1
|
Fraiman A, Ziegler LD. Ultra-rapid, quantitative, label-free antibiotic susceptibility testing via optically detected purine metabolites. Talanta 2025; 292:127907. [PMID: 40090249 DOI: 10.1016/j.talanta.2025.127907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
In order to facilitate the best antimicrobial prescribing practices and to help reduce the increasing global threat of antibiotic resistance, there is an urgent need for the development of novel and truly rapid (≤1 h) antibiotic susceptibility testing (AST) platforms. A 785 nm surface enhanced Raman spectroscopy (SERS) based phenotypic methodology is described that results in accurate minimum inhibitory concentration (MIC) determinations for all tested strain/antibiotic pairs. The SERS-AST procedure results in accurate MICs in ∼1 h, including a 30-min incubation period, and is effective for both Gram positive and negative species, and for antibiotics with different initial primary targets of antibiotic activity, and for both bactericidal and bacteriostatic antibiotics. The molecular level mechanism of this methodology is described. Bacterial SERS spectra are due to secreted purine nucleotide degradation products (principally adenine, guanine, xanthine and hypoxanthine) resulting from water washing induced bacterial stringent response and the resulting (p)ppGpp alarmone mediates nucleobase formation from unneeded tRNA and rRNA. The rewiring of metabolic responses resulting from the secondary metabolic effects of antibiotic exposure during the 30-min incubation period accounts for the dose dependence of the SERS spectral intensities which are used to accurately yield the MIC. This is the fastest demonstrated AST method yielding MICs.
Collapse
Affiliation(s)
- A Fraiman
- Department of Chemistry and the Photonics Center, Boston University, Boston, MA, 02215, USA
| | - L D Ziegler
- Department of Chemistry and the Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Fung DK, Barra JT, Yang J, Schroeder JW, She F, Young M, Ying D, Stevenson DM, Amador-Noguez D, Wang JD. A shared alarmone-GTP switch controls persister formation in bacteria. Nat Microbiol 2025:10.1038/s41564-025-02015-6. [PMID: 40374742 DOI: 10.1038/s41564-025-02015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Persisters are phenotypically switched bacteria that survive antibiotic exposure despite being genetically susceptible. Three pathways to persistence-triggered, spontaneous and antibiotic-induced-have been described, but the underlying molecular mechanisms are poorly understood. Here, we used antibiotic time-kill assays as well as single-cell approaches to show that all of the pathways depend on a common switch involving the alarmone guanosine tetra/penta-phosphate ((p)ppGpp) in Bacillus subtilis, each stemming from different alarmone synthetase(s). The accumulation of (p)ppGpp promotes persistence through depletion of intracellular GTP. We developed a fluorescent GTP reporter to visualize rare events of persister formation in wild-type bacteria, revealing a rapid switch from growth to dormancy in single cells as their GTP levels drop beneath a threshold. While a decrease in GTP in the bulk population slows growth and promotes antibiotic tolerance, (p)ppGpp drives persistence by driving rapid, switch-like decreases in GTP levels beneath the persister threshold in single cells. Persistence through alarmone-GTP antagonism is probably a widespread mechanism to survive antibiotics in B. subtilis and potentially beyond.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jessica T Barra
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Fukang She
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Megan Young
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - David Ying
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
3
|
She F, Liu K, Anderson BW, Pisithkul T, Li Y, Fung DK, McCue T, Mulhern W, Amador-Noguez D, Wang JD. Pyruvate kinase directly generates GTP in glycolysis, supporting growth and contributing to guanosine toxicity. mBio 2025; 16:e0379824. [PMID: 39998177 PMCID: PMC11980595 DOI: 10.1128/mbio.03798-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Guanosine triphosphate (GTP) is essential for macromolecular biosynthesis, and its intracellular levels are tightly regulated in bacteria. Loss of the alarmone (p)ppGpp disrupts GTP regulation in Bacillus subtilis, causing cell death in the presence of exogenous guanosine and underscoring the critical importance of GTP homeostasis. To investigate the basis of guanosine toxicity, we performed a genetic selection for spontaneous mutations that suppress this effect, uncovering an unexpected link between GTP synthesis and glycolysis. In particular, we identified suppressor mutations in pyk, which encodes pyruvate kinase, a glycolytic enzyme. Metabolomic analysis revealed that inactivating pyruvate kinase prevents guanosine toxicity by reducing GTP levels. Although traditionally associated with ATP generation via substrate-level phosphorylation, B. subtilis pyruvate kinase in vitro was found to produce GTP and UTP approximately 10 and three times more efficiently than ATP, respectively. This efficient GTP/UTP synthesis extends to Enterococcus faecalis and Listeria monocytogenes, challenging the conventional understanding of pyruvate kinase's primary role in ATP production. These findings support a model in which glycolysis directly contributes to GTP synthesis, fueling energy-demanding processes, such as protein translation. Finally, we observed a synergistic essentiality of the Δndk Δpyk double mutant specifically on glucose, indicating that pyruvate kinase and nucleoside diphosphate kinase are the major contributors to nucleoside triphosphate production and complement each other during glycolysis. Our work highlights the critical role of nucleotide selectivity in pyruvate kinase and its broader implications in cellular physiology. IMPORTANCE In this study, we reveal that pyruvate kinase, a key glycolytic enzyme, primarily generates GTP from GDP in Bacillus subtilis, relative to other nucleotide triphosphates, such as ATP. This finding, uncovered through genetic selection for mutants that suppress toxic GTP overaccumulation, challenges the conventional understanding that pyruvate kinase predominantly produces ATP via substrate-level phosphorylation. The substantial role of GTP production by pyruvate kinase suggests a model where glycolysis rapidly and directly supplies GTP as the energy currency to power high GTP-demanding processes such as protein synthesis. Our results underscore the importance of nucleotide selectivity (ATP vs GTP vs UTP) in shaping the physiological state and fate of the cell, prompting further exploration into the mechanisms and broader implications of this selective nucleotide synthesis.
Collapse
Affiliation(s)
- Fukang She
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kuanqing Liu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Brent W. Anderson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tippapha Pisithkul
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yanxiu Li
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Danny K. Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tyler McCue
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - William Mulhern
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jue D. Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Gąsior F, Klasa W, Potrykus K. How to quantify magic spots - a brief overview of (p)ppGpp detection and quantitation methods. Front Mol Biosci 2025; 12:1574135. [PMID: 40201240 PMCID: PMC11976733 DOI: 10.3389/fmolb.2025.1574135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Guanosine tetra- and penta-phosphates, collectively known as (p)ppGpp, are well-known second messengers of cellular stress responses in bacteria and plants. Their intracellular concentration is tightly regulated and can vary widely-from undetectable levels under optimal growth conditions, through intermediate concentrations, to extremely high levels that match or even exceed GTP concentrations when cells are exposed to severe stress. Importantly, the effects exerted by (p)ppGpp are often concentration-dependent, making their quantitative analysis a crucial aspect of studying cellular responses to stress. To gain a deeper understanding of the regulatory mechanisms associated with (p)ppGpp, it is essential to monitor its accumulation in vivo and conduct detailed molecular studies in vitro. Various methods have been developed for detecting and quantifying (p)ppGpp, enabling researchers to track its levels in living cells and analyse its function under controlled laboratory conditions. In this work, we provide an overview of the available techniques for (p)ppGpp detection and quantification. We present their advantages, limitations, and potential applications in research on metabolic regulation and cellular stress responses.
Collapse
Affiliation(s)
| | | | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdańsk, Poland
| |
Collapse
|
5
|
Wang J, Fung D, Barra J, Schroeder J, Yang J, She F, Young M, Amador-Noguez D, Ying D. A shared alarmone-GTP switch underlies triggered and spontaneous persistence. RESEARCH SQUARE 2025:rs.3.rs-5679108. [PMID: 39801512 PMCID: PMC11722536 DOI: 10.21203/rs.3.rs-5679108/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Persisters describe phenotypically switched cells refractory to antibiotic killing in a genetically susceptible population, while preserving the ability to resume growth when antibiotics are discontinued1,2. Since its proposal 70 years ago, great strides were made to build the framework regarding persistence, including defining triggered, spontaneous and antibiotic-induced persisters. However, challenges remain in characterizing the molecular determinants underlying the phenotypic switch into persistence3. Here we document triggered, spontaneous and antibiotic-induced persistence in a Gram-positive bacterium, all through a common switch involving the alarmone (p)ppGpp and each stemming from a different alarmone synthesis pathway. Starvation-triggered persistence is mediated by Rel synthetase, and spontaneous persistence is through self-amplification via allosteric enzyme activation of alarmone synthetases Rel and SasB, whereas lethal and sublethal concentrations of cell wall antibiotics induce alarmones through an antibiotic-induced alarmone synthetase SasA, consequently enabling adaptive persistence that promotes survival. (p)ppGpp accumulation promotes persistence by depleting intracellular GTP and antagonizing its action. We developed a fluorescent GTP reporter to visualize rare events of persister formation in wild type bacteria, revealing a rapid switch from growth to dormancy in single cells as their GTP levels drop beneath a threshold. While a modest drop of GTP in bulk population slows down growth and promotes antibiotic tolerance, (p)ppGpp drives persistence by allowing the switch-like dynamics to drop GTP beneath the persister threshold in single cells. Persistence through alarmone-GTP antagonism is likely a widespread mechanism to survive antibiotics in Gram positive bacteria and possibly beyond.
Collapse
|
6
|
Young MK, Wang JD. From dusty shelves toward the spotlight: growing evidence for Ap4A as an alarmone in maintaining RNA stability and proteostasis. Curr Opin Microbiol 2024; 81:102536. [PMID: 39216180 PMCID: PMC11390322 DOI: 10.1016/j.mib.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Bacteria thrive in diverse environments and must withstand various stresses. A key stress response mechanism is the reprogramming of macromolecular biosynthesis and metabolic processes through alarmones - signaling nucleotides that accumulate intracellularly in response to metabolic stress. Diadenosine tetraphosphate (Ap4A), a putative alarmone, is produced in a noncanonical reaction by universally conserved aminoacyl-tRNA synthetases. Ap4A is ubiquitous across all domains of life and accumulates during heat and oxidative stress. Despite its early discovery in 1966, Ap4A's alarmone status remained inconclusive. Recent discoveries identified Ap4A as a precursor to RNA 5' caps in Escherichia coli. Additionally, Ap4A was found to directly bind to and allosterically inhibit the purine biosynthesis enzyme inosine 5'-monophosphate dehydrogenase, regulating guanosine triphosphate levels and enabling heat resistance in Bacillus subtilis. These findings, along with previous research, strongly suggest that Ap4A plays a crucial role as an alarmone, warranting further investigation to fully elucidate its functions.
Collapse
Affiliation(s)
- Megan Km Young
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Rs N, Sinha SK, Batra S, Regatti PR, Syal K. Promoter characterization of relZ-bifunctional (pp)pGpp synthetase in mycobacteria. Genes Cells 2024; 29:710-721. [PMID: 38923083 DOI: 10.1111/gtc.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The second messenger guanosine 3',5'-bis(diphosphate)/guanosine tetraphosphate (ppGpp) and guanosine 3'-diphosphate 5'-triphosphate/guanosine pentaphosphate (pppGpp) ((p)ppGpp) has been shown to be crucial for the survival of mycobacteria under hostile conditions. Unexpectedly, deletion of primary (p)ppGpp synthetase-Rel did not completely diminish (p)ppGpp levels leading to the discovery of novel bifunctional enzyme-RelZ, which displayed guanosine 5'-monophosphate,3'-diphosphate (pGpp), ppGpp, and pppGpp ((pp)pGpp) synthesis and RNAseHII activity. What conditions does it express itself under, and does it work in concert with Rel? The regulation of its transcription and whether the Rel enzyme plays a role in such regulation remain unclear. In this article, we have studied relZ promoter and compared its activity with rel promoter in different growth conditions. We observed that the promoter activity of relZ was constitutive; it is weaker than rel promoter, lies within 200 bp upstream of translation-start site, and it increased under carbon starvation. Furthermore, the promoter activity of relZ was compromised in the rel-knockout strain in the stationary phase. Our study unveils the dynamic regulation of relZ promoter activity by SigA and SigB sigma factors in different growth phases in mycobacteria. Importantly, elucidating the regulatory network of RelZ would enable the development of the targeted interventions for treating mycobacterial infections.
Collapse
Affiliation(s)
- Neethu Rs
- Genetics and Molecular Microbiology Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, Telangana, India
| | - Shubham Kumar Sinha
- Genetics and Molecular Microbiology Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, Telangana, India
| | - Sakshi Batra
- Genetics and Molecular Microbiology Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, Telangana, India
- Department of Pulmonary Medicine, Malla Reddy Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Pavan Reddy Regatti
- Genetics and Molecular Microbiology Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, Telangana, India
| | - Kirtimaan Syal
- Genetics and Molecular Microbiology Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Schicketanz M, Petrová M, Rejman D, Sosio M, Donadio S, Zhang YE. Direct detection of stringent alarmones (pp)pGpp using malachite green. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:312-320. [PMID: 39119257 PMCID: PMC11307201 DOI: 10.15698/mic2024.08.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
The alarmone (p)ppGpp serves as the signalling molecule for the bacterial universal stringent response and plays a crucial role in bacterial virulence, persistence, and stress adaptation. Consequently, there is a significant focus on developing new drugs that target and modulate the levels of (p)ppGpp as a potential strategy for controlling bacterial infections. However, despite the availability of various methods for detecting (p)ppGpp, a simple and straightforward detection method is needed. In this study, we demonstrated that malachite green, a well-established compound used for phosphate detection, can directly detect (p)ppGpp and its analogues esp., pGpp. By utilizing malachite green, we identified three new inhibitors of the hydrolase activity of SpoT, one of the two RelA-SpoT homolog (RSH) proteins responsible for making and hydrolyzing (p)ppGpp in Escherichia coli. These findings highlight the convenience and practicality of malachite green, which can be widely employed in high-throughput studies to investigate (pp)pGpp in vitro and discover novel regulators of RSH proteins.
Collapse
Affiliation(s)
- Muriel Schicketanz
- Department of Biology, University of CopenhagenCopenhagen, DK-2200Denmark
| | - Magdalena Petrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.iPragueCzech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.iPragueCzech Republic
| | | | | | - Yong Everett Zhang
- Department of Biology, University of CopenhagenCopenhagen, DK-2200Denmark
| |
Collapse
|
9
|
Hellenbrand CN, Stevenson DM, Gromek KA, Amador-Noguez D, Hershey DM. A deoxynucleoside triphosphate triphosphohydrolase promotes cell cycle progression in Caulobacter crescentus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591158. [PMID: 38712277 PMCID: PMC11071499 DOI: 10.1101/2024.04.25.591158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Intracellular pools of deoxynucleoside triphosphates (dNTPs) are strictly maintained throughout the cell cycle to ensure accurate and efficient DNA replication. DNA synthesis requires an abundance of dNTPs, but elevated dNTP concentrations in nonreplicating cells delay entry into S phase. Enzymes known as deoxyguanosine triphosphate triphosphohydrolases (Dgts) hydrolyze dNTPs into deoxynucleosides and triphosphates, and we propose that Dgts restrict dNTP concentrations to promote the G1 to S phase transition. We characterized a Dgt from the bacterium Caulobacter crescentus termed flagellar signaling suppressor C (fssC) to clarify the role of Dgts in cell cycle regulation. Deleting fssC increases dNTP levels and extends the G1 phase of the cell cycle. We determined that the segregation and duplication of the origin of replication (oriC) is delayed in ΔfssC, but the rate of replication elongation is unchanged. We conclude that dNTP hydrolysis by FssC promotes the initiation of DNA replication through a novel nucleotide signaling pathway. This work further establishes Dgts as important regulators of the G1 to S phase transition, and the high conservation of Dgts across all domains of life implies that Dgt-dependent cell cycle control may be widespread in both prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Katarzyna A. Gromek
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Turkan S, Kulasek M, Zienkiewicz A, Mierek-Adamska A, Skrzypek E, Warchoł M, Szydłowska-Czerniak A, Bartoli J, Field B, Dąbrowska GB. Guanosine tetraphosphate (ppGpp) is a new player in Brassica napus L. seed development. Food Chem 2024; 436:137648. [PMID: 37852071 DOI: 10.1016/j.foodchem.2023.137648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
Rapeseed oil, constituting 12% of global vegetable oil production, is susceptible to quality degradation due to stress-induced incomplete seed degreening, fatty acid oxidation, or poor nutrient accumulation. We hypothesise that the hyperphosphorylated nucleotide alarmone ppGpp (guanosine tetraphosphate), acts as a pivotal regulator of these processes, given its established roles in nutrient management, degreening, and ROS regulation in leaves. Using qPCR, UHPLC-MS/MS, and biochemical methods, our study delves into the impact of ppGpp on seed nutritional value. We observed a positive correlation between ppGpp levels and desiccation, and a negative correlation with photosynthetic pigment levels. Trends in antioxidant activity suggest that ppGpp may negatively influence peroxidases, which are safeguarding against chlorophyll decomposition. Notably, despite increasing ppGpp levels, sugars, proteins and oils appear unaffected. This newfound role of ppGpp in seed development suggests it regulates the endogenous antioxidant system during degreening and desiccation, preserving nutritional quality. Further validation through mutant-based research is needed.
Collapse
Affiliation(s)
- Sena Turkan
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Milena Kulasek
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Agnieszka Zienkiewicz
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Edyta Skrzypek
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Marzena Warchoł
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Julia Bartoli
- Aix Marseille Univ, CNRS, LISM, UMR7255, IMM FR 3479, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | - Ben Field
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009 Marseille, France.
| | - Grażyna B Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
11
|
Zhou RW, Gordon IJ, Hei Y, Wang B. Synthetase and Hydrolase Specificity Collectively Excludes 2'-Deoxyguanosine from Bacterial Alarmone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574488. [PMID: 38260349 PMCID: PMC10802352 DOI: 10.1101/2024.01.06.574488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In response to starvation, virtually all bacteria pyrophosphorylate the 3'-hydroxy group of GTP or GDP to produce two messenger nucleotides collectively denoted as (p)ppGpp. Also known as alarmones, (p)ppGpp reprograms bacterial physiology to arrest growth and promote survival. Intriguingly, although cellular concentration of dGTP is two orders of magnitude lower than that of GTP, alarmone synthetases are highly selective against using 2'-deoxyguanosine (2dG) nucleotides as substrates. We thus hypothesize that production of 2dG alarmone, (p)pp(dG)pp, is highly deleterious, which drives a strong negative selection to exclude 2dG nucleotides from alarmone signaling. In this work, we show that the B. subtilis SasB synthetase prefers GDP over dGDP with 65,000-fold higher kcat/Km, a specificity stricter than RNA polymerase selecting against 2'-deoxynucleotides. Using comparative chemical proteomics, we found that although most known alarmone-binding proteins in Escherichia coli cannot distinguish ppGpp from pp(dG)pp, hydrolysis of pp(dG)pp by the essential hydrolase, SpoT, is 1,000-fold slower. This inability to degrade 2'-deoxy-3'-pyrophosphorylated substrate is a common feature of the alarmone hydrolase family. We further show that SpoT is a binuclear metallopyrophoshohydrolase and that hydrolysis of ppGpp and pp(dG)pp shares the same metal dependence. Our results support a model in which 2'-OH directly coordinates the Mn2+ at SpoT active center to stabilize the hydrolysis-productive conformation of ppGpp. Taken together, our study reveals a vital role of 2'-OH in alarmone degradation, provides new insight on the catalytic mechanism of alarmone hydrolases, and leads to the conclusion that 2dG nucleotides must be strictly excluded from alarmone synthesis because bacteria lack the key machinery to down-regulate such products.
Collapse
Affiliation(s)
- Rich W Zhou
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isis J Gordon
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Hei
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Boyuan Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Lee YT, Savini M, Chen T, Yang J, Zhao Q, Ding L, Gao SM, Senturk M, Sowa JN, Wang JD, Wang MC. Mitochondrial GTP metabolism controls reproductive aging in C. elegans. Dev Cell 2023; 58:2718-2731.e7. [PMID: 37708895 PMCID: PMC10842941 DOI: 10.1016/j.devcel.2023.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/17/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP (mtGTP) metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS) promotes reproductive longevity in Caenorhabditis elegans. We further identified an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mtGTP levels and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mtGTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and identify mitochondrial fission induction as an effective strategy to improve reproductive health.
Collapse
Affiliation(s)
- Yi-Tang Lee
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marzia Savini
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Chen
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qian Zhao
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Lang Ding
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA; Graduate Program in Chemical, Physical & Structural Biology, Graduate School of Biomedical Science, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shihong Max Gao
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica N Sowa
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meng C Wang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Fung DK, Trinquier AE, Wang JD. Crosstalk between (p)ppGpp and other nucleotide second messengers. Curr Opin Microbiol 2023; 76:102398. [PMID: 37866203 PMCID: PMC10842992 DOI: 10.1016/j.mib.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023]
Abstract
In response to environmental cues, bacteria produce intracellular nucleotide messengers to regulate a wide variety of cellular processes and physiology. Studies on individual nucleotide messengers, such as (p)ppGpp or cyclic (di)nucleotides, have established their respective regulatory themes. As research on nucleotide signaling networks expands, recent studies have begun to uncover various crosstalk mechanisms between (p)ppGpp and other nucleotide messengers, including signal conversion, allosteric regulation, and target competition. The multiple layers of crosstalk implicate that (p)ppGpp is intricately linked to different nucleotide signaling pathways. From a physiological perspective, (p)ppGpp crosstalk enables fine-tuning and feedback regulation with other nucleotide messengers to achieve optimal adaptation.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aude E Trinquier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023; 11:2169. [PMID: 37764013 PMCID: PMC10537683 DOI: 10.3390/microorganisms11092169] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, especially among women and older adults, leading to a significant global healthcare cost burden. Uropathogenic Escherichia coli (UPEC) are the most common cause and accounts for the majority of community-acquired UTIs. Infection by UPEC can cause discomfort, polyuria, and fever. More serious clinical consequences can result in urosepsis, kidney damage, and death. UPEC is a highly adaptive pathogen which presents significant treatment challenges rooted in a complex interplay of molecular factors that allow UPEC to evade host defences, persist within the urinary tract, and resist antibiotic therapy. This review discusses these factors, which include the key genes responsible for adhesion, toxin production, and iron acquisition. Additionally, it addresses antibiotic resistance mechanisms, including chromosomal gene mutations, antibiotic deactivating enzymes, drug efflux, and the role of mobile genetic elements in their dissemination. Furthermore, we provide a forward-looking analysis of emerging alternative therapies, such as phage therapy, nano-formulations, and interventions based on nanomaterials, as well as vaccines and strategies for immunomodulation. This review underscores the continued need for research into the molecular basis of pathogenesis and antimicrobial resistance in the treatment of UPEC, as well as the need for clinically guided treatment of UTIs, particularly in light of the rapid spread of multidrug resistance.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland
| |
Collapse
|
15
|
Wang M, Tang NY, Xie S, Watt RM. Functional Characterization of Small Alarmone Synthetase and Small Alarmone Hydrolase Proteins from Treponema denticola. Microbiol Spectr 2023; 11:e0510022. [PMID: 37289081 PMCID: PMC10434055 DOI: 10.1128/spectrum.05100-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
The stringent response enables bacteria to survive nutrient starvation, antibiotic challenge, and other threats to cellular survival. Two alarmone (magic spot) second messengers, guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp), which are synthesized by RelA/SpoT homologue (RSH) proteins, play central roles in the stringent response. The pathogenic oral spirochete bacterium Treponema denticola lacks a long-RSH homologue but encodes putative small alarmone synthetase (Tde-SAS, TDE1711) and small alarmone hydrolase (Tde-SAH, TDE1690) proteins. Here, we characterize the respective in vitro and in vivo activities of Tde-SAS and Tde-SAH, which respectively belong to the previously uncharacterized RSH families DsRel and ActSpo2. The tetrameric 410-amino acid (aa) Tde-SAS protein preferentially synthesizes ppGpp over pppGpp and a third alarmone, pGpp. Unlike RelQ homologues, alarmones do not allosterically stimulate the synthetic activities of Tde-SAS. The ~180 aa C-terminal tetratricopeptide repeat (TPR) domain of Tde-SAS acts as a brake on the alarmone synthesis activities of the ~220-aa N-terminal catalytic domain. Tde-SAS also synthesizes "alarmone-like" nucleotides such as adenosine tetraphosphate (ppApp), albeit at considerably lower rates. The 210-aa Tde-SAH protein efficiently hydrolyzes all guanosine and adenosine-based alarmones in a Mn(II) ion-dependent manner. Using a growth assays with a ΔrelAΔspoT strain of Escherichia coli that is deficient in pppGpp/ppGpp synthesis, we demonstrate that Tde-SAS can synthesize alarmones in vivo to restore growth in minimal media. Taken together, our results add to our holistic understanding of alarmone metabolism across diverse bacterial species. IMPORTANCE The spirochete bacterium Treponema denticola is a common component of the oral microbiota. However, it may play important pathological roles in multispecies oral infectious diseases such as periodontitis: a severe and destructive form of gum disease, which is a major cause of tooth loss in adults. The operation of the stringent response, a highly conserved survival mechanism, is known to help many bacterial species cause persistent or virulent infections. By characterizing the biochemical functions of the proteins putatively responsible for the stringent response in T. denticola, we may gain molecular insight into how this bacterium can survive within harsh oral environments and promote infection. Our results also expand our general understanding of proteins that synthesize nucleotide-based intracellular signaling molecules in bacteria.
Collapse
Affiliation(s)
- Miao Wang
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Nga-Yeung Tang
- Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan, USA
- Department of Pathology and Laboratory Medicine, Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan, USA
| | - Shujie Xie
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Rory M. Watt
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| |
Collapse
|
16
|
Qiu D, Lange E, Haas TM, Prucker I, Masuda S, Wang YL, Felix G, Schaaf G, Jessen HJ. Bacterial Pathogen Infection Triggers Magic Spot Nucleotide Signaling in Arabidopsis thaliana Chloroplasts through Specific RelA/SpoT Homologues. J Am Chem Soc 2023. [PMID: 37437195 PMCID: PMC10375528 DOI: 10.1021/jacs.3c04445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Magic spot nucleotides (p)ppGpp are important signaling molecules in bacteria and plants. In the latter, RelA-SpoT homologue (RSH) enzymes are responsible for (p)ppGpp turnover. Profiling of (p)ppGpp is more difficult in plants than in bacteria due to lower concentrations and more severe matrix effects. Here, we report that capillary electrophoresis mass spectrometry (CE-MS) can be deployed to study (p)ppGpp abundance and identity in Arabidopsis thaliana. This goal is achieved by combining a titanium dioxide extraction protocol and pre-spiking with chemically synthesized stable isotope-labeled internal reference compounds. The high sensitivity and separation efficiency of CE-MS enables monitoring of changes in (p)ppGpp levels in A. thaliana upon infection with the pathogen Pseudomonas syringae pv. tomato (PstDC3000). We observed a significant increase of ppGpp post infection that is also stimulated by the flagellin peptide flg22 only. This increase depends on functional flg22 receptor FLS2 and its interacting kinase BAK1 indicating that pathogen-associated molecular pattern (PAMP) receptor-mediated signaling controls ppGpp levels. Transcript analyses showed an upregulation of RSH2 upon flg22 treatment and both RSH2 and RSH3 after PstDC3000 infection. Arabidopsis mutants deficient in RSH2 and RSH3 activity display no ppGpp accumulation upon infection and flg22 treatment, supporting the involvement of these synthases in PAMP-triggered innate immune responses to pathogens within the chloroplast.
Collapse
Affiliation(s)
- Danye Qiu
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Esther Lange
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Isabel Prucker
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yan L Wang
- Institute of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Department of Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Georg Felix
- Institute of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Department of Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
17
|
Lee YT, Savini M, Chen T, Yang J, Zhao Q, Ding L, Gao SM, Senturk M, Sowa J, Wang JD, Wang MC. Mitochondrial GTP Metabolism Regulates Reproductive Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535296. [PMID: 37066227 PMCID: PMC10103970 DOI: 10.1101/2023.04.02.535296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS), promotes reproductive longevity in Caenorhabditis elegans. We further revealed an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by the GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mitochondrial GTP and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mitochondrial GTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and reveal mitochondrial fission induction as an effective strategy to improve reproductive health.
Collapse
|
18
|
Singh S, Anand R. Diverse strategies adopted by nature for regulating purine biosynthesis via fine-tuning of purine metabolic enzymes. Curr Opin Chem Biol 2023; 73:102261. [PMID: 36682088 DOI: 10.1016/j.cbpa.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
Purine nucleotides, generated by de novo synthesis and salvage pathways, are essential for metabolism and act as building blocks of genetic material. To avoid an imbalance in the nucleotide pool, nature has devised several strategies to regulate/tune the catalytic performance of key purine metabolic enzymes. Here, we discuss some recent examples, such as stress-regulating alarmones that bind to select pathway enzymes, huge ensembles like dynamic metabolons and self-assembled filaments that highlight the layered fine-control prevalent in the purine metabolic pathway to fulfill requisite purine demands. Examples of enzymes that turn-on only under allosteric control, are regulated via long-distance communication that facilitates transient conduits have additionally been explored.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; DBT-Wellcome Trust India Alliance Senior Fellow, Mumbai 400076, India.
| |
Collapse
|
19
|
Sound the (Smaller) Alarm: The Triphosphate Magic Spot Nucleotide pGpp. Infect Immun 2023; 91:e0043222. [PMID: 36920208 PMCID: PMC10112252 DOI: 10.1128/iai.00432-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
It has recently become evident that the bacterial stringent response is regulated by a triphosphate alarmone (pGpp) as well as the canonical tetra- and pentaphosphate alarmones ppGpp and pppGpp [together, (p)ppGpp]. Often dismissed in the past as an artifact or degradation product, pGpp has been confirmed as a deliberate endpoint of multiple synthetic pathways utilizing GMP, (p)ppGpp, or GDP/GTP as precursors. Some early studies concluded that pGpp functionally mimics (p)ppGpp and that its biological role is to make alarmone metabolism less dependent on the guanine energy charge of the cell by allowing GMP-dependent synthesis to continue when GDP/GTP has been depleted. However, recent reports that pGpp binds unique potential protein receptors and is the only alarmone synthesized by the intestinal pathogen Clostridioides difficile indicate that pGpp is more than a stand-in for the longer alarmones and plays a distinct biological role beyond its functional overlap (p)ppGpp.
Collapse
|
20
|
Termination factor Rho mediates transcriptional reprogramming of Bacillus subtilis stationary phase. PLoS Genet 2023; 19:e1010618. [PMID: 36735730 PMCID: PMC9931155 DOI: 10.1371/journal.pgen.1010618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 01/14/2023] [Indexed: 02/04/2023] Open
Abstract
Transcription termination factor Rho is known for its ubiquitous role in suppression of pervasive, mostly antisense, transcription. In the model Gram-positive bacterium Bacillus subtilis, de-repression of pervasive transcription by inactivation of rho revealed the role of Rho in the regulation of post-exponential differentiation programs. To identify other aspects of the regulatory role of Rho during adaptation to starvation, we have constructed a B. subtilis strain (Rho+) that expresses rho at a relatively stable high level in order to compensate for its decrease in the wild-type cells entering stationary phase. The RNAseq analysis of Rho+, WT and Δrho strains (expression profiles can be visualized at http://genoscapist.migale.inrae.fr/seb_rho/) shows that Rho over-production enhances the termination efficiency of Rho-sensitive terminators, thus reducing transcriptional read-through and antisense transcription genome-wide. Moreover, the Rho+ strain exhibits global alterations of sense transcription with the most significant changes observed for the AbrB, CodY, and stringent response regulons, forming the pathways governing the transition to stationary phase. Subsequent physiological analyses demonstrated that maintaining rho expression at a stable elevated level modifies stationary phase-specific physiology of B. subtilis cells, weakens stringent response, and thereby negatively affects the cellular adaptation to nutrient limitations and other stresses, and blocks the development of genetic competence and sporulation. These results highlight the Rho-specific termination of transcription as a novel element controlling stationary phase. The release of this control by decreasing Rho levels during the transition to stationary phase appears crucial for the functionality of complex gene networks ensuring B. subtilis survival in stationary phase.
Collapse
|
21
|
Mehrez M, Romand S, Field B. New perspectives on the molecular mechanisms of stress signalling by the nucleotide guanosine tetraphosphate (ppGpp), an emerging regulator of photosynthesis in plants and algae. THE NEW PHYTOLOGIST 2023; 237:1086-1099. [PMID: 36349398 PMCID: PMC10107265 DOI: 10.1111/nph.18604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The nucleotides guanosine tetraphosphate and guanosine pentaphosphate (together (p)ppGpp) are found in a wide range of prokaryotic and eukaryotic organisms where they are associated with stress signalling. In this review, we will discuss recent research highlighting the role of (p)ppGpp signalling as a conserved regulator of photosynthetic activity in the chloroplasts of plants and algae, and the latest discoveries that open up new perspectives on the emerging roles of (p)ppGpp in acclimation to environmental stress. We explore how rapid advances in the study of (p)ppGpp signalling in prokaryotes are now revealing large gaps in our understanding of the molecular mechanisms of signalling by (p)ppGpp and related nucleotides in plants and algae. Filling in these gaps is likely to lead to the discovery of conserved as well as new plant- and algal-specific (p)ppGpp signalling mechanisms that will offer new insights into the taming of the chloroplast and the regulation of stress tolerance.
Collapse
Affiliation(s)
- Marwa Mehrez
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar2092TunisTunisia
| | - Shanna Romand
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| | - Ben Field
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| |
Collapse
|
22
|
Metabolic Promiscuity of an Orphan Small Alarmone Hydrolase Facilitates Bacterial Environmental Adaptation. mBio 2022; 13:e0242222. [PMID: 36472432 PMCID: PMC9765508 DOI: 10.1128/mbio.02422-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Small alarmone hydrolases (SAHs) are alarmone metabolizing enzymes found in both metazoans and bacteria. In metazoans, the SAH homolog Mesh1 is reported to function in cofactor metabolism by hydrolyzing NADPH to NADH. In bacteria, SAHs are often identified in genomes with toxic alarmone synthetases for self-resistance. Here, we characterized a bacterial orphan SAH, i.e., without a toxic alarmone synthetase, in the phytopathogen Xanthomonas campestris pv. campestris (XccSAH) and found that it metabolizes both cellular alarmones and cofactors. In vitro, XccSAH displays abilities to hydrolyze multiple nucleotides, including pppGpp, ppGpp, pGpp, pppApp, and NADPH. In vivo, X. campestris pv. campestris cells lacking sah accumulated higher levels of cellular (pp)pGpp and NADPH compared to wild-type cells upon amino acid starvation. In addition, X. campestris pv. campestris mutants lacking sah were more sensitive to killing by Pseudomonas during interbacterial competition. Interestingly, loss of sah also resulted in reduced growth in amino acid-replete medium, a condition that did not induce (pp)pGpp or pppApp accumulation. Further metabolomic characterization revealed strong depletion of NADH levels in the X. campestris pv. campestris mutant lacking sah, suggesting that NADPH/NADH regulation is an evolutionarily conserved function of both bacterial and metazoan SAHs and Mesh1. Overall, our work demonstrates a regulatory role of bacterial SAHs as tuners of stress responses and metabolism, beyond functioning as antitoxins. IMPORTANCE Small alarmone hydrolases (SAHs) comprise a widespread family of alarmone metabolizing enzymes. In metazoans, SAHs have been reported to control multiple aspects of physiology and stress resistance through alarmone and NADPH metabolisms, but their physiological functions in bacteria is mostly uncharacterized except for a few reports as antitoxins. Here, we identified an SAH functioning independently of toxins in the phytopathogen Xanthomonas campestris pv. campestris. We found that XccSAH hydrolyzed multiple alarmones and NADPH in vitro, and X. campestris pv. campestris mutants lacking sah displayed increased alarmone levels during starvation, loss of interspecies competitive fitness, growth defects, and strong reduction in NADH. Our findings reveal the importance of NADPH hydrolysis by a bacterial SAH. Our work is also the first report of significant physiological roles of bacterial SAHs beyond functioning as antitoxins and suggests that SAHs have far broader physiological roles and share similar functions across domains of life.
Collapse
|
23
|
Chen Y, Zhang Z, Chen Y, Zhou S, Deng Q, Wang S. Enhancement of inhibition rate of antibiotic against bacteria by molecularly imprinted nanoparticles targeting alarmone nucleotides as antibiotic adjuvants. J Mater Chem B 2022; 10:9438-9445. [PMID: 36321529 DOI: 10.1039/d2tb00641c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Antibiotic tolerance and resistance in bacteria have caused a great threat to humankind. Bacteria can rapidly accumulate alarmone nucleotides (guanosine tetra- and pentaphosphate, usually denoted as (p)ppGpp) to repair damaged DNA under adverse conditions. The inhibition synthetase enzyme activity of (p)ppGpp, indirectly preventing synthesis, or promoting degradation, has been reported; however, transferring these strategies to practical applications is still a challenging task due to the lack of highly effective molecules for these purposes. Here, an approach based on molecularly imprinted polymer nanoparticles (MIP-NPs) as antibiotic adjuvants was proposed, where MIP-NPs with specific recognition sites were used to capture alarmone nucleotides released by bacteria during stringent response activation. Enhanced inhibition rates of 40-80% were achieved in the presence of the MIP-NPs. The dose of antibiotic could be greatly reduced by utilizing the MIP-NPs as adjuvants for a similar deactivation effectiveness. Good biocompatibility (no obvious hemolysis or cytotoxic effects) and apparent antimicrobial efficiency for resisting wound infection in vivo support the fact that well-designed MIP-NPs have a bright future in dealing with the growing threat of antibiotic tolerance and resistance.
Collapse
Affiliation(s)
- Yali Chen
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China.
| | - Zhen Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China.
| | - Yujie Chen
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China.
| | - Shufang Zhou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China.
| | - Qiliang Deng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China.
| | - Shuo Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China. .,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
24
|
Giammarinaro PI, Young MKM, Steinchen W, Mais CN, Hochberg G, Yang J, Stevenson DM, Amador-Noguez D, Paulus A, Wang JD, Bange G. Diadenosine tetraphosphate regulates biosynthesis of GTP in Bacillus subtilis. Nat Microbiol 2022; 7:1442-1452. [PMID: 35953658 PMCID: PMC10439310 DOI: 10.1038/s41564-022-01193-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Diadenosine tetraphosphate (Ap4A) is a putative second messenger molecule that is conserved from bacteria to humans. Nevertheless, its physiological role and the underlying molecular mechanisms are poorly characterized. We investigated the molecular mechanism by which Ap4A regulates inosine-5'-monophosphate dehydrogenase (IMPDH, a key branching point enzyme for the biosynthesis of adenosine or guanosine nucleotides) in Bacillus subtilis. We solved the crystal structure of BsIMPDH bound to Ap4A at a resolution of 2.45 Å to show that Ap4A binds to the interface between two IMPDH subunits, acting as the glue that switches active IMPDH tetramers into less active octamers. Guided by these insights, we engineered mutant strains of B. subtilis that bypass Ap4A-dependent IMPDH regulation without perturbing intracellular Ap4A pools themselves. We used metabolomics, which suggests that these mutants have a dysregulated purine, and in particular GTP, metabolome and phenotypic analysis, which shows increased sensitivity of B. subtilis IMPDH mutant strains to heat compared with wild-type strains. Our study identifies a central role for IMPDH in remodelling metabolism and heat resistance, and provides evidence that Ap4A can function as an alarmone.
Collapse
Affiliation(s)
- Pietro I Giammarinaro
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Megan K M Young
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wieland Steinchen
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christopher-Nils Mais
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Georg Hochberg
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Anja Paulus
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gert Bange
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany.
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
25
|
A conserved alarmone as a direct regulator of purine metabolism. Nat Microbiol 2022; 7:1331-1332. [PMID: 35978147 DOI: 10.1038/s41564-022-01194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Bisiak F, Chrenková A, Zhang SD, Pedersen JN, Otzen DE, Zhang YE, Brodersen DE. Structural variations between small alarmone hydrolase dimers support different modes of regulation of the stringent response. J Biol Chem 2022; 298:102142. [PMID: 35714769 PMCID: PMC9293644 DOI: 10.1016/j.jbc.2022.102142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/04/2022] Open
Abstract
The bacterial stringent response involves wide-ranging metabolic reprogramming aimed at increasing long-term survivability during stress conditions. One of the hallmarks of the stringent response is the production of a set of modified nucleotides, known as alarmones, which affect a multitude of cellular pathways in diverse ways. Production and degradation of these molecules depend on the activity of enzymes from the RelA/SpoT homologous family, which come in both bifunctional (containing domains to both synthesize and hydrolyze alarmones) and monofunctional (consisting of only synthetase or hydrolase domain) variants, of which the structure, activity, and regulation of the bifunctional RelA/SpoT homologs have been studied most intensely. Despite playing an important role in guanosine nucleotide homeostasis in particular, mechanisms of regulation of the small alarmone hydrolases (SAHs) are still rather unclear. Here, we present crystal structures of SAH enzymes from Corynebacterium glutamicum (RelHCg) and Leptospira levettii (RelHLl) and show that while being highly similar, structural differences in substrate access and dimer conformations might be important for regulating their activity. We propose that a varied dimer form is a general property of the SAH family, based on current structural information as well as prediction models for this class of enzymes. Finally, subtle structural variations between monofunctional and bifunctional enzymes point to how these different classes of enzymes are regulated.
Collapse
Affiliation(s)
- Francesco Bisiak
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Adriana Chrenková
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jannik N Pedersen
- Interdisciplinary Nanoscience Centre (iNano), Aarhus University, Aarhus C, Denmark
| | - Daniel E Otzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark; Interdisciplinary Nanoscience Centre (iNano), Aarhus University, Aarhus C, Denmark
| | - Yong E Zhang
- Department of Biology, University of Copenhagen, København N, Denmark
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
27
|
Yang J, Barra JT, Fung DK, Wang JD. Bacillus subtilis produces (p)ppGpp in response to the bacteriostatic antibiotic chloramphenicol to prevent its potential bactericidal effect. MLIFE 2022; 1:101-113. [PMID: 38817674 PMCID: PMC10989873 DOI: 10.1002/mlf2.12031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 06/01/2024]
Abstract
Antibiotics combat bacteria through their bacteriostatic (by growth inhibition) or bactericidal (by killing bacteria) action. Mechanistically, it has been proposed that bactericidal antibiotics trigger cellular damage, while bacteriostatic antibiotics suppress cellular metabolism. Here, we demonstrate how the difference between bacteriostatic and bactericidal activities of the antibiotic chloramphenicol can be attributed to an antibiotic-induced bacterial protective response: the stringent response. Chloramphenicol targets the ribosome to inhibit the growth of the Gram-positive bacterium Bacillus subtilis. Intriguingly, we found that chloramphenicol becomes bactericidal in B. subtilis mutants unable to produce (p)ppGpp. We observed a similar (p)ppGpp-dependent bactericidal effect of chloramphenicol in the Gram-positive pathogen Enterococcus faecalis. In B. subtilis, chloramphenicol treatment induces (p)ppGpp accumulation through the action of the (p)ppGpp synthetase RelA. (p)ppGpp subsequently depletes the intracellular concentration of GTP and antagonizes GTP action. This GTP regulation is critical for preventing chloramphenicol from killing B. subtilis, as bypassing (p)ppGpp-dependent GTP regulation potentiates chloramphenicol killing, while reducing GTP synthesis increases survival. Finally, chloramphenicol treatment protects cells from the classical bactericidal antibiotic vancomycin, reminiscent of the clinical phenomenon of antibiotic antagonism. Taken together, our findings suggest a role of (p)ppGpp in the control of the bacteriostatic and bactericidal activity of antibiotics in Gram-positive bacteria, which can be exploited to potentiate the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Jin Yang
- Department of BacteriologyUniversity of WisconsinMadisonUSA
| | | | - Danny K. Fung
- Department of BacteriologyUniversity of WisconsinMadisonUSA
| | - Jue D. Wang
- Department of BacteriologyUniversity of WisconsinMadisonUSA
| |
Collapse
|
28
|
Haas TM, Laventie B, Lagies S, Harter C, Prucker I, Ritz D, Saleem‐Batcha R, Qiu D, Hüttel W, Andexer J, Kammerer B, Jenal U, Jessen HJ. Photoaffinity Capture Compounds to Profile the Magic Spot Nucleotide Interactomes. Angew Chem Int Ed Engl 2022; 61:e202201731. [PMID: 35294098 PMCID: PMC9310846 DOI: 10.1002/anie.202201731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/12/2022]
Abstract
Magic Spot Nucleotides (MSN) regulate the stringent response, a highly conserved bacterial stress adaptation mechanism, enabling survival under adverse external challenges. In times of antibiotic crisis, a detailed understanding of stringent response is essential, as potentially new targets for pharmacological intervention could be identified. In this study, we delineate the MSN interactome in Escherichia coli and Salmonella typhimurium applying a family of trifunctional photoaffinity capture compounds. We introduce MSN probes covering a diverse phosphorylation pattern, such as pppGpp, ppGpp, and pGpp. Our chemical proteomics approach provides datasets of putative MSN receptors both from cytosolic and membrane fractions that unveil new MSN targets. We find that the activity of the non-Nudix hydrolase ApaH is potently inhibited by pppGpp, which itself is converted to pGpp by ApaH. The capture compounds described herein will be useful to identify MSN interactomes across bacterial species.
Collapse
Affiliation(s)
- Thomas M. Haas
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| | | | - Simon Lagies
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| | - Caroline Harter
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| | - Isabel Prucker
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| | - Danilo Ritz
- Proteomics Core FacilityBiozentrumUniversity of BaselSpitalstrasse 414056BaselSwitzerland
| | - Raspudin Saleem‐Batcha
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstraße 2579104Freiburg im BreisgauGermany
| | - Danye Qiu
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| | - Wolfgang Hüttel
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| | - Jennifer Andexer
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstraße 2579104Freiburg im BreisgauGermany
| | - Bernd Kammerer
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| | - Urs Jenal
- Infection BiologyBiozentrumUniversity of BaselSpitalstrasse 414056BaselSwitzerland
| | - Henning J. Jessen
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
- CIBSS—The Center for Biological Signaling StudiesAlbert-Ludwigs-Universität Freiburg79104Freiburg im BreisgauGermany
| |
Collapse
|
29
|
Diez S, Hydorn M, Whalen A, Dworkin J. Crosstalk between guanosine nucleotides regulates cellular heterogeneity in protein synthesis during nutrient limitation. PLoS Genet 2022; 18:e1009957. [PMID: 35594298 PMCID: PMC9173625 DOI: 10.1371/journal.pgen.1009957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/07/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
Abstract
Phenotypic heterogeneity of microbial populations can facilitate survival in dynamic environments by generating sub-populations of cells that may have differential fitness in a future environment. Bacillus subtilis cultures experiencing nutrient limitation contain distinct sub-populations of cells exhibiting either comparatively high or low protein synthesis activity. This heterogeneity requires the production of phosphorylated guanosine nucleotides (pp)pGpp by three synthases: SasA, SasB, and RelA. Here we show that these enzymes differentially affect this bimodality: RelA and SasB are necessary to generate the sub-population of cells exhibiting low protein synthesis whereas SasA is necessary to generate cells exhibiting comparatively higher protein synthesis. Previously, it was reported that a RelA product allosterically activates SasB and we find that a SasA product competitively inhibits this activation. Finally, we provide in vivo evidence that this antagonistic interaction mediates the observed heterogeneity in protein synthesis. This work therefore identifies the mechanism underlying phenotypic heterogeneity in protein synthesis. Upon encountering conditions unfavorable to growth such as nutrient limitation, bacteria enter a quiescent phenotype that is mediated by group of guanosine nucleotides collectively known as (pp)pGpp. These nucleotides direct the down-regulation of energy intensive processes and are essential for a striking heterogeneity in protein synthesis observed during exit from rapid growth. Here, we show that a network of (pp)pGpp synthases is responsible for this heterogeneity and describe a mechanism that allows for the integration of multiple signals into the decision to down regulate the most energy intensive process in a cell.
Collapse
Affiliation(s)
- Simon Diez
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Molly Hydorn
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Abigail Whalen
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Poudel A, Pokhrel A, Oludiran A, Coronado EJ, Alleyne K, Gilfus MM, Gurung RK, Adhikari SB, Purcell EB. Unique Features of Alarmone Metabolism in Clostridioides difficile. J Bacteriol 2022; 204:e0057521. [PMID: 35254095 PMCID: PMC9017329 DOI: 10.1128/jb.00575-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
The "magic spot" alarmones (pp)pGpp, previously implicated in Clostridioides difficile antibiotic survival, are synthesized by the RelA-SpoT homolog (RSH) of C. difficile (RSHCd) and RelQCd. These enzymes are transcriptionally activated by diverse environmental stresses. RSHCd has previously been reported to synthesize ppGpp, but in this study, we found that both clostridial enzymes exclusively synthesize pGpp. While direct synthesis of pGpp from a GMP substrate, and (p)ppGpp hydrolysis into pGpp by NUDIX hydrolases, have previously been reported, there is no precedent for a bacterium synthesizing pGpp exclusively. Hydrolysis of the 5' phosphate or pyrophosphate from GDP or GTP substrates is necessary for activity by the clostridial enzymes, neither of which can utilize GMP as a substrate. Both enzymes are remarkably insensitive to the size of their metal ion cofactor, tolerating a broad array of metals that do not allow activity in (pp)pGpp synthetases from other organisms. It is clear that while C. difficile utilizes alarmone signaling, its mechanisms of alarmone synthesis are not directly homologous to those in more completely characterized organisms. IMPORTANCE Despite the role of the stringent response in antibiotic survival and recurrent infections, it has been a challenging target for antibacterial therapies because it is so ubiquitous. This is an especially relevant consideration for the treatment of Clostridioides difficile infection (CDI), as exposure to broad-spectrum antibiotics that harm commensal microbes is a major risk factor for CDI. Here, we report that both of the alarmone synthetase enzymes that mediate the stringent response in this organism employ a unique mechanism that requires the hydrolysis of two phosphate bonds and synthesize the triphosphate alarmone pGpp exclusively. Inhibitors targeted against these noncanonical synthetases have the potential to be highly specific and minimize detrimental effects to stringent response pathways in commensal microbes.
Collapse
Affiliation(s)
- Asia Poudel
- Old Dominion Universitygrid.261368.8, Department of Chemistry and Biochemistry, Norfolk, Virginia, USA
| | - Astha Pokhrel
- Old Dominion Universitygrid.261368.8, Department of Chemistry and Biochemistry, Norfolk, Virginia, USA
| | - Adenrele Oludiran
- Old Dominion Universitygrid.261368.8, Department of Chemistry and Biochemistry, Norfolk, Virginia, USA
| | - Estevan J Coronado
- Old Dominion Universitygrid.261368.8, Department of Chemistry and Biochemistry, Norfolk, Virginia, USA
| | - Kwincy Alleyne
- Old Dominion Universitygrid.261368.8, Department of Chemistry and Biochemistry, Norfolk, Virginia, USA
| | - Marrett M Gilfus
- Old Dominion Universitygrid.261368.8, Department of Chemistry and Biochemistry, Norfolk, Virginia, USA
| | - Raj K Gurung
- Old Dominion Universitygrid.261368.8, Department of Chemistry and Biochemistry, Norfolk, Virginia, USA
| | - Surya B Adhikari
- Old Dominion Universitygrid.261368.8, Department of Chemistry and Biochemistry, Norfolk, Virginia, USA
| | - Erin B Purcell
- Old Dominion Universitygrid.261368.8, Department of Chemistry and Biochemistry, Norfolk, Virginia, USA
| |
Collapse
|
31
|
Vogeleer P, Létisse F. Dynamic Metabolic Response to (p)ppGpp Accumulation in Pseudomonas putida. Front Microbiol 2022; 13:872749. [PMID: 35495732 PMCID: PMC9048047 DOI: 10.3389/fmicb.2022.872749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The stringent response is a ubiquitous bacterial reaction triggered by nutrient deprivation and mediated by the intracellular concentrations of ppGpp and pppGpp. These alarmones, jointly referred to as (p)ppGpp, control gene transcription, mRNA translation and protein activity to adjust the metabolism and growth rate to environmental changes. While the ability of (p)ppGpp to mediate cell growth slowdown and metabolism adaptation has been demonstrated in Escherichia coli, it’s role in Pseudomonas putida remains unclear. The aims of this study were therefore to determine which forms of (p)ppGpp are synthetized in response to severe growth inhibition in P. putida, and to decipher the mechanisms of (p)ppGpp-mediated metabolic regulation in this bacterium. We exposed exponentially growing cells of P. putida to serine hydroxamate (SHX), a serine analog known to trigger the stringent response, and tracked the dynamics of intra- and extracellular metabolites using untargeted quantitative MS and NMR-based metabolomics, respectively. We found that SHX promotes ppGpp and pppGpp accumulation few minutes after exposure and arrests bacterial growth. Meanwhile, central carbon metabolites increase in concentration while purine pathway intermediates drop sharply. Importantly, in a ΔrelA mutant and a ppGpp0 strain in which (p)ppGpp synthesis genes were deleted, SHX exposure inhibited cell growth but led to an accumulation of purine pathway metabolites instead of a decrease, suggesting that as observed in other bacteria, (p)ppGpp downregulates the purine pathway in P. putida. Extracellular accumulations of pyruvate and acetate were observed as a specific metabolic consequence of the stringent response. Overall, our results show that (p)ppGpp rapidly remodels the central carbon metabolism and the de novo purine biosynthesis pathway in P. putida. These data represent a hypothesis-generating resource for future studies on the stringent response.
Collapse
|
32
|
Cimdins‐Ahne A, Chernobrovkin A, Kim S, Lee VT, Zubarev RA, Römling U. A mass spectrometry-based non-radioactive differential radial capillary action of ligand assay (DRaCALA) to assess ligand binding to proteins. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4822. [PMID: 35362254 PMCID: PMC9285882 DOI: 10.1002/jms.4822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Binding of ligands to macromolecules changes their physicochemical and enzymatic characteristics. Cyclic di-GMP is a second messenger involved in motility/sessility and acute/chronic infection life style transition. Although the GGDEF domain, predominantly a diguanylate cyclase, represents one of the most abundant bacterial domain superfamilies, the number of cyclic di-GMP receptors falls short. To facilitate screening for cyclic di-nucleotide binding proteins, we describe a non-radioactive, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF)-based modification of the widely applied differential radial capillary action of ligand assay (DRaCALA). The results of this assay suggest that the diguanylate cyclase/phosphodiesterase variant YciRFec101, but not selected catalytic mutants, bind cyclic di-GMP. HIGHLIGHTS: Cyclic di-nucleotides are ubiquitous second messengers in bacteria. However, few receptors have been identified. Previous screening of cell lysates by differential radial capillary action of ligand assay (DRaCALA) using radioactive ligand identified cyclic di-nucleotide binding proteins. A MALDI-TOF-based DRaCALA was developed to detect cyclic di-nucleotide binding as a non-radioactive alternative. Known cyclic di-GMP binding proteins were verified and potential cyclic di-GMP binding proteins were identified.
Collapse
Affiliation(s)
- Annika Cimdins‐Ahne
- Department of Microbiology, Tumor and Cell BiologyBiomedicum, Karolinska InstitutetSolnaSweden
| | - Alexey Chernobrovkin
- Department of Medical Biochemistry and BiophysicsBiomedicum, Karolinska InstitutetSolnaSweden
- Pelago Bioscience ABSolnaSweden
| | - Soo‐Kyoung Kim
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Vincent T. Lee
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Roman A. Zubarev
- Department of Medical Biochemistry and BiophysicsBiomedicum, Karolinska InstitutetSolnaSweden
- Department of Pharmacological and Technological ChemistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | - Ute Römling
- Department of Microbiology, Tumor and Cell BiologyBiomedicum, Karolinska InstitutetSolnaSweden
| |
Collapse
|
33
|
Haas TM, Laventie B, Lagies S, Harter C, Prucker I, Ritz D, Saleem‐Batcha R, Qiu D, Hüttel W, Andexer J, Kammerer B, Jenal U, Jessen HJ. Photoaffinity Capture Compounds to Profile the Magic Spot Nucleotide Interactomes**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Thomas M. Haas
- Institute of Organic Chemistry Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Benoît‐Joseph Laventie
- Infection Biology Biozentrum University of Basel Spitalstrasse 41 4056 Basel Switzerland
| | - Simon Lagies
- Institute of Organic Chemistry Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Caroline Harter
- Institute of Organic Chemistry Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Isabel Prucker
- Institute of Organic Chemistry Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Danilo Ritz
- Proteomics Core Facility Biozentrum University of Basel Spitalstrasse 41 4056 Basel Switzerland
| | - Raspudin Saleem‐Batcha
- Institute of Pharmaceutical Sciences Albert-Ludwigs-Universität Freiburg Albertstraße 25 79104 Freiburg im Breisgau Germany
| | - Danye Qiu
- Institute of Organic Chemistry Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Wolfgang Hüttel
- Institute of Organic Chemistry Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Jennifer Andexer
- Institute of Pharmaceutical Sciences Albert-Ludwigs-Universität Freiburg Albertstraße 25 79104 Freiburg im Breisgau Germany
| | - Bernd Kammerer
- Institute of Organic Chemistry Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Urs Jenal
- Infection Biology Biozentrum University of Basel Spitalstrasse 41 4056 Basel Switzerland
| | - Henning J. Jessen
- Institute of Organic Chemistry Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
- CIBSS—The Center for Biological Signaling Studies Albert-Ludwigs-Universität Freiburg 79104 Freiburg im Breisgau Germany
| |
Collapse
|
34
|
Veetilvalappil VV, Aranjani JM, Mahammad FS, Joseph A. Awakening sleeper cells: a narrative review on bacterial magic spot synthetases as potential drug targets to overcome persistence. Curr Genet 2022; 68:49-60. [PMID: 34787710 PMCID: PMC8801413 DOI: 10.1007/s00294-021-01221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 10/29/2022]
Abstract
Magic spot synthetases are emerging targets to overcome persistence caused by stringent response. The 'stringent response' is a bacterial stress survival mechanism, which results in the accumulation of alarmones (also called Magic spots) leading to the formation of dormant persister cells. These 'sleeper cells' evade antibiotic treatment and could result in relapse of infection. This review broadly investigates the phenomenon of stringent response and persistence, and specifically discusses the distribution, classification, and nomenclature of proteins such as Rel/SpoT homologs (RSH), responsible for alarmone synthesis. The authors further explain the relevance of RSH as potential drug targets to break the dormancy of persister cells commonly seen in biofilms. One of the significant factors that initiate alarmone synthesis is nutrient deficiency. In a starved condition, ribosome-associated RSH detects deacylated tRNA and initiates alarmone synthesis. Accumulation of alarmones has a considerable effect on bacterial physiology, virulence, biofilm formation, and persister cell formation. Preventing alarmone synthesis by inhibiting RSH responsible for alarmone synthesis will prevent or reduce persister cells' formation. Magic spot synthetases are thus potential targets that could be explored to overcome persistence seen in biofilms.
Collapse
Affiliation(s)
- Vimal Venu Veetilvalappil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India.
| | - Fayaz Shaik Mahammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| |
Collapse
|
35
|
Anderson BW, Schumacher MA, Yang J, Turdiev A, Turdiev H, Schroeder J, He Q, Lee V, Brennan R, Wang J. The nucleotide messenger (p)ppGpp is an anti-inducer of the purine synthesis transcription regulator PurR in Bacillus. Nucleic Acids Res 2022; 50:847-866. [PMID: 34967415 PMCID: PMC8789054 DOI: 10.1093/nar/gkab1281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Asan Turdiev
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Husan Turdiev
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jeremy W Schroeder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qixiang He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vincent T Lee
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
36
|
Purcell EB. Second messenger signaling in Clostridioides difficile. Curr Opin Microbiol 2021; 65:138-144. [PMID: 34864551 DOI: 10.1016/j.mib.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022]
Abstract
Small, diffusible second messenger molecules transmit information about extracellular conditions to intracellular machinery in order to influence transcription, translation, and metabolism. The enteropathogenic bacterium Clostridioides difficile coordinates its response to a dynamic and hostile environment via nucleotide second messengers. While riboswitch-mediated cyclic diguanylate regulation has been extensively characterized in C. difficile, signaling by cyclic diadenylate and by guanosine alarmones has only recently been confirmed in this organism. This review summarizes the current knowledge of how nucleotide second messenger signaling regulates physiological processes in C. difficile.
Collapse
Affiliation(s)
- Erin B Purcell
- Old Dominion University, Department of Chemistry and Biochemistry, 4501 Elkhorn Ave, Norfolk, VA 23529, United States.
| |
Collapse
|
37
|
Syal K, Rs N, Reddy MVNJ. The extended (p)ppGpp family: New dimensions in Stress response. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100052. [PMID: 34841343 PMCID: PMC8610335 DOI: 10.1016/j.crmicr.2021.100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022] Open
Abstract
Second messenger (p)ppGpp mediated stress response plays a crucial role in bacterial persistence and multiple drug resistance. In E. coli, (p)ppGpp binds to RNA polymerase and upregulates the transcription of genes essential for stress response while concurrently downregulating the expression of genes critical for growth and metabolism. Recently, the family of alarmone molecules has expanded to pppGpp, ppGpp, pGpp & (pp)pApp as distinct members. These molecules may help in fine-tuning stress responses in different hostile conditions. Do all of these molecules bind to RNA polymerase? Do they compete with each other or complement each other's functions is still not clear. Earlier, others and we have synthesized artificial analogs of (p)ppGpp that inhibited (p)ppGpp synthesis and long-term survival in M. smegmatis and in B. subtilis suggesting that analogs could compete with each other. Understanding the interplay of these molecules will allow deciphering novel pathways that can be potentially subjected to the therapeutic intervention. In this article, we have reviewed newly characterized second messengers and discussed their mode of action. We have also documented the progress made to-date in understanding the molecular basis of regulation of transcription by second messenger ppGpp, pppGpp, and pGpp.
Collapse
Affiliation(s)
- Kirtimaan Syal
- Department of Biological Sciences, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India
| | - Neethu Rs
- Department of Biological Sciences, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India
| | - M V N Janardhan Reddy
- Department of Biological Sciences, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India
| |
Collapse
|
38
|
Anderson BW, Fung DK, Wang JD. Regulatory Themes and Variations by the Stress-Signaling Nucleotide Alarmones (p)ppGpp in Bacteria. Annu Rev Genet 2021; 55:115-133. [PMID: 34416118 DOI: 10.1146/annurev-genet-021821-025827] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial stress-signaling alarmones are important components of a protective network against diverse stresses such as nutrient starvation and antibiotic assault. pppGpp and ppGpp, collectively (p)ppGpp, have well-documented regulatory roles in gene expression and protein translation. Recent work has highlighted another key function of (p)ppGpp: inducing rapid and coordinated changes in cellular metabolism by regulating enzymatic activities, especially those involved in purine nucleotide synthesis. Failure of metabolic regulation by (p)ppGpp results in the loss of coordination between metabolic and macromolecular processes, leading to cellular toxicity. In this review, we document how (p)ppGpp and newly characterized nucleotides pGpp and (p)ppApp directly regulate these enzymatic targets for metabolic remodeling. We examine targets' common determinants for alarmone interaction as well as their evolutionary diversification. We highlight classical and emerging themes in nucleotide signaling, including oligomerization and allostery along with metabolic interconversion and crosstalk, illustrating how they allow optimized bacterial adaptation to their environmental niches.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| | - Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| |
Collapse
|
39
|
Gupta KR, Arora G, Mattoo A, Sajid A. Stringent Response in Mycobacteria: From Biology to Therapeutic Potential. Pathogens 2021; 10:pathogens10111417. [PMID: 34832573 PMCID: PMC8622095 DOI: 10.3390/pathogens10111417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis is a human pathogen that can thrive inside the host immune cells for several years and cause tuberculosis. This is due to the propensity of M. tuberculosis to synthesize a sturdy cell wall, shift metabolism and growth, secrete virulence factors to manipulate host immunity, and exhibit stringent response. These attributes help M. tuberculosis to manage the host response, and successfully establish and maintain an infection even under nutrient-deprived stress conditions for years. In this review, we will discuss the importance of mycobacterial stringent response under different stress conditions. The stringent response is mediated through small signaling molecules called alarmones “(pp)pGpp”. The synthesis and degradation of these alarmones in mycobacteria are mediated by Rel protein, which is both (p)ppGpp synthetase and hydrolase. Rel is important for all central dogma processes—DNA replication, transcription, and translation—in addition to regulating virulence, drug resistance, and biofilm formation. Rel also plays an important role in the latent infection of M. tuberculosis. Here, we have discussed the literature on alarmones and Rel proteins in mycobacteria and highlight that (p)ppGpp-analogs and Rel inhibitors could be designed and used as antimycobacterial compounds against M. tuberculosis and non-tuberculous mycobacterial infections.
Collapse
Affiliation(s)
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Abid Mattoo
- Pharmaceutical Development, Ultragenyx Gene Therapy, Woburn, MA 01801, USA;
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
- Correspondence: or
| |
Collapse
|
40
|
Bange G, Brodersen DE, Liuzzi A, Steinchen W. Two P or Not Two P: Understanding Regulation by the Bacterial Second Messengers (p)ppGpp. Annu Rev Microbiol 2021; 75:383-406. [PMID: 34343020 DOI: 10.1146/annurev-micro-042621-122343] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Under stressful growth conditions and nutrient starvation, bacteria adapt by synthesizing signaling molecules that profoundly reprogram cellular physiology. At the onset of this process, called the stringent response, members of the RelA/SpoT homolog (RSH) protein superfamily are activated by specific stress stimuli to produce several hyperphosphorylated forms of guanine nucleotides, commonly referred to as (p)ppGpp. Some bifunctional RSH enzymes also harbor domains that allow for degradation of (p)ppGpp by hydrolysis. (p)ppGpp synthesis or hydrolysis may further be executed by single-domain alarmone synthetases or hydrolases, respectively. The downstream effects of (p)ppGpp rely mainly on direct interaction with specific intracellular effectors, which are widely used throughout most cellular processes. The growing number of identified (p)ppGpp targets allows us to deduce both common features of and differences between gram-negative and gram-positive bacteria. In this review, we give an overview of (p)ppGpp metabolism with a focus on the functional and structural aspects of the enzymes involved and discuss recent findings on alarmone-regulated cellular effectors. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gert Bange
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Anastasia Liuzzi
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Wieland Steinchen
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
41
|
Feaga HA, Dworkin J. Transcription regulates ribosome hibernation. Mol Microbiol 2021; 116:663-673. [PMID: 34152658 PMCID: PMC8628635 DOI: 10.1111/mmi.14762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Most bacteria are quiescent, typically as a result of nutrient limitation. In order to minimize energy consumption during this potentially prolonged state, quiescent bacteria substantially attenuate protein synthesis, the most energetically costly cellular process. Ribosomes in quiescent bacteria are present as dimers of two 70S ribosomes. Dimerization is dependent on a single protein, hibernation promoting factor (HPF), that binds the ribosome in the mRNA channel. This interaction indicates that dimers are inactive, suggesting that HPF inhibits translation. However, we observe that HPF does not significantly affect protein synthesis in vivo suggesting that dimerization is a consequence of inactivity, not the cause. The HPF-dimer interaction further implies that re-initiation of translation when the bacteria exit quiescence requires dimer resolution. We show that ribosome dimers quickly resolve in the presence of nutrients, and this resolution is dependent on transcription, indicating that mRNA synthesis is required for dimer resolution. Finally, we observe that ectopic HPF expression in growing cells where mRNA is abundant does not significantly affect protein synthesis despite stimulating dimer formation, suggesting that dimerization is dynamic. Thus, the extensive transcription that occurs in response to nutrient availability rapidly re-activates the translational apparatus of a quiescent cell and induces dimer resolution.
Collapse
Affiliation(s)
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
42
|
Updegrove TB, Harke J, Anantharaman V, Yang J, Gopalan N, Wu D, Piszczek G, Stevenson DM, Amador-Noguez D, Wang JD, Aravind L, Ramamurthi KS. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. eLife 2021; 10:65845. [PMID: 33704064 PMCID: PMC7952092 DOI: 10.7554/elife.65845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrolysis of nucleoside triphosphates releases similar amounts of energy. However, ATP hydrolysis is typically used for energy-intensive reactions, whereas GTP hydrolysis typically functions as a switch. SpoIVA is a bacterial cytoskeletal protein that hydrolyzes ATP to polymerize irreversibly during Bacillus subtilis sporulation. SpoIVA evolved from a TRAFAC class of P-loop GTPases, but the evolutionary pressure that drove this change in nucleotide specificity is unclear. We therefore reengineered the nucleotide-binding pocket of SpoIVA to mimic its ancestral GTPase activity. SpoIVAGTPase functioned properly as a GTPase but failed to polymerize because it did not form an NDP-bound intermediate that we report is required for polymerization. Further, incubation of SpoIVAGTPase with limiting ATP did not promote efficient polymerization. This approach revealed that the nucleotide base, in addition to the energy released from hydrolysis, can be critical in specific biological functions. We also present data suggesting that increased levels of ATP relative to GTP at the end of sporulation was the evolutionary pressure that drove the change in nucleotide preference in SpoIVA.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Jailynn Harke
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - Nikhil Gopalan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
43
|
Horvatek P, Salzer A, Hanna AMF, Gratani FL, Keinhörster D, Korn N, Borisova M, Mayer C, Rejman D, Mäder U, Wolz C. Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes. PLoS Genet 2020; 16:e1009282. [PMID: 33378356 PMCID: PMC7802963 DOI: 10.1371/journal.pgen.1009282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/12/2021] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits. In Staphylococcus aureus, (pp)pGpp can be synthesized via the RelA-SpoT-homolog, RelSau upon amino acid limitation or via one of the two small (pp)pGpp synthetases RelP or RelQ upon cell wall stress. We used RNA-Seq to compare the global effects in response to induction of the synthetase of rel-Syn (coding for the enzymatic region of RelSau) or relQ without the need to apply additional stress conditions. Induction of rel-Syn resulted in changes in the nucleotide pool similar to induction of the stringent response via the tRNA synthetase inhibitor mupirocin: a reduction in the GTP pool, an increase in the ATP pool and synthesis of pppGpp, ppGpp and pGpp. Induction of all three enzymes resulted in similar changes in the transcriptome. However, RelQ was less active than Rel-Syn and RelP, indicating strong restriction of its (pp)pGpp-synthesis activity in vivo. (pp)pGpp induction resulted in the downregulation of many genes involved in protein and RNA/DNA metabolism. Many of the (pp)pGpp upregulated genes are part of the GTP sensitive CodY regulon and thus likely regulated through lowering of the GTP pool. New CodY independent transcriptional changes were detected including genes involved in the SOS response, iron storage (e.g. ftnA, dps), oxidative stress response (e.g., perR, katA, sodA) and the psmα1–4 and psmß1-2 operons coding for cytotoxic, phenol soluble modulins (PSMs). Analyses of the ftnA, dps and psm genes in different regulatory mutants revealed that their (pp)pGpp-dependent regulation can occur independent of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled from expression of the quorum sensing system Agr, the main known psm activator. The expression of central genes of the oxidative stress response protects the bacteria from anticipated ROS stress derived from PSMs or exogenous sources. Thus, we identified a new link between the stringent response and oxidative stress in S. aureus that is likely crucial for survival upon phagocytosis. Most bacteria make use of the second messenger (pp)pGpp to reprogram bacterial metabolism under nutrient-limiting conditions. In the human pathogen Staphylococcus aureus, (pp)pGpp plays an important role in virulence, phagosomal escape and antibiotic tolerance. Here, we analyzed the immediate consequences of (pp)pGpp synthesis upon transcriptional induction of the (pp)pGpp-producing enzymes Rel, RelP or RelQ. (pp)pGpp synthesis provokes immediate changes in the nucleotide pool and severely impacts the expression of hundreds of genes. A main consequence of (pp)pGpp synthesis in S. aureus is the induction of ROS-inducing toxic phenol soluble modulins (PSMs) and simultaneous expression of the detoxifying system to protect the producer. This mechanism is likely of special advantage for the pathogen after phagocytosis.
Collapse
Affiliation(s)
- Petra Horvatek
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Andrea Salzer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | | | - Fabio Lino Gratani
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
- Quantitative Proteomics & Proteome Center Tuebingen, University of Tuebingen, Germany
| | - Daniela Keinhörster
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Natalya Korn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
- * E-mail:
| |
Collapse
|
44
|
Kundra S, Colomer-Winter C, Lemos JA. Survival of the Fittest: The Relationship of (p)ppGpp With Bacterial Virulence. Front Microbiol 2020; 11:601417. [PMID: 33343543 PMCID: PMC7744563 DOI: 10.3389/fmicb.2020.601417] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The signaling nucleotide (p)ppGpp has been the subject of intense research in the past two decades. Initially discovered as the effector molecule of the stringent response, a bacterial stress response that reprograms cell physiology during amino acid starvation, follow-up studies indicated that many effects of (p)ppGpp on cell physiology occur at levels that are lower than those needed to fully activate the stringent response, and that the repertoire of enzymes involved in (p)ppGpp metabolism is more diverse than initially thought. Of particular interest, (p)ppGpp regulation has been consistently linked to bacterial persistence and virulence, such that the scientific pursuit to discover molecules that interfere with (p)ppGpp signaling as a way to develop new antimicrobials has grown substantially in recent years. Here, we highlight contemporary studies that have further supported the intimate relationship of (p)ppGpp with bacterial virulence and studies that provided new insights into the different mechanisms by which (p)ppGpp modulates bacterial virulence.
Collapse
Affiliation(s)
- Shivani Kundra
- Department of Oral Biology, UF College of Dentistry, Gainesville, FL, United States
| | | | - José A Lemos
- Department of Oral Biology, UF College of Dentistry, Gainesville, FL, United States
| |
Collapse
|