1
|
Karasawa T, Koshikawa S. Evolution of gene regulatory networks in insects. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101365. [PMID: 40348447 DOI: 10.1016/j.cois.2025.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 03/07/2025] [Indexed: 05/14/2025]
Abstract
Changes in gene regulatory networks (GRNs) underlying the evolution of traits have been intensively studied, with insects providing excellent model cases. In studies using Drosophila, butterflies, and other insects, several well-known cases have shown that changes in the cis-regulatory region of a gene controlling a trait can result in the co-option of the gene for a role different from that in its original developmental context. When the expression of a regulatory gene that controls the expression of multiple downstream genes is altered, the expression of these downstream genes changes accordingly, representing the simplest form of GRN co-option. Many studies have explored the applicability of this model to the acquisition of new traits, yielding substantial insights. However, no study has yet comprehensively elucidated the co-option of a GRN or the evolution of a network architecture, including associated genes and their regulatory relationships. In the near future, the use of single-cell multiomics and machine learning will allow for larger-scale data analysis, leading to a better understanding of the evolution of traits through the evolution of GRNs.
Collapse
Affiliation(s)
- Takumi Karasawa
- Graduate School of Environmental Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Environmental Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| |
Collapse
|
2
|
Zeng L, Han X, Gou X, Pei H, Shao Y, Cao Y, Zhang Z, Li X, Yu J, Yan J, Guo L, Guo T. Leveraging Phenotypic Plasticity in Seed Oil Content for Climate-Adapted Breeding and Production. PLANT, CELL & ENVIRONMENT 2025; 48:2856-2871. [PMID: 39898423 DOI: 10.1111/pce.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Phenotypic plasticity is the property of an organism to change in response to different environments. Understanding and leveraging crop phenotypic plasticity is crucial for mitigating threats caused by climate change. Here, we assessed phenotypic plasticity in multi-environment trials over 4 years, using 505 inbred lines from a Brassica napus genetic diversity panel. The variation in seed oil content (SOC) plasticity was primarily associated with three environmental indices: precipitation, diurnal temperature range, and ultraviolet B during the flowering or pod-filling stage, alongside five major plasticity genes. Leveraging this information with climate records, we developed a predictive model to estimate SOC for various planting dates in seven major production regions and validated our predictions in new environments. As climate change necessitates new breeding materials with improved genetics, we examined the genetic potentials of existing lines for enhanced SOC in future climates. Using projected environmental data and the identified major plasticity genes, we predicted SOC of genotypes across production regions. We also identified an optimal haplotype, a specific combination of alleles, for each production region to sustainably produce high SOC for future climates. This study offers insights and selection methods that contribute to mitigating the adverse effects of climate change on agriculture.
Collapse
Affiliation(s)
- Lingju Zeng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiangjian Gou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - He Pei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Yang Shao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Yilan Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Zhenwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xianran Li
- USDA, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, Washington, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Tingting Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
3
|
Sabarís G, Schuettengruber B, Papadopoulos GL, Coronado-Zamora M, Fitz-James MH, González J, Cavalli G. A mechanistic basis for genetic assimilation in natural fly populations. Proc Natl Acad Sci U S A 2025; 122:e2415982122. [PMID: 40063800 PMCID: PMC11929479 DOI: 10.1073/pnas.2415982122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
Genetic assimilation is a process by which a trait originally driven by the environment becomes independent of the initial cue and is expressed constitutively in a population. More than seven decades have passed since Waddington's pioneering demonstration of the acquisition of morphological traits through genetic assimilation, but the underlying mechanism remains unknown. Here, we address this gap by performing combined genomic analyses of Waddington's genetic assimilation experiments using the ectopic veins (EV) phenocopy in Drosophila as a model. Our study reveals the assimilation of EV in both outbred and inbred fly natural populations, despite their limited genetic diversity. We identified key changes in the expression of developmental genes and pinpointed selected alleles involved in EV assimilation. The assimilation of EV is mainly driven by the selection of regulatory alleles already present in the ancestral populations, including the downregulation of the receptor tyrosine kinase gene Cad96Ca by the insertion of a transposable element in its 3' untranslated region. The genetic variation at this locus in the inbred population is maintained by a large chromosomal inversion. In outbred populations, the evolution of EV results from a polygenic response shaped by the selective environment. Our results support a model in which selection for multiple preexisting alleles in the ancestral population, rather than stress-induced genetic or epigenetic variation, drives the evolution of EV in natural fly populations.
Collapse
Affiliation(s)
- Gonzalo Sabarís
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| | - Giorgio L. Papadopoulos
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| | - Marta Coronado-Zamora
- Institute of Evolutionary Biology, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, Barcelona08003, Spain
| | | | - Josefa González
- Institute of Evolutionary Biology, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, Barcelona08003, Spain
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| |
Collapse
|
4
|
da Silva Ribeiro T, Lollar MJ, Sprengelmeyer QD, Huang Y, Benson DM, Orr MS, Johnson ZC, Corbett-Detig RB, Pool JE. Recombinant inbred line panels inform the genetic architecture and interactions of adaptive traits in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.14.594228. [PMID: 38798433 PMCID: PMC11118405 DOI: 10.1101/2024.05.14.594228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The distribution of allelic effects on traits, along with their gene-by-gene and gene-by-environment interactions, contributes to the phenotypes available for selection and the trajectories of adaptive variants. Nonetheless, uncertainty persists regarding the effect sizes underlying adaptations and the importance of genetic interactions. Herein, we aimed to investigate the genetic architecture and the epistatic and environmental interactions involving loci that contribute to multiple adaptive traits using two new panels of Drosophila melanogaster recombinant inbred lines (RILs). To better fit our data, we re-implemented functions from R/qtl (Broman et al. 2003) using additive genetic models. We found 14 quantitative trait loci (QTL) underlying melanism, wing size, song pattern, and ethanol resistance. By combining our mapping results with population genetic statistics, we identified potential new genes related to these traits. None of the detected QTLs showed clear evidence of epistasis, and our power analysis indicated that we should have seen at least one significant interaction if sign epistasis or strong positive epistasis played a pervasive role in trait evolution. In contrast, we did find roles for gene-by-environment interactions involving pigmentation traits. Overall, our data suggest that the genetic architecture of adaptive traits often involves alleles of detectable effect, that strong epistasis does not always play a role in adaptation, and that environmental interactions can modulate the effect size of adaptive alleles.
Collapse
Affiliation(s)
- Tiago da Silva Ribeiro
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Matthew J. Lollar
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Derek M. Benson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Megan S. Orr
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zachary C. Johnson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Russell B. Corbett-Detig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Hunter‐Manseau F, Cormier SB, Strang R, Pichaud N. Fasting as a precursor to high-fat diet enhances mitochondrial resilience in Drosophila melanogaster. INSECT SCIENCE 2024; 31:1770-1788. [PMID: 38514255 PMCID: PMC11632299 DOI: 10.1111/1744-7917.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Changes in diet type and nutrient availability can impose significant environmental stress on organisms, potentially compromising physiological functions and reproductive success. In nature, dramatic fluctuations in dietary resources are often observed and adjustments to restore cellular homeostasis are crucial to survive this type of stress. In this study, we exposed male Drosophila melanogaster to two modulated dietary treatments: one without a fasting period before exposure to a high-fat diet and the other with a 24-h fasting period. We then investigated mitochondrial metabolism and molecular responses to these treatments. Exposure to a high-fat diet without a preceding fasting period resulted in disrupted mitochondrial respiration, notably at the level of complex I. On the other hand, a short fasting period before the high-fat diet maintained mitochondrial respiration. Generally, transcript abundance of genes associated with mitophagy, heat-shock proteins, mitochondrial biogenesis, and nutrient sensing pathways increased either slightly or significantly following a fasting period and remained stable when flies were subsequently put on a high-fat diet, whereas a drastic decrease of almost all transcript abundances was observed for all these pathways when flies were exposed directly to a high-fat diet. Moreover, mitochondrial enzymatic activities showed less variation after the fasting period than the treatment without a fasting period. Overall, our study sheds light on the mechanistic protective effects of fasting prior to a high-fat diet and highlights the metabolic flexibility of Drosophila mitochondria in response to abrupt dietary changes and have implication for adaptation of species to their changing environment.
Collapse
Affiliation(s)
- Florence Hunter‐Manseau
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Simon B. Cormier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Rebekah Strang
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Nicolas Pichaud
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| |
Collapse
|
6
|
Avery RR, Collins MA, Albert FW. Genotype-by-environment interactions shape ubiquitin-proteasome system activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624644. [PMID: 39605480 PMCID: PMC11601593 DOI: 10.1101/2024.11.21.624644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In genotype-by-environment interactions (GxE), the effect of a genetic variant on a trait depends on the environment. GxE influences numerous organismal traits across eukaryotic life. However, we have a limited understanding of how GxE shapes the molecular processes that give rise to organismal traits. Here, we characterized how GxE shapes protein degradation, an essential molecular process that influences numerous aspects of cellular and organismal physiology. Using the yeast Saccharomyces cerevisiae, we characterized GxE in the activity of the ubiquitin-proteasome system (UPS), the primary protein degradation system in eukaryotes. By mapping genetic influences on the degradation of six substrates that engage multiple distinct UPS pathways across eight diverse environments, we discovered extensive GxE in the genetics of UPS activity. Hundreds of locus effects on UPS activity varied depending on the substrate, the environment, or both. Most of these cases corresponded to loci that were present in one environment but not another ("presence / absence" GxE), while a smaller number of loci had opposing effects in different environments ("sign change" GxE). The number of loci exhibiting GxE, their genomic location, and the type of GxE (presence / absence or sign change) varied across UPS substrates. Loci exhibiting GxE were clustered at genomic regions that contain core UPS genes and especially at regions containing variation that affects the expression of thousands of genes, suggesting indirect contributions to UPS activity. Our results reveal highly complex interactions at the level of substrates and environments in the genetics of protein degradation.
Collapse
Affiliation(s)
- Randi R Avery
- Department of Genetics, Cell Biology, & Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Mahlon A Collins
- Department of Genetics, Cell Biology, & Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, & Genetics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Hundebøl BNRG, Rohde PD, Kristensen TN, Jensen RWM, Vosegaard T, Sørensen JG. Bugs on Drugs: Paracetamol Exposure Reveals Genotype-Specific Generational Effects on Life History Traits in Drosophila melanogaster. INSECTS 2024; 15:763. [PMID: 39452339 PMCID: PMC11509061 DOI: 10.3390/insects15100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Few investigations have been made to determine whether pharmaceutical drugs cause any generational effects. These effects can be divided into intergenerational and transgenerational effects. In insects, the F1 offspring of exposed individuals are considered to show intergenerational effects (as they have been exposed as germ cells or early embryos), while the F2 generation is fully non-exposed and considered to show transgenerational effects. Here, the common over-the-counter (OTC) drug, paracetamol, is investigated for genotype-specific responses and effects across generations on three life-history traits: fecundity, longevity, and spontaneous locomotor activity levels in the model species Drosophila melanogaster. Seven isofemale D. melanogaster lines were exposed to a high and intermediate dose of paracetamol determined by a dose-response curve. NMR investigations verified the long-term presence of paracetamol in the food substrate. Phenotypic effects of paracetamol ingestion were investigated on flies exposed to the drug and in their offspring and grand-offspring. The dose-response curve indicated genotype-specific responses to paracetamol. In the following experiment, all traits investigated displayed significant effects of paracetamol ingestion for at least one of the seven isofemale lines, and we detected strong genotype-specific responses to paracetamol. Fecundity tended to increase in individuals directly exposed to the drug whereas fecundity in the F2 generation was reduced (transgenerational). Longevity generally decreased in directly exposed individuals but tended to increase in F1 offspring (intergenerational). Paracetamol effects on spontaneous locomotor activity were primarily detected as transgenerational effects and were rarely seen in directly exposed individuals. However, across lines, no clear overall trend could be determined for any trait. The generational effects and marked genotype-specific response to paracetamol warrants further investigation of both genotype-specific responses and generational effects in general.
Collapse
Affiliation(s)
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg Ø, Denmark;
| | | | - Rune Wittendorff Mønster Jensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark; (R.W.M.J.); (T.V.)
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark; (R.W.M.J.); (T.V.)
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
8
|
Hamann E, Groen SC, Dunivant TS, Ćalić I, Cochran C, Konshok R, Purugganan MD, Franks SJ. Selection on genome-wide gene expression plasticity of rice in wet and dry field environments. Mol Ecol 2024:e17522. [PMID: 39215462 DOI: 10.1111/mec.17522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Gene expression can be highly plastic in response to environmental variation. However, we know little about how expression plasticity is shaped by natural selection and evolves in wild and domesticated species. We used genotypic selection analysis to characterize selection on drought-induced plasticity of over 7,500 leaf transcripts of 118 rice accessions (genotypes) from different environmental conditions grown in a field experiment. Gene expression plasticity was neutral for most gradually plastic transcripts, but transcripts with discrete patterns of expression showed stronger selection on expression plasticity. Whether plasticity was adaptive and co-gradient or maladaptive and counter-gradient varied among varietal groups. No transcripts that experienced selection for plasticity across environments showed selection against plasticity within environments, indicating a lack of evidence for costs of adaptive plasticity that may constrain its evolution. Selection on expression plasticity was influenced by degree of plasticity, transcript length and gene body methylation. We observed positive selection on plasticity of co-expression modules containing transcripts involved in photosynthesis, translation and responsiveness to abiotic stress. Taken together, these results indicate that patterns of selection on expression plasticity were context-dependent and likely associated with environmental conditions of varietal groups, but that the evolution of adaptive plasticity would likely not be constrained by opposing patterns of selection on plasticity within compared to across environments. These results offer a genome-wide view of patterns of selection and ecological constraints on gene expression plasticity and provide insights into the interplay between plastic and evolutionary responses to drought at the molecular level.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
- Department of Biology, Institute of Plant Ecology and Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon C Groen
- Department of Nematology, University of California Riverside, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Taryn S Dunivant
- Department of Nematology, University of California Riverside, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Irina Ćalić
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Colleen Cochran
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Rachel Konshok
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| |
Collapse
|
9
|
Santos MA, Carromeu-Santos A, Quina AS, Antunes MA, Kristensen TN, Santos M, Matos M, Fragata I, Simões P. Experimental Evolution in a Warming World: The Omics Era. Mol Biol Evol 2024; 41:msae148. [PMID: 39034684 PMCID: PMC11331425 DOI: 10.1093/molbev/msae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
A comprehensive understanding of the genetic mechanisms that shape species responses to thermal variation is essential for more accurate predictions of the impacts of climate change on biodiversity. Experimental evolution with high-throughput resequencing approaches (evolve and resequence) is a highly effective tool that has been increasingly employed to elucidate the genetic basis of adaptation. The number of thermal evolve and resequence studies is rising, yet there is a dearth of efforts to integrate this new wealth of knowledge. Here, we review this literature showing how these studies have contributed to increase our understanding on the genetic basis of thermal adaptation. We identify two major trends: highly polygenic basis of thermal adaptation and general lack of consistency in candidate targets of selection between studies. These findings indicate that the adaptive responses to specific environments are rather independent. A review of the literature reveals several gaps in the existing research. Firstly, there is a paucity of studies done with organisms of diverse taxa. Secondly, there is a need to apply more dynamic and ecologically relevant thermal environments. Thirdly, there is a lack of studies that integrate genomic changes with changes in life history and behavioral traits. Addressing these issues would allow a more in-depth understanding of the relationship between genotype and phenotype. We highlight key methodological aspects that can address some of the limitations and omissions identified. These include the need for greater standardization of methodologies and the utilization of new technologies focusing on the integration of genomic and phenotypic variation in the context of thermal adaptation.
Collapse
Affiliation(s)
- Marta A Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Marta A Antunes
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Mauro Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Margarida Matos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Choy YMM, Walter GM, Mirth CK, Sgrò CM. Within-population plastic responses to combined thermal-nutritional stress differ from those in response to single stressors, and are genetically independent across traits in both males and females. J Evol Biol 2024; 37:717-731. [PMID: 38757509 DOI: 10.1093/jeb/voae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Phenotypic plasticity helps animals to buffer the effects of increasing thermal and nutritional stress created by climate change. Plastic responses to single and combined stressors can vary among genetically diverged populations. However, less is known about how plasticity in response to combined stress varies among individuals within a population or whether such variation changes across life-history traits. This is important because individual variation within populations shapes population-level responses to environmental change. Here, we used isogenic lines of Drosophila melanogaster to assess the plasticity of egg-to-adult viability and sex-specific body size for combinations of 2 temperatures (25 °C or 28 °C) and 3 diets (standard diet, low caloric diet, or low protein:carbohydrate ratio diet). Our results reveal substantial within-population genetic variation in plasticity for egg-to-adult viability and wing size in response to combined thermal-nutritional stress. This genetic variation in plasticity was a result of cross-environment genetic correlations that were often < 1 for both traits, as well as changes in the expression of genetic variation across environments for egg-to-adult viability. Cross-sex genetic correlations for body size were weaker when the sexes were reared in different conditions, suggesting that the genetic basis of traits may change with the environment. Furthermore, our results suggest that plasticity in egg-to-adult viability is genetically independent from plasticity in body size. Importantly, plasticity in response to diet and temperature individually differed from plastic shifts in response to diet and temperature in combination. By quantifying plasticity and the expression of genetic variance in response to combined stress across traits, our study reveals the complexity of animal responses to environmental change, and the need for a more nuanced understanding of the potential for populations to adapt to ongoing climate change.
Collapse
Affiliation(s)
- Yeuk Man Movis Choy
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Greg M Walter
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Yan W, Dong X, Li R, Zhao X, Zhou Q, Luo D, Liu Z. Genome-wide identification of JAZ gene family members in autotetraploid cultivated alfalfa (Medicago sativa subsp. sativa) and expression analysis under salt stress. BMC Genomics 2024; 25:636. [PMID: 38926665 PMCID: PMC11201308 DOI: 10.1186/s12864-024-10460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Jasmonate ZIM-domain (JAZ) proteins, which act as negative regulators in the jasmonic acid (JA) signalling pathway, have significant implications for plant development and response to abiotic stress. RESULTS Through a comprehensive genome-wide analysis, a total of 20 members of the JAZ gene family specific to alfalfa were identified in its genome. Phylogenetic analysis divided these 20 MsJAZ genes into five subgroups. Gene structure analysis, protein motif analysis, and 3D protein structure analysis revealed that alfalfa JAZ genes in the same evolutionary branch share similar exon‒intron, motif, and 3D structure compositions. Eight segmental duplication events were identified among these 20 MsJAZ genes through collinearity analysis. Among the 32 chromosomes of the autotetraploid cultivated alfalfa, there were 20 MsJAZ genes distributed on 17 chromosomes. Extensive stress-related cis-acting elements were detected in the upstream sequences of MsJAZ genes, suggesting that their response to stress has an underlying function. Furthermore, the expression levels of MsJAZ genes were examined across various tissues and under the influence of salt stress conditions, revealing tissue-specific expression and regulation by salt stress. Through RT‒qPCR experiments, it was discovered that the relative expression levels of these six MsJAZ genes increased under salt stress. CONCLUSIONS In summary, our study represents the first comprehensive identification and analysis of the JAZ gene family in alfalfa. These results provide important information for exploring the mechanism of JAZ genes in alfalfa salt tolerance and identifying candidate genes for improving the salt tolerance of autotetraploid cultivated alfalfa via genetic engineering in the future.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xueming Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xianglong Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Dong Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
12
|
Tiezzi F, Goda K, Morgante F. Using lifestyle information in polygenic modeling of blood pressure traits: a simple method to reduce bias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597631. [PMID: 38895222 PMCID: PMC11185601 DOI: 10.1101/2024.06.05.597631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Complex traits are determined by the effects of multiple genetic variants, multiple environmental factors, and potentially their interaction. Predicting complex trait phenotypes from genotypes is a fundamental task in quantitative genetics that was pioneered in agricultural breeding for selection purposes. However, it has recently become important in human genetics. While prediction accuracy for some human complex traits is appreciable, this remains low for most traits. A promising way to improve prediction accuracy is by including not only genetic information but also environmental information in prediction models. However, environmental factors can, in turn, be genetically determined. This phenomenon gives rise to a correlation between the genetic and environmental components of the phenotype, which violates the assumption of independence between the genetic and environmental components of most statistical methods for polygenic modeling. In this work, we investigated the impact of including 27 lifestyle variables as well as genotype information (and their interaction) for predicting diastolic blood pressure, systolic blood pressure, and pulse pressure in older individuals in UK Biobank. The 27 lifestyle variables were included as either raw variables or adjusted by genetic and other non-genetic factors. The results show that including both lifestyle and genetic data improved prediction accuracy compared to using either piece of information alone. Both prediction accuracy and bias can improve substantially for some traits when the models account for the lifestyle variables after their proper adjustment. Our work confirms the utility of including environmental information in polygenic models of complex traits and highlights the importance of proper handling of the environmental variables.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Khushi Goda
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Fabio Morgante
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| |
Collapse
|
13
|
Dintzner E, Bandekar SJ, Leon K, Cechova K, Vafabakhsh R, Araç D. The far extracellular CUB domain of the adhesion GPCR ADGRG6/GPR126 is a key regulator of receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580607. [PMID: 38766069 PMCID: PMC11100614 DOI: 10.1101/2024.02.16.580607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Adhesion G Protein-coupled receptors (aGPCRs) transduce extracellular adhesion signals into cytoplasmic signaling pathways. ADGRG6/GPR126 is an aGPCR critical for axon myelination, heart development and ear development; and is associated with developmental diseases and cancers. ADGRG6 has a large, alternatively-spliced, five-domain extracellular region (ECR) that samples different conformations and regulates receptor signaling. However, the molecular details of how the ECR regulates signaling are unclear. Herein, we studied the conformational dynamics of the conserved CUB domain which is located at the distal N-terminus of the ECR and is deleted in an alternatively-spliced isoform ( Δ CUB). We showed that the Δ CUB isoform has decreased signaling. Molecular dynamics simulations suggest that the CUB domain is involved in interdomain contacts to maintain a compact ECR conformation. A cancer-associated CUB domain mutant, C94Y, drastically perturbs the ECR conformation and results in elevated signaling, whereas another CUB mutant, Y96A, located near a conserved Ca 2+ -binding site, decreases signaling. Our results suggest an ECR-mediated mechanism for ADGRG6 regulation in which the CUB domain instructs conformational changes within the ECR to regulate receptor signaling.
Collapse
|
14
|
Fanara JJ, Sassi PL, Goenaga J, Hasson E. Genetic basis and repeatability for desiccation resistance in Drosophila melanogaster (Diptera: Drosophilidae). Genetica 2024; 152:1-9. [PMID: 38102503 DOI: 10.1007/s10709-023-00201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Dehydration is a stress factor for organisms inhabiting natural habitats where water is scarce. Thus, it may be expected that species facing arid environments will develop mechanisms that maximize resistance to desiccation. Insects are excellent models for studying the effects of dehydration as well as the mechanisms and processes that prevent water loss since the effect of desiccation is greater due to the higher area/volume ratio than larger animals. Even though physiological and behavioral mechanisms to cope with desiccation are being understood, the genetic basis underlying the mechanisms related to variation in desiccation resistance and the context-dependent effect remain unsolved. Here we analyze the genetic bases of desiccation resistance in Drosophila melanogaster and identify candidate genes that underlie trait variation. Our quantitative genetic analysis of desiccation resistance revealed sexual dimorphism and extensive genetic variation. The phenotype-genotype association analyses (GWAS) identified 71 candidate genes responsible for total phenotypic variation in desiccation resistance. Half of these candidate genes were sex-specific suggesting that the genetic architecture underlying this adaptive trait differs between males and females. Moreover, the public availability of desiccation data analyzed on the same lines but in a different lab allows us to investigate the reliability and repeatability of results obtained in independent screens. Our survey indicates a pervasive micro-environment lab-dependent effect since we did not detect overlap in the sets of genes affecting desiccation resistance identified between labs.
Collapse
Affiliation(s)
- Juan Jose Fanara
- Laboratorio de Evolución, Departamento de Ecología Genética y Evolución, Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Buenos Aires, Argentina.
| | - Paola Lorena Sassi
- Grupo de Ecología Integrativa de Fauna Silvestre, Instituto Argentino de Investigaciones de Zonas Áridas, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Julieta Goenaga
- Quality Control & NIR Scientist, Biomar Group, Aarhus, Denmark
| | - Esteban Hasson
- Laboratorio de Evolución, Departamento de Ecología Genética y Evolución, Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Buenos Aires, Argentina
| |
Collapse
|
15
|
Collet JM, Nidelet S, Fellous S. Genetic independence between traits separated by metamorphosis is widespread but varies with biological function. Proc Biol Sci 2023; 290:20231784. [PMID: 37935368 PMCID: PMC10645066 DOI: 10.1098/rspb.2023.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Why is metamorphosis so pervasive? Does it facilitate the independent (micro)evolution of quantitative traits in distinct life stages, similarly to how it enables some limbs and organs to develop at specific life stages? We tested this hypothesis by measuring the expression of 6400 genes in 41 Drosophila melanogaster inbred lines at larval and adult stages. Only 30% of the genes showed significant genetic correlations between larval and adult expression. By contrast, 46% of the traits showed some level of genetic independence between stages. Gene ontology terms enrichment revealed that across stages correlated traits were often involved in proteins synthesis, insecticide resistance and innate immunity, while a vast number of genes expression traits associated with energy metabolism were independent between life stages. We compared our results to a similar case: genetic constraints between males and females in gonochoric species (i.e. sexual antagonism). We expected selection for the separation between males and females to be higher than between juvenile and adult functions, as gonochorism is a more common strategy in the animal kingdom than metamorphosis. Surprisingly, we found that inter-stage constraints were lower than inter-sexual genetic constraints. Overall, our results show that metamorphosis enables a large part of the transcriptome to evolve independently at different life stages.
Collapse
Affiliation(s)
- Julie M. Collet
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sabine Nidelet
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Simon Fellous
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
16
|
Xiao C, Duarri‐Redondo S, Thorhölludottir DAV, Chen Y, Schlötterer C. Non-additive effects between genotypes: Implications for competitive fitness assays. Ecol Evol 2023; 13:e10713. [PMID: 37941737 PMCID: PMC10630047 DOI: 10.1002/ece3.10713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Competitive fitness assays are widely used in evolutionary biology and typically rely on a reference strain to compare different focal genotypes. This approach implicitly relies on the absence of interaction between the competing genotypes. In other words, the performance of the reference strain must not depend on the competitor. This report scrutinized this assumption by competing diverged Drosophila simulans populations against a common reference strain. We detected strong evidence for interaction between the competing genotypes: (1) Frequency-dependent selection was common with opposite effects in genetically diverged populations. (2) Temporal heterogeneity of fitness estimates, which can be partially attributed to a competitor-specific delay in the eclosion of the reference strain. We propose that this inconsistent behavior of the reference strain can be considered a specific case of a genotype × environment interaction. Focal populations could modify the environment of the reference strain, either indirectly by altering the microbiome composition and food availability or directly by genotype-specific cannibalism. Our results provide new insights into the interaction of diverged genotypes and have important implications for the interpretation of competitive fitness assays.
Collapse
Affiliation(s)
- Changyi Xiao
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Sara Duarri‐Redondo
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Dagny A. V. Thorhölludottir
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Yiwen Chen
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | | |
Collapse
|
17
|
Patlar B, Fulham L, Civetta A. A predominant role of genotypic variation in both expression of sperm competition genes and paternity success in Drosophila melanogaster. Proc Biol Sci 2023; 290:20231715. [PMID: 37727083 PMCID: PMC10509582 DOI: 10.1098/rspb.2023.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Sperm competition is a crucial aspect of male reproductive success in many species, including Drosophila melanogaster, and seminal fluid proteins (Sfps) can influence sperm competitiveness. However, the combined effect of environmental and genotypic variation on sperm competition gene expression remains poorly understood. Here, we used Drosophila Genetic Reference Panel (DGRP) inbred lines and manipulated developmental population density (i.e. larval density) to test the effects of genotype, environment and genotype-by-environment interactions (GEI) on the expression of the known sperm competition genes Sex Peptide, Acp36DE and CG9997. High larval density resulted in reduced adult body size, but expression of sperm competition genes remained unaffected. Furthermore, we found no significant GEI but genotypic effects in the expression of SP and Acp36DE. Our results also revealed GEI for relative competitive paternity success (second male paternity; P2), with genes' expression positively correlated with P2. Given the effect of genotype on the expression of genes, we conducted a genome-wide association study (GWAS) and identified polymorphisms in putative cis-regulatory elements as predominant factors regulating the expression of SP and Acp36DE. The association of genotypic variation with sperm competition outcomes, and the resilience of sperm competition genes' expression against environmental challenges, demonstrates the importance of genome variation background in reproductive fitness.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | - Lauren Fulham
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| |
Collapse
|
18
|
DiVito Evans A, Fairbanks RA, Schmidt P, Levine MT. Histone methylation regulates reproductive diapause in Drosophila melanogaster. PLoS Genet 2023; 19:e1010906. [PMID: 37703303 PMCID: PMC10499233 DOI: 10.1371/journal.pgen.1010906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Fluctuating environments threaten fertility and viability. To better match the immediate, local environment, many organisms adopt alternative phenotypic states, a phenomenon called "phenotypic plasticity." Natural populations that predictably encounter fluctuating environments tend to be more plastic than conspecific populations that encounter a constant environment, suggesting that phenotypic plasticity can be adaptive. Despite pervasive evidence of such "adaptive phenotypic plasticity," gene regulatory mechanisms underlying plasticity remains poorly understood. Here we test the hypothesis that environment-dependent phenotypic plasticity is mediated by epigenetic factors. To test this hypothesis, we exploit the adaptive reproductive arrest of Drosophila melanogaster females, called diapause. Using an inbred line from a natural population with high diapause plasticity, we demonstrate that diapause is determined epigenetically: only a subset of genetically identical individuals enter diapause and this diapause plasticity is epigenetically transmitted for at least three generations. Upon screening a suite of epigenetic marks, we discovered that the active histone marks H3K4me3 and H3K36me1 are depleted in diapausing ovaries. Using ovary-specific knockdown of histone mark writers and erasers, we demonstrate that H3K4me3 and H3K36me1 depletion promotes diapause. Given that diapause is highly polygenic, that is, distinct suites of alleles mediate diapause plasticity across distinct genotypes, we also investigated the potential for genetic variation in diapause-determining epigenetic marks. Specifically, we asked if these histone marks were similarly depleted in diapause of a genotypically distinct line. We found evidence of divergence in both the gene expression program and histone mark abundance. This study reveals chromatin determinants of phenotypic plasticity and suggests that these determinants may be genotype-dependent, offering new insight into how organisms may exploit and evolve epigenetic mechanisms to persist in fluctuating environments.
Collapse
Affiliation(s)
- Abigail DiVito Evans
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Regina A. Fairbanks
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul Schmidt
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mia T. Levine
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Anholt RRH, Mackay TFC. The genetic architecture of behavioral canalization. Trends Genet 2023; 39:602-608. [PMID: 36878820 PMCID: PMC11856520 DOI: 10.1016/j.tig.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Behaviors are components of fitness and contribute to adaptive evolution. Behaviors represent the interactions of an organism with its environment, yet innate behaviors display robustness in the face of environmental change, which we refer to as 'behavioral canalization'. We hypothesize that positive selection of hub genes of genetic networks stabilizes the genetic architecture for innate behaviors by reducing variation in the expression of interconnected network genes. Robustness of these stabilized networks would be protected from deleterious mutations by purifying selection or suppressing epistasis. We propose that, together with newly emerging favorable mutations, epistatically suppressed mutations can generate a reservoir of cryptic genetic variation that could give rise to decanalization when genetic backgrounds or environmental conditions change to allow behavioral adaptation.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.
| | - Trudy F C Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
20
|
Drosophila melanogaster as an emerging model host for entomopathogenic fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Fortuna MA. The phenotypic plasticity of an evolving digital organism. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220852. [PMID: 36117864 PMCID: PMC9470259 DOI: 10.1098/rsos.220852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change will fundamentally reshape life on Earth in the coming decades. Therefore, understanding the extent to which species will cope with rising temperatures is of paramount importance. Phenotypic plasticity is the ability of an organism to change the morphological and functional traits encoded by its genome in response to the environment. I show here that plasticity pervades not only natural but also artificial systems that mimic the developmental process of biological organisms, such as self-replicating and evolving computer programs-digital organisms. Specifically, the environment can modify the sequence of instructions executed from a digital organism's genome (i.e. its transcriptome), which results in changes in its phenotype (i.e. the ability of the digital organism to perform Boolean logic operations). This genetic-based pathway for plasticity comes at a fitness cost to an organism's viability and generation time: the longer the transcriptome (higher fitness cost), the more chances for the environment to modify the genetic execution flow control, and the higher the likelihood for the genome to encode novel phenotypes. By studying to what extent a digital organism's phenotype is influenced by both its genome and the environment, I make a parallelism between natural and artificial evolving systems on how natural selection might slide trait regulation anywhere along a continuum from total environmental control to total genomic control, which harbours lessons not only for designing evolvable artificial systems, but also for synthetic biology.
Collapse
Affiliation(s)
- Miguel A. Fortuna
- Computational Biology Lab, Estación Biológica de Doñana (EBD), Spanish National Research Council (CSIC), Seville, Spain
| |
Collapse
|
22
|
Wei X, Li X, Liu H, Lei H, Sun W, Li D, Dong W, Chen H, Xie L. Altered life history traits and transcripts of molting- and reproduction-related genes by cadmium in Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:735-745. [PMID: 35359216 DOI: 10.1007/s10646-022-02541-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a non-essential element and can be toxic to aquatic organisms at low concentrations. Despite its well-known toxicity to Daphnia magna, the effects of Cd on physiological parameters (heart rate and thoracic limb activity) and molting- and reproduction-related genes are relatively understudied. In this study, D. magna were exposed to 0 (control), 25, 50 and 75 μg L-1 of Cd for 7 d and 21 d to determine the toxicity of Cd. The results showed that the Cd body burden in D. magna was significantly increased with elevated Cd concentrations, up to 13.4 μg Cd/g dry weight (dw) after exposure to 75 μg L-1 for 21 d. After 21 d of exposure, the body length and body weight of D. magna were significantly decreased in all Cd treatments compared to the control. The heart rate and thoracic limb activity were reduced by 4.3-11.7 and 5.0-10.3%, respectively. The levels of malondialdehyde (MDA) were increased by ~24-37% and the activity of catalase (CAT) was inhibited by ~50% compared to the control. The reproductive parameters (i.e., size of the first brood, the total number of offspring per female and the number of offspring per brood) were remarkably reduced, causing adverse effects on the population dynamics. In addition, the transcripts of genes (cyp314, cyp18a1, ecra, usp, hr3, cut, cht and cht3) related to the molting of D. magna were altered, whereas the transcripts of genes (vtg1, vtg2 and vmo1) related to reproduction were down-regulated. This study helps better understand the effects of Cd at different biological levels.
Collapse
Affiliation(s)
- Xinrong Wei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Weijun Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Wu Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao, 028000, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Swaegers J, Koch EL. Gene expression studies of plastic and evolutionary responses to global warming. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100918. [PMID: 35390507 DOI: 10.1016/j.cois.2022.100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Phenotypic plasticity can be a rapid response for coping with global warming, yet may be insufficient to protect species from extinction. Evolutionary adaptation may reinforce adaptive or oppose maladaptive plastic responses. With advances in technology whole transcriptomes can provide us with an unprecedented overview of genes and functional processes underlying the interplay between plasticity and evolution. We advocate that insects provide ideal opportunities to study plasticity in non-adapted and thermally adapted populations to infer reaction norms across the whole transcriptome ('reactionomes'). This can advance our understanding of how the interplay between plasticity and evolution shapes responses to warming. So far, a limited number of studies suggest predominantly maladaptive plastic responses to novel environments that are reduced with time, but much more research is needed to infer general patterns.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium.
| | - Eva L Koch
- School of Biociences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Oomen RA, Hutchings JA. Genomic reaction norms inform predictions of plastic and adaptive responses to climate change. J Anim Ecol 2022; 91:1073-1087. [PMID: 35445402 PMCID: PMC9325537 DOI: 10.1111/1365-2656.13707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
Genomic reaction norms represent the range of gene expression phenotypes (usually mRNA transcript levels) expressed by a genotype along an environmental gradient. Reaction norms derived from common‐garden experiments are powerful approaches for disentangling plastic and adaptive responses to environmental change in natural populations. By treating gene expression as a phenotype in itself, genomic reaction norms represent invaluable tools for exploring causal mechanisms underlying organismal responses to climate change across multiple levels of biodiversity. Our goal is to provide the context, framework and motivation for applying genomic reaction norms to study the responses of natural populations to climate change. Here, we describe the utility of integrating genomics with common‐garden‐gradient experiments under a reaction norm analytical framework to answer fundamental questions about phenotypic plasticity, local adaptation, their interaction (i.e. genetic variation in plasticity) and future adaptive potential. An experimental and analytical framework for constructing and analysing genomic reaction norms is presented within the context of polygenic climate change responses of structured populations with gene flow. Intended for a broad eco‐evo readership, we first briefly review adaptation with gene flow and the importance of understanding the genomic basis and spatial scale of adaptation for conservation and management of structured populations under anthropogenic change. Then, within a high‐dimensional reaction norm framework, we illustrate how to distinguish plastic, differentially expressed (difference in reaction norm intercepts) and differentially plastic (difference in reaction norm slopes) genes, highlighting the areas of opportunity for applying these concepts. We conclude by discussing how genomic reaction norms can be incorporated into a holistic framework to understand the eco‐evolutionary dynamics of climate change responses from molecules to ecosystems. We aim to inspire researchers to integrate gene expression measurements into common‐garden experimental designs to investigate the genomics of climate change responses as sequencing costs become increasingly accessible.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway
| | - Jeffrey A Hutchings
- Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway.,Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
| |
Collapse
|
25
|
Genome-wide analysis of JAZ family genes expression patterns during fig (Ficus carica L.) fruit development and in response to hormone treatment. BMC Genomics 2022; 23:170. [PMID: 35236292 PMCID: PMC8889711 DOI: 10.1186/s12864-022-08420-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Jasmonate-ZIM domain (JAZ) repressors negatively regulate signal transduction of jasmonates, which regulate plant development and immunity. However, no comprehensive analysis of the JAZ gene family members has been done in the common fig (Ficus carica L.) during fruit development and hormonal treatment. RESULTS In this study, 10 non-redundant fig JAZ family genes (FcJAZs) distributed on 7 chromosomes were identified in the fig genome. Phylogenetic and structural analysis showed that FcJAZ genes can be grouped into 5 classes. All the classes contained relatively complete TIFY and Jas domains. Yeast two hybrid (Y2H) results showed that all FcJAZs proteins may interact with the identified transcription factor, FcMYC2. Tissue-specific expression analysis showed that FcJAZs were highly expressed in the female flowers and roots. Expression patterns of FcJAZs during the fruit development were analyzed by RNA-Seq and qRT-PCR. The findings showed that, most FcJAZs were significantly downregulated from stage 3 to 5 in the female flower, whereas downregulation of these genes was observed in the fruit peel from stage 4 to 5. Weighted-gene co-expression network analysis (WGCNA) showed the expression pattern of FcJAZs was correlated with hormone signal transduction and plant-pathogen interaction. Putative cis-elements analysis of FcJAZs and expression patterns of FcJAZs which respond to hormone treatments revealed that FcJAZs may regulate fig fruit development by modulating the effect of ethylene or gibberellin. CONCLUSIONS This study provides a comprehensive analysis of the FcJAZ family members and provides information on FcJAZs contributions and their role in regulating the common fig fruit development.
Collapse
|
26
|
Rand DM, Mossman JA, Spierer AN, Santiago JA. Mitochondria as environments for the nuclear genome in Drosophila: mitonuclear G×G×E. J Hered 2022; 113:37-47. [PMID: 34964900 PMCID: PMC8851671 DOI: 10.1093/jhered/esab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria evolved from a union of microbial cells belonging to distinct lineages that were likely anaerobic. The evolution of eukaryotes required a massive reorganization of the 2 genomes and eventual adaptation to aerobic environments. The nutrients and oxygen that sustain eukaryotic metabolism today are processed in mitochondria through coordinated expression of 37 mitochondrial genes and over 1000 nuclear genes. This puts mitochondria at the nexus of gene-by-gene (G×G) and gene-by-environment (G×E) interactions that sustain life. Here we use a Drosophila model of mitonuclear genetic interactions to explore the notion that mitochondria are environments for the nuclear genome, and vice versa. We construct factorial combinations of mtDNA and nuclear chromosomes to test for epistatic interactions (G×G), and expose these mitonuclear genotypes to altered dietary environments to examine G×E interactions. We use development time and genome-wide RNAseq analyses to assess the relative contributions of mtDNA, nuclear chromosomes, and environmental effects on these traits (mitonuclear G×G×E). We show that the nuclear transcriptional response to alternative mitochondrial "environments" (G×G) has significant overlap with the transcriptional response of mitonuclear genotypes to altered dietary environments. These analyses point to specific transcription factors (e.g., giant) that mediated these interactions, and identified coexpressed modules of genes that may account for the overlap in differentially expressed genes. Roughly 20% of the transcriptome includes G×G genes that are concordant with G×E genes, suggesting that mitonuclear interactions are part of an organism's environment.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology, Evolution and Organismal Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| | - James A Mossman
- Department of Ecology, Evolution and Organismal Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| | - Adam N Spierer
- Department of Ecology, Evolution and Organismal Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| | - John A Santiago
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
- Department of Pathology and Laboratory Medicine, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
27
|
Differential effects of steroid hormones on levels of broad-sense heritability in a wild bird: possible mechanism of environment × genetic variance interaction? Heredity (Edinb) 2022; 128:63-76. [PMID: 34921237 PMCID: PMC8733014 DOI: 10.1038/s41437-021-00490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
Genetic variation is one of the key concepts in evolutionary biology and an important prerequisite of evolutionary change. However, we know very little about processes that modulate its levels in wild populations. In particular, we still are to understand why genetic variances often depend on environmental conditions. One of possible environment-sensitive modulators of observed levels of genetic variance are maternal effects. In this study we attempt to experimentally test the hypothesis that maternally transmitted agents (e.g. hormones) may influence the expression of genetic variance in quantitative traits in the offspring. We manipulated the levels of steroid hormones (testosterone and corticosterone) in eggs laid by blue tits in a wild population. Our experimental setup allowed for full crossing of genetic and rearing effects with the experimental manipulation. We observed that birds treated with corticosterone exhibited a significant decrease in broad-sense genetic variance of tarsus length, and an increase in this component in body mass on the 2nd day post-hatching. Our study indicates, that maternally transmitted substances such as hormones may have measurable impact on the levels of genetic variance and hence, on the evolutionary potential of quantitative traits.
Collapse
|
28
|
Tovar A, Crouse WL, Smith GJ, Thomas JM, Keith BP, McFadden KM, Moran TP, Furey TS, Kelada SNP. Integrative analysis reveals mouse strain-dependent responses to acute ozone exposure associated with airway macrophage transcriptional activity. Am J Physiol Lung Cell Mol Physiol 2022; 322:L33-L49. [PMID: 34755540 PMCID: PMC8721896 DOI: 10.1152/ajplung.00237.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/03/2023] Open
Abstract
Acute ozone (O3) exposure is associated with multiple adverse cardiorespiratory outcomes, the severity of which varies across individuals in human populations and inbred mouse strains. However, molecular determinants of response, including susceptibility biomarkers that distinguish who will develop severe injury and inflammation, are not well characterized. We and others have demonstrated that airway macrophages (AMs) are an important resident immune cell type that are functionally and transcriptionally responsive to O3 inhalation. Here, we sought to explore influences of strain, exposure, and strain-by-O3 exposure interactions on AM gene expression and identify transcriptional correlates of O3-induced inflammation and injury across six mouse strains, including five Collaborative Cross (CC) strains. We exposed adult mice of both sexes to filtered air (FA) or 2 ppm O3 for 3 h and measured inflammatory and injury parameters 21 h later. Mice exposed to O3 developed airway neutrophilia and lung injury with strain-dependent severity. In AMs, we identified a common core O3 transcriptional response signature across all strains, as well as a set of genes exhibiting strain-by-O3 exposure interactions. In particular, a prominent gene expression contrast emerged between a low- (CC017/Unc) and high-responding (CC003/Unc) strain, as reflected by cellular inflammation and injury. Further inspection indicated that differences in their baseline gene expression and chromatin accessibility profiles likely contribute to their divergent post-O3 exposure transcriptional responses. Together, these results suggest that aspects of O3-induced respiratory responses are mediated through altered AM transcriptional signatures and further confirm the importance of gene-environment interactions in mediating differential responsiveness to environmental agents.
Collapse
Affiliation(s)
- Adelaide Tovar
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Genetics & Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wesley L Crouse
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gregory J Smith
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph M Thomas
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benjamin P Keith
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathryn M McFadden
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Timothy P Moran
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Terrence S Furey
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Genetics & Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Samir N P Kelada
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Genetics & Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
29
|
Mollá-Albaladejo R, Sánchez-Alcañiz JA. Behavior Individuality: A Focus on Drosophila melanogaster. Front Physiol 2021; 12:719038. [PMID: 34916952 PMCID: PMC8670942 DOI: 10.3389/fphys.2021.719038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Among individuals, behavioral differences result from the well-known interplay of nature and nurture. Minute differences in the genetic code can lead to differential gene expression and function, dramatically affecting developmental processes and adult behavior. Environmental factors, epigenetic modifications, and gene expression and function are responsible for generating stochastic behaviors. In the last decade, the advent of high-throughput sequencing has facilitated studying the genetic basis of behavior and individuality. We can now study the genomes of multiple individuals and infer which genetic variations might be responsible for the observed behavior. In addition, the development of high-throughput behavioral paradigms, where multiple isogenic animals can be analyzed in various environmental conditions, has again facilitated the study of the influence of genetic and environmental variations in animal personality. Mainly, Drosophila melanogaster has been the focus of a great effort to understand how inter-individual behavioral differences emerge. The possibility of using large numbers of animals, isogenic populations, and the possibility of modifying neuronal function has made it an ideal model to search for the origins of individuality. In the present review, we will focus on the recent findings that try to shed light on the emergence of individuality with a particular interest in D. melanogaster.
Collapse
|
30
|
Nilforooshan MA, Jorjani H. Invited review: A quarter of a century-International genetic evaluation of dairy sires using MACE methodology. J Dairy Sci 2021; 105:3-21. [PMID: 34756440 DOI: 10.3168/jds.2021-20927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022]
Abstract
For the past few decades, the international exchange of genetic materials has accelerated. This acceleration has been more substantial for dairy cattle compared with other species. The industry faced the need to put international genetic evaluation (IGE) systems in place. The Interbull Centre has been conducting IGE for various dairy cattle breeds and traits. This study reviews the past and the current status of IGE for dairy cattle, emphasizing the most prominent and well-established method of IGE, namely multiple across-country evaluation (MACE), and the challenges that should be addressed in the future of IGE. The first IGE methods were simple conversion equations. Only a limited number of common bulls between pairs of countries were considered. These bulls were a biased sample of highly selected animals, with their daughters under preferential treatment in the importing countries. Genetic relationships among animals were not considered either. The MACE method was the first IGE method based on mixed-model theory that could handle genotype by environment interaction (G × E) between countries. The G × E between countries is handled by treating the same trait in different countries as different traits, with genetic correlations less than unity between the traits. The G × E between countries is not solely due to different genetic expressions in different environments (countries), but is also attributable to different units or ways of measuring the trait, data editing, and statistical approaches and models used in different countries. The MACE method also considers different genetic means, genetic groups for unknown parents, heterogeneous genetic and residual variances among countries, and heterogeneous residual variances (precision weights for observations) within countries. Other IGE methods that came after MACE are rooted in MACE. The genomic revolution of the industry created new needs and opportunities. However, an unwanted aspect of it was genomic preselection bias. Genomic preselection causes directional information loss from pre-culled animals (bias) in statistical models for genetic and genomic evaluations, and preselected progeny of a mating are no longer a random sample of possible progeny from that mating. National genetic evaluations without genotypes are input to MACE, and biases in national evaluations are propagated internationally through MACE. Genomic preselection for the Holstein breed is a source of concern for introducing bias to MACE, especially when genomic preselection is practiced intensively in the population. However, MACE continues to be useful for other breeds, among other species, or for non-IGE purposes. Future methods will need to make optimum use of genomic information and be free of genomic preselection bias.
Collapse
Affiliation(s)
- M A Nilforooshan
- Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand.
| | - H Jorjani
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 75007 Uppsala, Sweden
| |
Collapse
|
31
|
Fang T, Bai Y, Huang W, Wu Y, Yuan Z, Luan X, Liu X, Sun L. Identification of Potential Gene Regulatory Pathways Affecting the Ratio of Four-Seed Pod in Soybean. Front Genet 2021; 12:717770. [PMID: 34539747 PMCID: PMC8440838 DOI: 10.3389/fgene.2021.717770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
The number of four-seed pods is one of the most important agronomic traits affected by gene and environment that can potentially improve soybean (Glycine max) yield. However, the gene regulatory network that affects the ratio of four-seed pod (the ratio of the number of four-seed pods to the total number of pods in each individual plant) is yet unclear. Here, we performed bulked segregant RNA sequencing (BSR-seq) on a series of recombinant inbred lines (RILs) derived from hybrid progenies between Heinong 48 (HN48), a cultivar with a high ratio of four-seed pod, and Henong 64 (HN64), a cultivar with a low ratio of four-seed pod. Two tissues, flower bud and young pod, at two different growth stages, R1 and R3, were analyzed under the ratios of four-seed pod at less than 10% and greater than 30%, respectively. To identify the potential gene regulation pathways associated with the ratio of soybean four-seed pod, we performed differentially expressed analysis on the four bulked groups. A differentially expressed gene (DEG) encoding a photosystem II 5-kDa protein had the function of participating in the energy conversion of photosynthesis. In addition, 79 common DEGs were identified at different developmental stages and under different ratios of four-seed pod. Among them, four genes encoding calcium-binding proteins and a WRKY transcription factor were enriched in the plant-pathogen interaction pathway, and they showed a high level of expression in roots. Moreover, 10 DEGs were identified in the reported quantitative trait locus (QTL) interval of four-seed pod, and two of them were significantly enriched in the pentose and glucuronate interconversion pathway. These findings provide basic insights into the understanding of the underlying gene regulatory network affected by specific environment and lay the foundation for identifying the targets that affect the ratio of four-seed pod in soybean.
Collapse
Affiliation(s)
- Ting Fang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yiwei Bai
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wenxuan Huang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yueying Wu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhihui Yuan
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaoyan Luan
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, China
| | - Xinlei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, China
| | - Lianjun Sun
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Wu D, He G, Tian W, Saleem M, Li D, Huang Y, Meng L, He Y, Liu Y, He T. OPT gene family analysis of potato (Solanum tuberosum) responding to heavy metal stress: Comparative omics and co-expression networks revealed the underlying core templates and specific response patterns. Int J Biol Macromol 2021; 188:892-903. [PMID: 34352321 DOI: 10.1016/j.ijbiomac.2021.07.183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Oligopeptides transporter (OPT) can maintain intracellular metal homeostat, however, their evolutionary characteristics, as well as their expression patterns in heavy metal exposure, remain unclear. Compared with previous OPT family identification, we identified 94 OPT genes (including 21 in potato) in potato and 4 other plants by HMMER program based on OPT domain (PF03169) for the first time. Secondly, conserved and special OPTs were found through comprehensive analysis. Thirdly, spatio-temporal tissue specific expression patterns and co-expression frameworks of potato OPT genes under different heavy metal stress were constructed. These data can provide excellent gene resources for food security and soil remediation.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China.
| | - Guandi He
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences Guizhou University, Guiyang 550025, China
| | - Weijun Tian
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Muhammad Saleem
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College, Lahore, Pakistan
| | - Dandan Li
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Yun Huang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Lulu Meng
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Yeqing He
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Yao Liu
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China; Institute of New Rural Development of Guizhou University, Guiyang 550025, China
| |
Collapse
|
33
|
Zhao Y, Liu X, Wang M, Bi Q, Cui Y, Wang L. Transcriptome and physiological analyses provide insights into the leaf epicuticular wax accumulation mechanism in yellowhorn. HORTICULTURE RESEARCH 2021; 8:134. [PMID: 34059653 PMCID: PMC8167135 DOI: 10.1038/s41438-021-00564-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 06/02/2023]
Abstract
Plantations and production of yellowhorn, one of the most important woody oil and urban greening trees widely cultivated in northern China, have gradually become limited by drought stress. The epicuticular wax layer plays a key role in the protection of yellowhorn trees from drought and other stresses. However, there is no research on the mechanism of wax loading in yellowhorn trees. In this study, we investigated the anatomical and physiological characteristics of leaves from different germplasm resources and different parts of the same tree and compared their cuticle properties. In addition, the different expression patterns of genes involved in wax accumulation were analyzed, and a coexpression network was built based on transcriptome sequencing data. Morphological and physiological comparisons found that the sun leaves from the outer part of the crown had thicker epicuticular wax, which altered the permeability and improved the drought resistance of leaves, than did shade leaves. Based on transcriptome data, a total of 3008 and 1324 differentially expressed genes (DEGs) were identified between the sun leaves and shade leaves in glossy- and non-glossy-type germplasm resources, respectively. We identified 138 DEGs involved in wax biosynthesis and transport, including structural genes (such as LACS8, ECH1, and ns-LTP) and transcription factors (such as MYB, WRKY, and bHLH transcription factor family proteins). The coexpression network showed a strong correlation between these DEGs. The differences in gene expression patterns between G- and NG-type germplasm resources under different light conditions were very clear. These results not only provide a theoretical basis for screening and developing drought-resistant yellowhorn germplasm resources but also provide a data platform to reveal the wax accumulation process of yellowhorn leaves.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Mengke Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Yifan Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China.
| |
Collapse
|