1
|
Tavano S, Brückner DB, Tasciyan S, Tong X, Kardos R, Schauer A, Hauschild R, Heisenberg CP. BMP-dependent patterning of ectoderm tissue material properties modulates lateral mesendoderm cell migration during early zebrafish gastrulation. Cell Rep 2025; 44:115387. [PMID: 40057955 DOI: 10.1016/j.celrep.2025.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Cell migration is a fundamental process during embryonic development. Most studies in vivo have focused on the migration of cells using the extracellular matrix (ECM) as their substrate for migration. In contrast, much less is known about how cells migrate on other cells, as found in early embryos when the ECM has not yet formed. Here, we show that lateral mesendoderm (LME) cells in the early zebrafish gastrula use the ectoderm as their substrate for migration. We show that the lateral ectoderm is permissive for the animal-pole-directed migration of LME cells, while the ectoderm at the animal pole halts it. These differences in permissiveness depend on the lateral ectoderm being more cohesive than the animal ectoderm, a property controlled by bone morphogenetic protein (BMP) signaling within the ectoderm. Collectively, these findings identify ectoderm tissue cohesion as one critical factor in regulating LME migration during zebrafish gastrulation.
Collapse
Affiliation(s)
- Stefania Tavano
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - David B Brückner
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Saren Tasciyan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Xin Tong
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roland Kardos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexandra Schauer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | |
Collapse
|
2
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Physical principles and mechanisms of cell migration. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:2. [PMID: 39829952 PMCID: PMC11738987 DOI: 10.1038/s44341-024-00008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/19/2024] [Indexed: 01/22/2025]
Abstract
Cell migration is critical in processes such as developmental biology, wound healing, immune response, and cancer invasion/metastasis. Understanding its regulation is essential for developing targeted therapies in regenerative medicine, cancer treatment and immune modulation. This review examines cell migration mechanisms, highlighting fundamental physical principles, key molecular components, and cellular behaviors, identifying existing gaps in current knowledge, and suggesting potential directions for future research.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
3
|
Depau L, Brunetti J, Falciani C, Mandarini E, Zanchi M, Paolocci MF, Garfì M, Pini A, Bracci L. Targeting heparan sulfate proteoglycans as an effective strategy for inhibiting cancer cell migration and invasiveness compared to heparin. Front Cell Dev Biol 2025; 12:1505680. [PMID: 39845083 PMCID: PMC11750806 DOI: 10.3389/fcell.2024.1505680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
By virtue of their ability to bind different growth factors, morphogens and extracellular matrix proteins, heparan sulfate proteoglycans (HSPGs) play a determinant role in cancer cell differentiation and migration. Despite a strong conceptual basis and promising preclinical results, clinical trials have failed to demonstrate any significant advantage of administering heparin to oncology patients. We exploited our anti-heparan sulfate branched peptide NT4 to test the opposite approach, namely, targeting HSPGs to interfere with their functions, instead of using heparin as a soluble competitor in human cell lines from pancreas adenocarcinoma, colon adenocarcinoma, rhabdomyosarcoma and two different breast cancers. We found that the anti-heparan sulfate peptide NT4 is more effective than heparin for inhibiting cancer cell adhesion, directional migration, colony formation and even cell growth, suggesting that targeting cell membrane HSPGs may be a more effective anti-metastatic strategy than using soluble heparin. Analysis of NT4 effects on cancer cell directional migration, associated to cellular distribution of HSPGs and cadherins in different migrating cancer cell lines, provided further indications on the molecular basis of HSPG functions, which may explain the efficiency of the HSPG targeting peptide.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Yang Y, Wang Y, Li Y, Hu X, Tong C, Xue C, Qin K. Micro-fluidic covalent immobilization of multi-gradient RGD peptides on a gelatin surface for studying endothelial cell migration. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7965-7976. [PMID: 39453678 DOI: 10.1039/d4ay01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Collective endothelial migration is a hallmark of wound healing, which is regulated by spatial concentration gradients of extracellular biochemical factors. Arginine-glycine-aspartate (RGD) peptides play a vital role in regulating cell migration through specific binding to integrins. In this study, a micro-fluidic technology combined with a photopolymerization technique is developed to create gelatin methacryloyl (GelMA)-based substrates with various concentration gradients of RGD peptides. The capability of generating linear and nonlinear RGD concentration gradients was quantitatively verified through numerical simulation and immunohistochemical quantitative experiments. The results of the concentration gradients show a strong concurrence between the immunohistochemical quantification experiments and numerical simulations. Furthermore, endothelial migration experiments were conducted with various concentration gradients of RGD peptides. We have observed that endothelial cells on the surface of gels with a linear concentration gradient exhibit a larger cell area, a longer cell perimeter, and more stress fiber density. Furthermore, the cells demonstrate directional alignment and migration towards regions with a higher RGD concentration. High concentration gradients significantly enhance endothelial cell migration, consistent with observations on surfaces of gels with nonlinear concentration gradients. In brief, we proposed a simple and effective micro-fluidic photopolymerization technique capable of generating diverse concentration gradients of RGD and probing their effects on cell migration. The results suggest that regulating the RGD peptide concentration gradients can alter the migration of endothelial cells, showing potential for promoting wound healing.
Collapse
Affiliation(s)
- Yunong Yang
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Yanxia Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, No. 7166, Bao Tong West Str., Weifang 261053, Shandong Province, China
| | - Yongjiang Li
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Xuqu Hu
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Changgui Tong
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Chundong Xue
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Kairong Qin
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| |
Collapse
|
5
|
García-Arcos JM, Jha A, Waterman CM, Piel M. Blebology: principles of bleb-based migration. Trends Cell Biol 2024; 34:838-853. [PMID: 38538441 PMCID: PMC11424778 DOI: 10.1016/j.tcb.2024.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 09/27/2024]
Abstract
Bleb-based migration, a conserved cell motility mode, has a crucial role in both physiological and pathological processes. Unlike the well-elucidated mechanisms of lamellipodium-based mesenchymal migration, the dynamics of bleb-based migration remain less understood. In this review, we highlight in a systematic way the establishment of front-rear polarity, bleb formation and extension, and the distinct regimes of bleb dynamics. We emphasize new evidence proposing a regulatory role of plasma membrane-cortex interactions in blebbing behavior and discuss the generation of force and its transmission during migration. Our analysis aims to deepen the understanding of the physical and molecular mechanisms of bleb-based migration, shedding light on its implications and significance for health and disease.
Collapse
Affiliation(s)
| | - Ankita Jha
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clare M Waterman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthieu Piel
- Institut Curie, UMR144, CNRS, PSL University, Paris, France; Institut Pierre Gilles de Gennes, PSL University, Paris, France.
| |
Collapse
|
6
|
Divyanshi, Yang J. Germ plasm dynamics during oogenesis and early embryonic development in Xenopus and zebrafish. Mol Reprod Dev 2024; 91:e23718. [PMID: 38126950 PMCID: PMC11190040 DOI: 10.1002/mrd.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023]
Abstract
Specification of the germline and its segregation from the soma mark one of the most crucial events in the lifetime of an organism. In different organisms, this specification can occur through either inheritance or inductive mechanisms. In species such as Xenopus and zebrafish, the specification of primordial germ cells relies on the inheritance of maternal germline determinants that are synthesized and sequestered in the germ plasm during oogenesis. In this review, we discuss the formation of the germ plasm, how germline determinants are recruited into the germ plasm during oogenesis, and the dynamics of the germ plasm during oogenesis and early embryonic development.
Collapse
Affiliation(s)
- Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Jing Yang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
7
|
De Belly H, Weiner OD. Follow the flow: Actin and membrane act as an integrated system to globally coordinate cell shape and movement. Curr Opin Cell Biol 2024; 89:102392. [PMID: 38991476 PMCID: PMC11929537 DOI: 10.1016/j.ceb.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Migratory cells are polarized with protrusive fronts and contractile rears. This spatial organization necessitates long-range coordination of the signals that organize protrusions and contractions. Cells leverage reciprocal interactions of short-range biochemical signals and long-range mechanical forces for this integration. The interface between the plasma membrane and actin cortex is where this communication occurs. Here, we review how the membrane and cortex form an integrated system for long-range coordination of cell polarity. We highlight the role of membrane-to-cortex-attachment proteins as regulators of tension transmission across the cell and discuss the interplay between actin-membrane and polarity signaling complexes. Rather than presenting an exhaustive list of recent findings, we focus on important gaps in our current understanding.
Collapse
Affiliation(s)
- Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Barton LJ, Roa-de la Cruz L, Lehmann R, Lin B. The journey of a generation: advances and promises in the study of primordial germ cell migration. Development 2024; 151:dev201102. [PMID: 38607588 PMCID: PMC11165723 DOI: 10.1242/dev.201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The germline provides the genetic and non-genetic information that passes from one generation to the next. Given this important role in species propagation, egg and sperm precursors, called primordial germ cells (PGCs), are one of the first cell types specified during embryogenesis. In fact, PGCs form well before the bipotential somatic gonad is specified. This common feature of germline development necessitates that PGCs migrate through many tissues to reach the somatic gonad. During their journey, PGCs must respond to select environmental cues while ignoring others in a dynamically developing embryo. The complex multi-tissue, combinatorial nature of PGC migration is an excellent model for understanding how cells navigate complex environments in vivo. Here, we discuss recent findings on the migratory path, the somatic cells that shepherd PGCs, the guidance cues somatic cells provide, and the PGC response to these cues to reach the gonad and establish the germline pool for future generations. We end by discussing the fate of wayward PGCs that fail to reach the gonad in diverse species. Collectively, this field is poised to yield important insights into emerging reproductive technologies.
Collapse
Affiliation(s)
- Lacy J. Barton
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lorena Roa-de la Cruz
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Main Street, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
9
|
Babaluei M, Mojarab Y, Mottaghitalab F, Saeb MR, Farokhi M. Conductive hydrogels based on tragacanth and silk fibroin containing dopamine functionalized carboxyl-capped aniline pentamer: Merging hemostasis, antibacterial, and anti-oxidant properties into a multifunctional hydrogel for burn wound healing. Int J Biol Macromol 2024; 261:129932. [PMID: 38309399 DOI: 10.1016/j.ijbiomac.2024.129932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Hydrogels possessing both conductive characteristics and notable antibacterial and antioxidant properties hold considerable significance within the realm of wound healing and recovery. The object of current study is the development of conductive hydrogels with antibacterial and antioxidant properties, emphasizing their potential for effective wound healing, especially in treating third-degree burns. For this purpose, various conductive hydrogels are developed based on tragacanth and silk fibroin, with variable dopamine functionalized carboxyl-capped aniline pentamer (CAP@DA). The FTIR analysis confirms that the CAP powder was successfully synthesized and modified with DA. The results show that the incorporation of CAP@DA into hydrogels can increase the porosity and swellability of the hydrogels. Additionally, the mechanical and viscoelastic properties of the hydrogels are also improved. The release of vancomycin from the hydrogels is sustained over time, and the hydrogels are effective in inhibiting the growth of Methicillin-resistant Staphylococcus aureus (MRSA). In vitro cell studies of the hydrogels show that all hydrogels are biocompatible and support cell attachment. The hydrogels' tissue adhesiveness yielded a satisfactory hemostatic outcome in a rat-liver injury model. The third-degree burn was created on the dorsal back paravertebral region of the rats and then grafted with hydrogels. The burn was monitored for 3, 7, and 14 days to evaluate the efficacy of the hydrogel in promoting wound healing. The hydrogels revealed treatment effect, resulting in enhancements in wound closure, dermal collagen matrix production, new blood formation, and anti-inflammatory properties. Better results were obtained for hydrogel with increasing CAP@DA. In summary, the multifunctional conducive hydrogel, featuring potent antibacterial properties, markedly facilitated the wound regeneration process.
Collapse
Affiliation(s)
| | - Yasamin Mojarab
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Technology, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Xu M, Hu B, Chen J, Zhao L, Wang J, Li X. CXCR7 promotes the migration of fibroblasts derived from patients with acquired laryngotracheal stenosis by NF-κB signaling. Transl Pediatr 2023; 12:1634-1645. [PMID: 37814711 PMCID: PMC10560356 DOI: 10.21037/tp-23-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/02/2023] [Indexed: 10/11/2023] Open
Abstract
Background Laryngotracheal stenosis (LTS) is a life-threatening disease that commonly results in airway obstruction in children. Traditional treatments such as laryngotracheal reconstruction and balloon dilation all have the risk of laryngotracheal restenosis. It is of great importance to spare patients the morbidity of LTS and risks of restenosis associated with these treatments. Laboratory and clinical trials have focused on fibrosis, the crucial pathological process of LTS. This study was undertaken to investigate the function of CXC chemokine receptor-7 (CXCR7) in the fibroblasts derived from LTS. Methods RNA sequencing was performed on acquired human LTS and normal trachea tissues to analyze differentially expressed genes. Fibroblasts from LTS and normal trachea tissues were isolated and cultured. CXCR7 knockdown was performed using specific small interfering RNAs (siRNAs) and activated by CXCR7 agonist VUF11207. The assessment of cell proliferation and migration was conducted using EdU proliferation, wound healing, and transwell assays. The assessment of cell proliferation and migration was conducted using EdU proliferation, wound healing, and transwell assays. The expressions of CXCR7, E-cadherin and NF-κB signaling pathway were analyzed by quantitative polymerase chain reaction (qPCR), western blotting, immunohistochemistry, and immunofluorescence. Results RNA sequencing showed that CXCR7 was among the most differentially expressed genes. LTS had an increased CXCR7 expression but decreased E-cadherin expression in vivo. CXCR7 agonist stimulated the migration of LTS derived fibroblasts significantly in vitro, with no significant influence on the cell proliferation and apoptosis. CXCR7 agonist inhibited the expression of E-cadherin by activating the NF-κB signaling pathway. The effects of CXCR7 on cell migration and E-cadherin expression were blocked by CXCR7 siRNA. Conclusions LTS had an increased CXCR7 expression but decreased E-cadherin expression. CXCR7 activation inhibited E-cadherin expression by NF-κB signaling pathway and thereby promoted the migration of LTS derived fibroblasts.
Collapse
Affiliation(s)
- Mengrou Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Changhai Hospital Affiliated with the Second Military Medical University of PLA, Shanghai, China
| | - Jiarui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Limin Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Alvizi L, Nani D, Brito LA, Kobayashi GS, Passos-Bueno MR, Mayor R. Neural crest E-cadherin loss drives cleft lip/palate by epigenetic modulation via pro-inflammatory gene-environment interaction. Nat Commun 2023; 14:2868. [PMID: 37225711 PMCID: PMC10209087 DOI: 10.1038/s41467-023-38526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Gene-environment interactions are believed to play a role in multifactorial phenotypes, although poorly described mechanistically. Cleft lip/palate (CLP), the most common craniofacial malformation, has been associated with both genetic and environmental factors, with little gene-environment interaction experimentally demonstrated. Here, we study CLP families harbouring CDH1/E-Cadherin variants with incomplete penetrance and we explore the association of pro-inflammatory conditions to CLP. By studying neural crest (NC) from mouse, Xenopus and humans, we show that CLP can be explained by a 2-hit model, where NC migration is impaired by a combination of genetic (CDH1 loss-of-function) and environmental (pro-inflammatory activation) factors, leading to CLP. Finally, using in vivo targeted methylation assays, we demonstrate that CDH1 hypermethylation is the major target of the pro-inflammatory response, and a direct regulator of E-cadherin levels and NC migration. These results unveil a gene-environment interaction during craniofacial development and provide a 2-hit mechanism to explain cleft lip/palate aetiology.
Collapse
Affiliation(s)
- Lucas Alvizi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Diogo Nani
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Luciano Abreu Brito
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gerson Shigeru Kobayashi
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
12
|
Truszkowski L, Batur D, Long H, Tarbashevich K, Vos BE, Trappmann B, Raz E. Primordial germ cells adjust their protrusion type while migrating in different tissue contexts in vivo. Development 2023; 150:286614. [PMID: 36515556 PMCID: PMC10110502 DOI: 10.1242/dev.200603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
In both physiological processes and disease contexts, migrating cells have the ability to adapt to conditions in their environment. As an in vivo model for this process, we use zebrafish primordial germ cells that migrate throughout the developing embryo. When migrating within an ectodermal environment, the germ cells form fewer and smaller blebs when compared with their behavior within mesodermal environment. We find that cortical tension of neighboring cells is a parameter that affects blebbing frequency. Interestingly, the change in blebbing activity is accompanied by the formation of more actin-rich protrusions. These alterations in cell behavior that correlate with changes in RhoA activity could allow the cells to maintain dynamic motility parameters, such as migration speed and track straightness, in different settings. In addition, we find that the polarity of the cells can be affected by stiff structures positioned in their migration path This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Lukasz Truszkowski
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Dilek Batur
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Hongyan Long
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | | | - Bart E Vos
- Third Institute of Physics - Biophysics, Georg August University Göttingen, D-37007 Göttingen, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| |
Collapse
|
13
|
Pallarès ME, Pi-Jaumà I, Fortunato IC, Grazu V, Gómez-González M, Roca-Cusachs P, de la Fuente JM, Alert R, Sunyer R, Casademunt J, Trepat X. Stiffness-dependent active wetting enables optimal collective cell durotaxis. NATURE PHYSICS 2022:s41567-022-01835-1. [PMCID: PMC7617391 DOI: 10.1038/s41567-022-01835-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/13/2022] [Indexed: 05/17/2025]
Abstract
The directed migration of cellular clusters enables morphogenesis, wound healing, and collective cancer invasion. Gradients of substrate stiffness are known to direct the migration of cellular clusters in a process called collective durotaxis, but underlying mechanisms remain unclear. Here, we unveil a connection between collective durotaxis and the wetting properties of cellular clusters. We show that clusters of cancer cells dewet soft substrates and wet stiff ones. At intermediate stiffness, at the crossover from low to high wettability, clusters on uniform-stiffness substrates become maximally motile, and clusters on stiffness gradients exhibit optimal durotaxis. Durotactic velocity increases with cluster size, stiffness gradient, and actomyosin activity. We demonstrate this behavior on substrates coated with the cell-cell adhesion protein E-cadherin and then establish its generality on substrates coated with extracellular matrix. We develop a physical model of three-dimensional active wetting that explains this mode of collective durotaxis in terms of a balance between in-plane active traction and tissue contractility, and out-of-plane surface tension. Finally, we show that the distribution of cluster displacements has a heavy tail, with infrequent but large cellular hops that contribute to durotactic migration. Our study demonstrates a physical mechanism of collective durotaxis, through both cell-cell and cell-substrate adhesion ligands, based on the wetting properties of active droplets.
Collapse
Affiliation(s)
- Macià-Esteve Pallarès
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
| | - Irina Pi-Jaumà
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Isabela Corina Fortunato
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
| | - Valeria Grazu
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza50009, Spain
- Consejo Superior de Investigaciones Científicas, 50018Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), 08028Barcelona, Spain
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08036Barcelona, Spain
| | - Jesus M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza50009, Spain
- Consejo Superior de Investigaciones Científicas, 50018Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), 08028Barcelona, Spain
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, 01187Dresden, Germany
- Center for Systems Biology Dresden, 01307Dresden, Germany
| | - Raimon Sunyer
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08036Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08010Universitat de Barcelona, Barcelona, Spain
| | - Jaume Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), 08028Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08036Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010Barcelona, Spain
| |
Collapse
|
14
|
Ikenouchi J, Aoki K. A Clockwork Bleb: cytoskeleton, calcium, and cytoplasmic fluidity. FEBS J 2022; 289:7907-7917. [PMID: 34614290 DOI: 10.1111/febs.16220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
When the plasma membrane (PM) detaches from the underlying actin cortex, the PM expands according to intracellular pressure and a spherical membrane protrusion called a bleb is formed. This bleb retracts when the actin cortex is reassembled underneath the PM. Whereas this phenomenon seems simple at first glance, there are many interesting, unresolved cell biological questions in each process. For example, what is the membrane source to enlarge the surface area of the PM during rapid bleb expansion? What signals induce actin reassembly for bleb retraction, and how is cytoplasmic fluidity regulated to allow rapid membrane deformation during bleb expansion? Furthermore, emerging evidence indicates that cancer cells use blebs for invasion, but little is known about how molecules that are involved in bleb formation, expansion, and retraction are coordinated for directional amoeboid migration. In this review, we discuss the molecular mechanisms involved in the regulation of blebs, which have been revealed by various experimental systems.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Kana Aoki
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Schick J, Raz E. Blebs—Formation, Regulation, Positioning, and Role in Amoeboid Cell Migration. Front Cell Dev Biol 2022; 10:926394. [PMID: 35912094 PMCID: PMC9337749 DOI: 10.3389/fcell.2022.926394] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
In the context of development, tissue homeostasis, immune surveillance, and pathological conditions such as cancer metastasis and inflammation, migrating amoeboid cells commonly form protrusions called blebs. For these spherical protrusions to inflate, the force for pushing the membrane forward depends on actomyosin contraction rather than active actin assembly. Accordingly, blebs exhibit distinct dynamics and regulation. In this review, we first examine the mechanisms that control the inflation of blebs and bias their formation in the direction of the cell’s leading edge and present current views concerning the role blebs play in promoting cell locomotion. While certain motile amoeboid cells exclusively form blebs, others form blebs as well as other protrusion types. We describe factors in the environment and cell-intrinsic activities that determine the proportion of the different forms of protrusions cells produce.
Collapse
|
16
|
Graziani V, Rodriguez-Hernandez I, Maiques O, Sanz-Moreno V. The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol 2021; 32:228-242. [PMID: 34836782 DOI: 10.1016/j.tcb.2021.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Cell migration is essential for many biological processes, while abnormal cell migration is characteristic of cancer cells. Epithelial cells become motile by undergoing epithelial-to-mesenchymal transition (EMT), and mesenchymal cells increase migration speed by adopting amoeboid features. This review highlights how amoeboid behaviour is not merely a migration mode but rather a cellular state - within the EMT spectra - by which cancer cells survive, invade and colonise challenging microenvironments. Molecular biomarkers and physicochemical triggers associated with amoeboid behaviour are discussed, including an amoeboid associated tumour microenvironment. We reflect on how amoeboid characteristics support metastasis and how their liabilities could turn into therapeutic opportunities.
Collapse
Affiliation(s)
- Vittoria Graziani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | |
Collapse
|
17
|
Mo C, Li W, Jia K, Liu W, Yi M. Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish. Int J Mol Sci 2021; 22:11962. [PMID: 34769390 PMCID: PMC8584686 DOI: 10.3390/ijms222111962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in post-transcriptional repression in nearly every biological process including germ cell development. Previously, we have identified a zebrafish germ plasm-specific miRNA miR-202-5p, which regulates PGC migration through targeting cdc42se1 to protect cdc42 expression. However, knockdown of cdc42se1 could not significantly rescue PGC migration in maternal miR-202 mutant (MmiR-202) embryos, indicating that there are other target genes of miR-202-5p required for the regulation of PGC migration. Herein, we revealed the transcriptional profiles of wild type and MmiR-202 PGCs and obtained 129 differentially expressed genes (DEGs), of which 42 DEGs were enriched cell migration-related signaling pathways. From these DEGs, we identified two novel miR-202-5p target genes prdm12b and rab10. Furthermore, we found that disruption of rab10 expression led to significantly migratory defects of PGC by overexpression of rab10 siRNA, or WT, inactive as well as active forms of rab10 mRNA, and WT rab10 overexpression mediated migratory defects could be partially but significantly rescued by overexpression of miR-202-5p, demonstrating that rab10 is an important factor involved miR-202-5p mediated regulation of PGC migration. Taken together, the present results provide significant information for understanding the molecular mechanism by which miR-202-5p regulates PGC migration in zebrafish.
Collapse
Affiliation(s)
- Chengyu Mo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| |
Collapse
|
18
|
He J, Liu Q, Zheng S, Shen R, Wang X, Gao J, Wang Q, Huang J, Ding J. Enlargement, Reduction, and Even Reversal of Relative Migration Speeds of Endothelial and Smooth Muscle Cells on Biomaterials Simply by Adjusting RGD Nanospacing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42344-42356. [PMID: 34469116 DOI: 10.1021/acsami.1c08559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although many tissue regeneration processes after biomaterial implantation are related to migrations of multiple cell types on material surfaces, available tools to adjust relative migration speeds are very limited. Herein, we put forward a nanomaterial strategy to employ surface modification with arginine-glycine-aspartate (RGD) nanoarrays to tune in vitro cell migration using endothelial cells (ECs) and smooth muscle cells (SMCs) as demonstrated cell types. We found that migrations of both cell types exhibited a nonmonotonic trend with the increase of RGD nanospacing, yet with different peaks-74 nm for SMCs but 95 nm for ECs. The varied sensitivities afford a facile way to regulate the relative migration speeds. Although ECs migrated at a speed similar to SMCs on a non-nano surface, the migration of ECs could be controlled to be significantly faster or slower than SMCs simply by adjusting the RGD nanospacing. This study suggests a potential application of surface modification of biomaterials on a nanoscale level.
Collapse
Affiliation(s)
- Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Navy Medical Center, The Second Military Medical University, Shanghai 200433, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
19
|
Aalto A, Olguin-Olguin A, Raz E. Zebrafish Primordial Germ Cell Migration. Front Cell Dev Biol 2021; 9:684460. [PMID: 34249937 PMCID: PMC8260996 DOI: 10.3389/fcell.2021.684460] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Similar to many other organisms, zebrafish primordial germ cells (PGCs) are specified at a location distinct from that of gonadal somatic cells. Guided by chemotactic cues, PGCs migrate through embryonic tissues toward the region where the gonad develops. In this process, PGCs employ a bleb-driven amoeboid migration mode, characterized by low adhesion and high actomyosin contractility, a strategy used by other migrating cells, such as leukocytes and certain types of cancer cells. The mechanisms underlying the motility and the directed migration of PGCs should be robust to ensure arrival at the target, thereby contributing to the fertility of the organism. These features make PGCs an excellent model for studying guided single-cell migration in vivo. In this review, we present recent findings regarding the establishment and maintenance of cell polarity that are essential for motility and discuss the mechanisms by which cell polarization and directed migration are controlled by chemical and physical cues.
Collapse
Affiliation(s)
- Anne Aalto
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Adan Olguin-Olguin
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| |
Collapse
|
20
|
Abstract
In this review, we consider how the association between adherens junctions and the actomyosin cytoskeleton influences collective cell movement. We focus on recent findings which reveal different ways for adherens junctions to promote the locomotion of cells within tissues: through lamellipodia and junctional contraction. These contributions reflect how classic cadherins establish sites of cortical actin assembly and how adherens junctions couple to contractile actomyosin, respectively. The diverse interplay between cadherin adhesion and the cytoskeleton thus provides different ways for adherens junctions to support epithelial locomotion.
Collapse
Affiliation(s)
- Shafali Gupta
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia 4072
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia 4072
| |
Collapse
|
21
|
The Kunitz-type serine protease inhibitor Spint2 is required for cellular cohesion, coordinated cell migration and cell survival during zebrafish hatching gland development. Dev Biol 2021; 476:148-170. [PMID: 33826923 DOI: 10.1016/j.ydbio.2021.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022]
Abstract
We have previously shown that the Kunitz-type serine protease inhibitor Spint1a, also named Hai1a, is required in the zebrafish embryonic epidermis to restrict the activity of the type II transmembrane serine protease (TTSP) Matriptase1a/St14a, thereby ensuring epidermal homeostasis. A closely related Kunitz-type inhibitor is Spint2/Hai2, which in mammals plays multiple developmental roles that are either redundant or non-redundant with those of Spint1. However, the molecular bases for these non-redundancies are not fully understood. Here, we study spint2 during zebrafish development. It is co-expressed with spint1a in multiple embryonic epithelia, including the outer/peridermal layer of the epidermis. However, unlike spint1a, spint2 expression is absent from the basal epidermal layer but present in hatching gland cells. Hatching gland cells derive from the mesendodermal prechordal plate, from where they undergo a thus far undescribed transit into, and coordinated sheet migration within, the interspace between the outer and basal layer of the epidermis to reach their final destination on the yolk sac. Hatching gland cells usually survive their degranulation that drives embryo hatching but die several days later. In spint2 mutants, cohesion among hatching gland cells and their collective intra-epidermal migration are disturbed, leading to a discontinuous organization of the gland. In addition, cells undergo precocious cell death before degranulation, so that embryos fail to hatch. Chimera analyses show that Spint2 is required in hatching gland cells, but not in the overlying periderm, their potential migration and adhesion substrate. Spint2 acts independently of all tested Matriptases, Prostasins and other described Spint1 and Spint2 mediators. However, it displays a tight genetic interaction with and acts at least partly via the cell-cell adhesion protein E-cadherin, promoting both hatching gland cell cohesiveness and survival, in line with formerly reported effects of E-cadherin during morphogenesis and cell death suppression. In contrast, no such genetic interaction was observed between Spint2 and the cell-cell adhesion molecule EpCAM, which instead interacts with Spint1a. Our data shed new light onto the mechanisms of hatching gland morphogenesis and hatching gland cell survival. In addition, they reveal developmental roles of Spint2 that are strikingly different from those of Spint1, most likely due to differences in the expression patterns and relevant target proteins.
Collapse
|
22
|
Dirks C, Striewski P, Wirth B, Aalto A, Olguin-Olguin A. A mathematical model for bleb regulation in zebrafish primordial germ cells. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2021; 38:218-254. [PMID: 33601409 DOI: 10.1093/imammb/dqab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 01/02/2023]
Abstract
Blebs are cell protrusions generated by local membrane-cortex detachments followed by expansion of the plasma membrane. Blebs are formed by some migrating cells, e.g. primordial germ cells of the zebrafish. While blebs occur randomly at each part of the membrane in unpolarized cells, a polarization process guarantees the occurrence of blebs at a preferential site and thereby facilitates migration toward a specified direction. Little is known about the factors involved in the controlled and directed bleb generation, yet recent studies revealed the influence of an intracellular flow and the stabilizing role of the membrane-cortex linker molecule Ezrin. Based on this information, we develop and analyse a coupled bulk-surface model describing a potential cellular mechanism by which a bleb could be induced at a controlled site. The model rests upon intracellular Darcy flow and a diffusion-advection-reaction system, describing the temporal evolution from a homogeneous to a strongly anisotropic Ezrin distribution. We prove the well-posedness of the mathematical model and show that simulations qualitatively correspond to experimental observations, suggesting that indeed the interaction of an intracellular flow with membrane proteins can be the cause of the Ezrin redistribution accompanying bleb formation.
Collapse
Affiliation(s)
- Carolin Dirks
- WWU Münster FB 10 Mathematik und Informatik, Institute for Analysis and Numerics, 48149 Münster, Germany
| | - Paul Striewski
- WWU Münster FB 10 Mathematik und Informatik, Institute for Analysis and Numerics, 48149 Münster, Germany
| | - Benedikt Wirth
- WWU Münster FB 10 Mathematik und Informatik, Institute for Analysis and Numerics, 48149 Münster, Germany
| | - Anne Aalto
- WWU Münster FB 13 Biologie, Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149 Münster, Germany
| | - Adan Olguin-Olguin
- WWU Münster FB 13 Biologie, Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149 Münster, Germany
| |
Collapse
|
23
|
Abstract
Bioimage analysis (BIA) has historically helped study how and why cells move; biological experiments evolved in intimate feedback with the most classical image processing techniques because they contribute objectivity and reproducibility to an eminently qualitative science. Cell segmentation, tracking, and morphology descriptors are all discussed here. Using ameboid motility as a case study, these methods help us illustrate how proper quantification can augment biological data, for example, by choosing mathematical representations that amplify initially subtle differences, by statistically uncovering general laws or by integrating physical insight. More recently, the non-invasive nature of quantitative imaging is fertilizing two blooming fields: mechanobiology, where many biophysical measurements remain inaccessible, and microenvironments, where the quest for physiological relevance has exploded data size. From relief to remedy, this trend indicates that BIA is to become a main vector of biological discovery as human visual analysis struggles against ever more complex data.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, Paris, France
- Sorbonne Université, Paris 75005, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, Paris, France
| | - Nancy Guillén
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS ERL9195, Paris, France
| |
Collapse
|