participants from ambiguous cues. We used behavioral modeling to reconstruct the time course of their belief about the active rule. In both contexts, the patterns of correlations between ongoing fluctuations in stimulus- and action-selective activity across visual- and action-related brain regions tracked participants' belief about the active rule. The rule-specific correlation patterns broke down around the time of behavioral errors. We conclude that internal beliefs about task state are instantiated in brain-wide, selective patterns of correlated variability.
Collapse
Affiliation(s)
- Ruud L van den Brink
- Computational Cognitive Neuroscience Section, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Keno Hagena
- Computational Cognitive Neuroscience Section, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Niklas Wilming
- Computational Cognitive Neuroscience Section, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter R Murphy
- Computational Cognitive Neuroscience Section, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; Department of Psychology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Christian Büchel
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Tobias H Donner
- Computational Cognitive Neuroscience Section, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
19
|
Contemori G, Oletto CM, Cessa R, Marini E, Ronconi L, Battaglini L, Bertamini M. Investigating the role of the foveal cortex in peripheral object discrimination. Sci Rep 2022; 12:19952. [PMID: 36402850 PMCID: PMC9675757 DOI: 10.1038/s41598-022-23720-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Peripheral object discrimination is hindered by a central dynamic mask presented between 150 and 300 ms after stimulus onset. The mask is thought to interfere with task-relevant feedback coming from higher visual areas to the foveal cortex in V1. Fan et al. (2016) supported this hypothesis by showing that the effect of mask can be further delayed if the task requires mental manipulation of the peripheral target. The main purpose of this study was to better characterize the temporal dynamics of foveal feedback. Specifically, in two experiments we have shown that (1) the effect of foveal noise mask is sufficiently robust to be replicated in an online data collection (2) in addition to a change in sensitivity the mask affects also the criterion, which becomes more conservative; (3) the expected dipper function for sensitivity approximates a quartic with a global minimum at 94 ms, while the best fit for criterion is a quintic with a global maximum at 174 ms; (4) the power spectrum analysis of perceptual oscillations in sensitivity data shows a cyclic effect of mask at 3 and 12 Hz. Overall, our results show that foveal noise affects sensitivity in a cyclic manner, with a global dip emerging earlier than previously found. The noise also affects the response bias, even though with a different temporal profile. We, therefore, suggest that foveal noise acts on two distinct feedback mechanisms, a faster perceptual feedback followed by a slower cognitive feedback.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, 35131, Padova, Italy
| | | | - Roberta Cessa
- Department of General Psychology, University of Padova, 35131, Padova, Italy
| | - Elena Marini
- Department of General Psychology, University of Padova, 35131, Padova, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luca Battaglini
- Department of General Psychology, University of Padova, 35131, Padova, Italy
| | - Marco Bertamini
- Department of Psychology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
20
|
Persistent activity in human parietal cortex mediates perceptual choice repetition bias. Nat Commun 2022; 13:6015. [PMID: 36224207 PMCID: PMC9556658 DOI: 10.1038/s41467-022-33237-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Humans and other animals tend to repeat or alternate their previous choices, even when judging sensory stimuli presented in a random sequence. It is unclear if and how sensory, associative, and motor cortical circuits produce these idiosyncratic behavioral biases. Here, we combined behavioral modeling of a visual perceptual decision with magnetoencephalographic (MEG) analyses of neural dynamics, across multiple regions of the human cerebral cortex. We identified distinct history-dependent neural signals in motor and posterior parietal cortex. Gamma-band activity in parietal cortex tracked previous choices in a sustained fashion, and biased evidence accumulation toward choice repetition; sustained beta-band activity in motor cortex inversely reflected the previous motor action, and biased the accumulation starting point toward alternation. The parietal, not motor, signal mediated the impact of previous on current choice and reflected individual differences in choice repetition. In sum, parietal cortical signals seem to play a key role in shaping choice sequences.
Collapse
|
21
|
Peng L, Luo Z, Zeng LL, Hou C, Shen H, Zhou Z, Hu D. Parcellating the human brain using resting-state dynamic functional connectivity. Cereb Cortex 2022; 33:3575-3590. [PMID: 35965076 DOI: 10.1093/cercor/bhac293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/14/2022] Open
Abstract
Brain cartography has expanded substantially over the past decade. In this regard, resting-state functional connectivity (FC) plays a key role in identifying the locations of putative functional borders. However, scant attention has been paid to the dynamic nature of functional interactions in the human brain. Indeed, FC is typically assumed to be stationary across time, which may obscure potential or subtle functional boundaries, particularly in regions with high flexibility and adaptability. In this study, we developed a dynamic FC (dFC)-based parcellation framework, established a new functional human brain atlas termed D-BFA (DFC-based Brain Functional Atlas), and verified its neurophysiological plausibility by stereo-EEG data. As the first dFC-based whole-brain atlas, the proposed D-BFA delineates finer functional boundaries that cannot be captured by static FC, and is further supported by good correspondence with cytoarchitectonic areas and task activation maps. Moreover, the D-BFA reveals the spatial distribution of dynamic variability across the brain and generates more homogenous parcels compared with most alternative parcellations. Our results demonstrate the superiority and practicability of dFC in brain parcellation, providing a new template to exploit brain topographic organization from a dynamic perspective. The D-BFA will be publicly available for download at https://github.com/sliderplm/D-BFA-618.
Collapse
Affiliation(s)
- Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Zhiguo Luo
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Chenping Hou
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Zongtan Zhou
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
22
|
Di Luzio P, Tarasi L, Silvanto J, Avenanti A, Romei V. Human perceptual and metacognitive decision-making rely on distinct brain networks. PLoS Biol 2022; 20:e3001750. [PMID: 35944012 PMCID: PMC9362930 DOI: 10.1371/journal.pbio.3001750] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Perceptual decisions depend on the ability to exploit available sensory information in order to select the most adaptive option from a set of alternatives. Such decisions depend on the perceptual sensitivity of the organism, which is generally accompanied by a corresponding level of certainty about the choice made. Here, by use of corticocortical paired associative transcranial magnetic stimulation protocol (ccPAS) aimed at inducing plastic changes, we shaped perceptual sensitivity and metacognitive ability in a motion discrimination task depending on the targeted network, demonstrating their functional dissociation. Neurostimulation aimed at boosting V5/MT+-to-V1/V2 back-projections enhanced motion sensitivity without impacting metacognition, whereas boosting IPS/LIP-to-V1/V2 back-projections increased metacognitive efficiency without impacting motion sensitivity. This double-dissociation provides causal evidence of distinct networks for perceptual sensitivity and metacognitive ability in humans.
Collapse
Affiliation(s)
- Paolo Di Luzio
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Luca Tarasi
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Juha Silvanto
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Vincenzo Romei
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
23
|
Abstract
The neocortex is a complex neurobiological system with many interacting regions. How these regions work together to subserve flexible behavior and cognition has become increasingly amenable to rigorous research. Here, I review recent experimental and theoretical work on the modus operandi of a multiregional cortex. These studies revealed several general principles for the neocortical interareal connectivity, low-dimensional macroscopic gradients of biological properties across cortical areas, and a hierarchy of timescales for information processing. Theoretical work suggests testable predictions regarding differential excitation and inhibition along feedforward and feedback pathways in the cortical hierarchy. Furthermore, modeling of distributed working memory and simple decision-making has given rise to a novel mathematical concept, dubbed bifurcation in space, that potentially explains how different cortical areas, with a canonical circuit organization but gradients of biological heterogeneities, are able to subserve their respective (e.g., sensory coding versus executive control) functions in a modularly organized brain.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA;
| |
Collapse
|
24
|
Pinto L, Tank DW, Brody CD. Multiple timescales of sensory-evidence accumulation across the dorsal cortex. eLife 2022; 11:e70263. [PMID: 35708483 PMCID: PMC9203055 DOI: 10.7554/elife.70263] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical areas seem to form a hierarchy of intrinsic timescales, but the relevance of this organization for cognitive behavior remains unknown. In particular, decisions requiring the gradual accrual of sensory evidence over time recruit widespread areas across this hierarchy. Here, we tested the hypothesis that this recruitment is related to the intrinsic integration timescales of these widespread areas. We trained mice to accumulate evidence over seconds while navigating in virtual reality and optogenetically silenced the activity of many cortical areas during different brief trial epochs. We found that the inactivation of all tested areas affected the evidence-accumulation computation. Specifically, we observed distinct changes in the weighting of sensory evidence occurring during and before silencing, such that frontal inactivations led to stronger deficits on long timescales than posterior cortical ones. Inactivation of a subset of frontal areas also led to moderate effects on behavioral processes beyond evidence accumulation. Moreover, large-scale cortical Ca2+ activity during task performance displayed different temporal integration windows. Our findings suggest that the intrinsic timescale hierarchy of distributed cortical areas is an important component of evidence-accumulation mechanisms.
Collapse
Affiliation(s)
- Lucas Pinto
- Department of Neuroscience, Northwestern UniversityChicagoUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - David W Tank
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
25
|
You 游文愷 WK, Mysore SP. Dynamics of Visual Perceptual Decision-Making in Freely Behaving Mice. eNeuro 2022; 9:ENEURO.0161-21.2022. [PMID: 35228308 DOI: 10.1101/2020.02.20.958652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 05/25/2023] Open
Abstract
The temporal dynamics of perceptual decisions offer a key window into the cognitive processes contributing to decision-making. Investigating perceptual dynamics in a genetically tractable animal model can facilitate the subsequent unpacking of the underlying neural mechanisms. Here, we investigated the time course as well as fundamental psychophysical constants governing visual perceptual decision-making in freely behaving mice. We did so by analyzing response accuracy against reaction time (RT), i.e., conditional accuracy, in a series of two-alternative forced choice (2-AFC) orientation discrimination tasks in which we varied target size, luminance, duration, and presence of a foil. Our results quantified two distinct stages in the time course of mouse visual decision-making: a "sensory encoding" stage in which conditional accuracy exhibits a classic trade-off with response speed, and a subsequent "short-term memory (STM)-dependent" stage in which conditional accuracy exhibits a classic asymptotic decay following stimulus offset. We estimated the duration of visual sensory encoding as 200-320 ms across tasks, the lower bound of the duration of STM as ∼1700 ms, and the briefest duration of visual stimulus input that is informative as ≤50 ms. Separately, by varying stimulus onset delay, we demonstrated that the conditional accuracy function (CAF) and RT distribution can be independently modulated, and found that the duration for which mice naturally withhold from responding is a quantitative metric of impulsivity. Taken together, our results establish a quantitative foundation for investigating the neural circuit bases of visual decision dynamics in mice.
Collapse
Affiliation(s)
- Wen-Kai You 游文愷
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
26
|
Dynamics of Visual Perceptual Decision-Making in Freely Behaving Mice. eNeuro 2022; 9:ENEURO.0161-21.2022. [PMID: 35228308 PMCID: PMC8925649 DOI: 10.1523/eneuro.0161-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
The temporal dynamics of perceptual decisions offer a key window into the cognitive processes contributing to decision-making. Investigating perceptual dynamics in a genetically tractable animal model can facilitate the subsequent unpacking of the underlying neural mechanisms. Here, we investigated the time course as well as fundamental psychophysical constants governing visual perceptual decision-making in freely behaving mice. We did so by analyzing response accuracy against reaction time (RT), i.e., conditional accuracy, in a series of two-alternative forced choice (2-AFC) orientation discrimination tasks in which we varied target size, luminance, duration, and presence of a foil. Our results quantified two distinct stages in the time course of mouse visual decision-making: a “sensory encoding” stage in which conditional accuracy exhibits a classic trade-off with response speed, and a subsequent “short-term memory (STM)-dependent” stage in which conditional accuracy exhibits a classic asymptotic decay following stimulus offset. We estimated the duration of visual sensory encoding as 200–320 ms across tasks, the lower bound of the duration of STM as ∼1700 ms, and the briefest duration of visual stimulus input that is informative as ≤50 ms. Separately, by varying stimulus onset delay, we demonstrated that the conditional accuracy function (CAF) and RT distribution can be independently modulated, and found that the duration for which mice naturally withhold from responding is a quantitative metric of impulsivity. Taken together, our results establish a quantitative foundation for investigating the neural circuit bases of visual decision dynamics in mice.
Collapse
|
27
|
Lange RD, Chattoraj A, Beck JM, Yates JL, Haefner RM. A confirmation bias in perceptual decision-making due to hierarchical approximate inference. PLoS Comput Biol 2021; 17:e1009517. [PMID: 34843452 PMCID: PMC8659691 DOI: 10.1371/journal.pcbi.1009517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/09/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Making good decisions requires updating beliefs according to new evidence. This is a dynamical process that is prone to biases: in some cases, beliefs become entrenched and resistant to new evidence (leading to primacy effects), while in other cases, beliefs fade over time and rely primarily on later evidence (leading to recency effects). How and why either type of bias dominates in a given context is an important open question. Here, we study this question in classic perceptual decision-making tasks, where, puzzlingly, previous empirical studies differ in the kinds of biases they observe, ranging from primacy to recency, despite seemingly equivalent tasks. We present a new model, based on hierarchical approximate inference and derived from normative principles, that not only explains both primacy and recency effects in existing studies, but also predicts how the type of bias should depend on the statistics of stimuli in a given task. We verify this prediction in a novel visual discrimination task with human observers, finding that each observer's temporal bias changed as the result of changing the key stimulus statistics identified by our model. The key dynamic that leads to a primacy bias in our model is an overweighting of new sensory information that agrees with the observer's existing belief-a type of 'confirmation bias'. By fitting an extended drift-diffusion model to our data we rule out an alternative explanation for primacy effects due to bounded integration. Taken together, our results resolve a major discrepancy among existing perceptual decision-making studies, and suggest that a key source of bias in human decision-making is approximate hierarchical inference.
Collapse
Affiliation(s)
- Richard D. Lange
- Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America
- Computer Science, University of Rochester, Rochester, New York, United States of America
| | - Ankani Chattoraj
- Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America
| | - Jeffrey M. Beck
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Jacob L. Yates
- Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America
| | - Ralf M. Haefner
- Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America
- Computer Science, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
28
|
Adaptive circuit dynamics across human cortex during evidence accumulation in changing environments. Nat Neurosci 2021; 24:987-997. [PMID: 33903770 DOI: 10.1038/s41593-021-00839-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/12/2021] [Indexed: 02/02/2023]
Abstract
Many decisions under uncertainty entail the temporal accumulation of evidence that informs about the state of the environment. When environments are subject to hidden changes in their state, maximizing accuracy and reward requires non-linear accumulation of evidence. How this adaptive, non-linear computation is realized in the brain is unknown. We analyzed human behavior and cortical population activity (measured with magnetoencephalography) recorded during visual evidence accumulation in a changing environment. Behavior and decision-related activity in cortical regions involved in action planning exhibited hallmarks of adaptive evidence accumulation, which could also be implemented by a recurrent cortical microcircuit. Decision dynamics in action-encoding parietal and frontal regions were mirrored in a frequency-specific modulation of the state of the visual cortex that depended on pupil-linked arousal and the expected probability of change. These findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related feedback to the sensory cortex.
Collapse
|
29
|
Abstract
Our judgments of our environment are often shaped by heuristics and prior experience. New research shows that the resulting biases are encoded, and combined with new sensory input, by groups of neurons in the frontal cortex during decisions under uncertainty.
Collapse
|
30
|
Prat-Ortega G, Wimmer K, Roxin A, de la Rocha J. Flexible categorization in perceptual decision making. Nat Commun 2021; 12:1283. [PMID: 33627643 PMCID: PMC7904789 DOI: 10.1038/s41467-021-21501-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/29/2021] [Indexed: 11/09/2022] Open
Abstract
Perceptual decisions rely on accumulating sensory evidence. This computation has been studied using either drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both models can account for a large amount of data, it remains unclear whether their dynamics are qualitatively equivalent. Here we show that in the attractor model, but not in the drift diffusion model, an increase in the stimulus fluctuations or the stimulus duration promotes transitions between decision states. The increase in the number of transitions leads to a crossover between weighting mostly early evidence (primacy) to weighting late evidence (recency), a prediction we validate with psychophysical data. Between these two limiting cases, we found a novel flexible categorization regime, in which fluctuations can reverse initially-incorrect categorizations. This reversal asymmetry results in a non-monotonic psychometric curve, a distinctive feature of the attractor model. Our findings point to correcting decision reversals as an important feature of perceptual decision making.
Collapse
Affiliation(s)
- Genís Prat-Ortega
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain.
| | - Klaus Wimmer
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain
- Barcelona Graduate School of Mathematics, Barcelona, Spain
| | - Alex Roxin
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain
- Barcelona Graduate School of Mathematics, Barcelona, Spain
| | - Jaime de la Rocha
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
| |
Collapse
|