1
|
Wordsworth R, Cherubim C, Nangle S, Berliner A, Dyson E, Girguis P, Grinspoon D, Harris R, Liu K, Marblestone A, Mason C, Morhard R, Sasselov DD, Seager S, Wood R, Worden P. Applied Astrobiology: An Integrated Approach to the Future of Life in Space. ASTROBIOLOGY 2025. [PMID: 40261716 DOI: 10.1089/ast.2024.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Searching for extraterrestrial life and supporting human life in space are traditionally regarded as separate challenges. However, there are significant benefits to an approach that treats them as different aspects of the same essential problem: How can we conceptualize life beyond our home planet?
Collapse
Affiliation(s)
| | | | | | - Aaron Berliner
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
| | | | | | | | | | | | | | | | | | | | | | - Robert Wood
- Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
2
|
Lee HD, Grady CJ, Krell K, Strebeck C, Al‐Hilfi A, Ricker B, Linn M, Xin NY, Good NM, Martinez‐Gomez NC, Gilad AA. A novel protein for bioremediation of gadolinium waste. Protein Sci 2025; 34:e70101. [PMID: 40099927 PMCID: PMC11915603 DOI: 10.1002/pro.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 02/11/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Several hundreds of tons of gadolinium-based contrast agents (GBCAs) are being dumped into the environment every year. Although macrocyclic GBCAs exhibit superior stability compared to their linear counterparts, we have found that the structural integrity of chelates is susceptible to ultraviolet light, regardless of configuration. In this study, we present a synthetic protein termed GLamouR that binds and reports gadolinium in an intensiometric manner. We then explore the extraction of gadolinium from MRI patient urine as a preventative measure for gadolinium pollution and investigate the viability of employing cost-effective bioremediation techniques for treating contaminated water bodies. Based on promising results, we anticipate proteins such as GLamouR can be used for detecting and mining rare earth elements beyond gadolinium and hope to expand the biological toolbox for such applications.
Collapse
Affiliation(s)
- Harvey D. Lee
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Connor J. Grady
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Katie Krell
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Cooper Strebeck
- Department of Mechanical EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Aimen Al‐Hilfi
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMichiganUSA
| | - Brianna Ricker
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMichiganUSA
| | - Melanie Linn
- Department of Small Animal SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Nicole Y. Xin
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Nathan M. Good
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | | | - Assaf A. Gilad
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMichiganUSA
- Department of RadiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
3
|
Dance A. Microbes in space: how bacteria could help sustain long-distance space travel. Nature 2025; 638:282-284. [PMID: 39900634 DOI: 10.1038/d41586-025-00319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
|
4
|
Tonietti L, Esposito M, Cascone M, Barosa B, Fiscale S, Muscari Tomajoli MT, Sbaffi T, Santomartino R, Covone G, Cordone A, Rotundi A, Giovannelli D. Unveiling the Bioleaching Versatility of Acidithiobacillus ferrooxidans. Microorganisms 2024; 12:2407. [PMID: 39770610 PMCID: PMC11678928 DOI: 10.3390/microorganisms12122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Acidithiobacillus ferrooxidans is a Gram-negative bacterium that thrives in extreme acidic conditions. It has emerged as a key player in biomining and bioleaching technologies thanks to its unique ability to mobilize a wide spectrum of elements, such as Li, P, V, Cr, Fe, Ni, Cu, Zn, Ga, As, Mo, W, Pb, U, and its role in ferrous iron oxidation and reduction. A. ferrooxidans catalyzes the extraction of elements by generating iron (III) ions in oxic conditions, which are able to react with metal sulfides. This review explores the bacterium's versatility in metal and elemental mobilization, with a focus on the mechanisms involved, encompassing its role in the recovery of industrially relevant elements from ores. The application of biomining technologies leveraging the bacterium's natural capabilities not only enhances element recovery efficiency, but also reduces reliance on conventional energy-intensive methods, aligning with the global trend towards more sustainable mining practices. However, its use in biometallurgical applications poses environmental issues through its effect on the pH levels in bioleaching systems, which produce acid mine drainage in rivers and lakes adjacent to mines. This dual effect underscores its potential to shape the future of responsible mining practices, including potentially in space, and highlights the importance of monitoring acidic releases in the environment.
Collapse
Affiliation(s)
- Luca Tonietti
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- International PhD Programme/UNESCO Chair “Environment, Resources and Sustainable Development”, 80143 Naples, Italy
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
- INAF-OAC, Osservatorio Astronomico di Capodimonte, 80137 Naples, Italy;
| | - Mattia Esposito
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Martina Cascone
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Bernardo Barosa
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Stefano Fiscale
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- International PhD Programme/UNESCO Chair “Environment, Resources and Sustainable Development”, 80143 Naples, Italy
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- International PhD Programme/UNESCO Chair “Environment, Resources and Sustainable Development”, 80143 Naples, Italy
| | - Tomasa Sbaffi
- Molecular Ecology Group (MEG), National Research Council of Italy—Water Research Institute (CNR-IRSA), 28922 Verbania, Italy;
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH8 9YL, UK;
| | - Giovanni Covone
- INAF-OAC, Osservatorio Astronomico di Capodimonte, 80137 Naples, Italy;
- Department of Physics, University of Naples Federico II, 80126 Naples, Italy
| | - Angelina Cordone
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
| | - Alessandra Rotundi
- Department of Science and Technology, University Parthenope, 80143 Naples, Italy; (S.F.); (M.T.M.T.); (A.R.)
- INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy
| | - Donato Giovannelli
- Department of Biology, University Federico II, 80126 Naples, Italy; (M.E.); (M.C.); (B.B.); (A.C.)
- National Research Council, Institute of Marine Biological Resources and Biotechnologies, CNR-IRBIM, 60125 Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA
- Earth-Life Science Institute, ELSI, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Huang KY, Cardenas L, Ellington AD, Walker DJF. Supercharged fluorescent proteins detect lanthanides via direct antennae signaling. Nat Commun 2024; 15:9200. [PMID: 39448572 PMCID: PMC11502933 DOI: 10.1038/s41467-024-53106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
A sustainable operation for harvesting metals in the lanthanide series is needed to meet the rising demand for rare earth elements across diverse global industries. However, existing methods are limited in their capacity for detection and capture at environmentally and industrially relevant lanthanide concentrations. Supercharged fluorescent proteins have solvent-exposed, negatively charged residues that potentially create multiple direct chelation pockets for free lanthanide cations. Here, we demonstrate that negatively supercharged proteins can bind and quantitatively report concentrations of lanthanides via an underutilized lanthanide-to-chromophore pathway of energy transfer. The top-performing sensors detect lanthanides in the micromolar to millimolar range and remain unperturbed by environmentally significant concentrations of competing metals. As a demonstration of the versatility and adaptability of this energy transfer method, we show proximity and signal transmission between the lanthanides and a supramolecular assembly of supercharged proteins, paving the way for the detection of lanthanides via programmable protein oligomers and materials.
Collapse
Affiliation(s)
- Kevin Y Huang
- Army Research Laboratory-South, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Lizette Cardenas
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, University of Texas at Austin, Austin, TX, USA
- Bennett Aerospace, Raleigh, NC, USA
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - David J F Walker
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, University of Texas at Austin, Austin, TX, USA.
- Bioconscientia, LLC, Austin, TX, USA.
| |
Collapse
|
6
|
Silva GG, Vincenzi RA, de Araujo GG, Venceslau SJS, Rodrigues F. Siderite and vivianite as energy sources for the extreme acidophilic bacterium Acidithiobacillus ferrooxidans in the context of mars habitability. Sci Rep 2024; 14:14885. [PMID: 38937525 PMCID: PMC11211326 DOI: 10.1038/s41598-024-64246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Past and present habitability of Mars have been intensely studied in the context of the search for signals of life. Despite the harsh conditions observed today on the planet, some ancient Mars environments could have harbored specific characteristics able to mitigate several challenges for the development of microbial life. In such environments, Fe2+ minerals like siderite (already identified on Mars), and vivianite (proposed, but not confirmed) could sustain a chemolithoautotrophic community. In this study, we investigate the ability of the acidophilic iron-oxidizing chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans to use these minerals as its sole energy source. A. ferrooxidans was grown in media containing siderite or vivianite under different conditions and compared to abiotic controls. Our experiments demonstrated that this microorganism was able to grow, obtaining its energy from the oxidation of Fe2+ that came from the solubilization of these minerals under low pH. Additionally, in sealed flasks without CO2, A. ferrooxidans was able to fix carbon directly from the carbonate ion released from siderite for biomass production, indicating that it could be able to colonize subsurface environments with little or no contact with an atmosphere. These previously unexplored abilities broaden our knowledge on the variety of minerals able to sustain life. In the context of astrobiology, this expands the list of geomicrobiological processes that should be taken into account when considering the habitability of environments beyond Earth, and opens for investigation the possible biological traces left on these substrates as biosignatures.
Collapse
Affiliation(s)
- Gabriel Gonçalves Silva
- Programa de Pós-Graduação Em Química, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Almeida Vincenzi
- Programa de Pós-Graduação Em Bioquímica E Biologia Molecular, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gabriel Guarany de Araujo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Fabio Rodrigues
- Departamento de Química Fundamental, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Jones EM, Marken JP, Silver PA. Synthetic microbiology in sustainability applications. Nat Rev Microbiol 2024; 22:345-359. [PMID: 38253793 DOI: 10.1038/s41579-023-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Microorganisms are a promising means to address many societal sustainability challenges owing to their ability to thrive in diverse environments and interface with the microscale chemical world via diverse metabolic capacities. Synthetic biology can engineer microorganisms by rewiring their regulatory networks or introducing new functionalities, enhancing their utility for target applications. In this Review, we provide a broad, high-level overview of various research efforts addressing sustainability challenges through synthetic biology, emphasizing foundational microbiological research questions that can accelerate the development of these efforts. We introduce an organizational framework that categorizes these efforts along three domains - factory, farm and field - that are defined by the extent to which the engineered microorganisms interface with the natural external environment. Different application areas within the same domain share many fundamental challenges, highlighting productive opportunities for cross-disciplinary collaborations between researchers working in historically disparate fields.
Collapse
Affiliation(s)
- Ethan M Jones
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - John P Marken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
8
|
Driscoll DM, White FD, Pramanik S, Einkauf JD, Ravel B, Bykov D, Roy S, Mayes RT, Delmau LH, Cary SK, Dyke T, Miller A, Silveira M, VanCleve SM, Davern SM, Jansone-Popova S, Popovs I, Ivanov AS. Observation of a promethium complex in solution. Nature 2024; 629:819-823. [PMID: 38778232 PMCID: PMC11111410 DOI: 10.1038/s41586-024-07267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 05/25/2024]
Abstract
Lanthanide rare-earth metals are ubiquitous in modern technologies1-5, but we know little about chemistry of the 61st element, promethium (Pm)6, a lanthanide that is highly radioactive and inaccessible. Despite its importance7,8, Pm has been conspicuously absent from the experimental studies of lanthanides, impeding our full comprehension of the so-called lanthanide contraction phenomenon: a fundamental aspect of the periodic table that is quoted in general chemistry textbooks. Here we demonstrate a stable chelation of the 147Pm radionuclide (half-life of 2.62 years) in aqueous solution by the newly synthesized organic diglycolamide ligand. The resulting homoleptic PmIII complex is studied using synchrotron X-ray absorption spectroscopy and quantum chemical calculations to establish the coordination structure and a bond distance of promethium. These fundamental insights allow a complete structural investigation of a full set of isostructural lanthanide complexes, ultimately capturing the lanthanide contraction in solution solely on the basis of experimental observations. Our results show accelerated shortening of bonds at the beginning of the lanthanide series, which can be correlated to the separation trends shown by diglycolamides9-11. The characterization of the radioactive PmIII complex in an aqueous environment deepens our understanding of intra-lanthanide behaviour12-15 and the chemistry and separation of the f-block elements16.
Collapse
Affiliation(s)
- Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Subhamay Pramanik
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Bruce Ravel
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Dmytro Bykov
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Richard T Mayes
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lætitia H Delmau
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Samantha K Cary
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Thomas Dyke
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - April Miller
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Matt Silveira
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Shelley M VanCleve
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sandra M Davern
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
9
|
Feigl V, Medgyes-Horváth A, Kari A, Török Á, Bombolya N, Berkl Z, Farkas É, Fekete-Kertész I. The potential of Hungarian bauxite residue isolates for biotechnological applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00825. [PMID: 38225962 PMCID: PMC10788403 DOI: 10.1016/j.btre.2023.e00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
Bauxite residue (red mud) is considered an extremely alkaline and salty environment for the biota. We present the first attempt to isolate, identify and characterise microbes from Hungarian bauxite residues. Four identified bacterial strains belonged to the Bacilli class, one each to the Actinomycetia, Gammaproteobacteria, and Betaproteobacteria classes, and two to the Alphaproteobacteria class. All three identified fungi strains belonged to the Ascomycota division. Most strains tolerated pH 8-10 and salt content at 5-7% NaCl concentration. Alkalihalobacillus pseudofirmus BRHUB7 and Robertmurraya beringensis BRHUB9 can be considered halophilic and alkalitolerant. Priestia aryabhattai BRHUB2, Penicillium chrysogenum BRHUF1 and Aspergillus sp. BRHUF2 are halo- and alkalitolerant strains. Most strains produced siderophores and extracellular polymeric substances, could mobilise phosphorous, and were cellulose degraders. These strains and their enzymes are possible candidates for biotechnological applications in processes requiring extreme conditions, e.g. bioleaching of critical raw materials and rehabilitation of alkaline waste deposits.
Collapse
Affiliation(s)
- Viktória Feigl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Anna Medgyes-Horváth
- ELTE Eötvös Loránd University, Department of Physics of Complex Systems, Pázmány P. s. 1A, Budapest 1117, Hungary
| | - András Kari
- ELTE Eötvös Loránd University, Department of Microbiology, Pázmány P. s. 1A, Budapest 1117, Hungary
| | - Ádám Török
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Nelli Bombolya
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Zsófia Berkl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Éva Farkas
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Department of Biogeochemistry and Soil Quality, Høgskoleveien 7, 1432 Ås, Norway
| | - Ildikó Fekete-Kertész
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| |
Collapse
|
10
|
Prescott RD, Chan YL, Tong EJ, Bunn F, Onouye CT, Handel C, Lo CC, Davenport K, Johnson S, Flynn M, Saito JA, Lee H, Wong K, Lawson BN, Hiura K, Sager K, Sadones M, Hill EC, Esibill D, Cockell CS, Santomartino R, Chain PS, Decho AW, Donachie SP. Bridging Place-Based Astrobiology Education with Genomics, Including Descriptions of Three Novel Bacterial Species Isolated from Mars Analog Sites of Cultural Relevance. ASTROBIOLOGY 2023; 23:1348-1367. [PMID: 38079228 PMCID: PMC10750312 DOI: 10.1089/ast.2023.0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 12/22/2023]
Abstract
Democratizing genomic data science, including bioinformatics, can diversify the STEM workforce and may, in turn, bring new perspectives into the space sciences. In this respect, the development of education and research programs that bridge genome science with "place" and world-views specific to a given region are valuable for Indigenous students and educators. Through a multi-institutional collaboration, we developed an ongoing education program and model that includes Illumina and Oxford Nanopore sequencing, free bioinformatic platforms, and teacher training workshops to address our research and education goals through a place-based science education lens. High school students and researchers cultivated, sequenced, assembled, and annotated the genomes of 13 bacteria from Mars analog sites with cultural relevance, 10 of which were novel species. Students, teachers, and community members assisted with the discovery of new, potentially chemolithotrophic bacteria relevant to astrobiology. This joint education-research program also led to the discovery of species from Mars analog sites capable of producing N-acyl homoserine lactones, which are quorum-sensing molecules used in bacterial communication. Whole genome sequencing was completed in high school classrooms, and connected students to funded space research, increased research output, and provided culturally relevant, place-based science education, with participants naming three novel species described here. Students at St. Andrew's School (Honolulu, Hawai'i) proposed the name Bradyrhizobium prioritasuperba for the type strain, BL16AT, of the new species (DSM 112479T = NCTC 14602T). The nonprofit organization Kauluakalana proposed the name Brenneria ulupoensis for the type strain, K61T, of the new species (DSM 116657T = LMG = 33184T), and Hawai'i Baptist Academy students proposed the name Paraflavitalea speifideiaquila for the type strain, BL16ET, of the new species (DSM 112478T = NCTC 14603T).
Collapse
Affiliation(s)
- Rebecca D. Prescott
- Department of Biology, University of Mississippi, University, Mississippi, USA
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas, USA
| | - Yvonne L. Chan
- Office of Community Science, ‘Iolani School, Honolulu, Hawai‘i, USA
| | - Eric J. Tong
- Office of Community Science, ‘Iolani School, Honolulu, Hawai‘i, USA
| | - Fiona Bunn
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - Chiyoko T. Onouye
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Christy Handel
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Chien-Chi Lo
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Karen Davenport
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Shannon Johnson
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Mark Flynn
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Jennifer A. Saito
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Herb Lee
- Pacific American Foundation, Kailua, Hawai‘i, USA
| | | | - Brittany N. Lawson
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Kayla Hiura
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Kailey Sager
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Mia Sadones
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Ethan C. Hill
- Office of Community Science, ‘Iolani School, Honolulu, Hawai‘i, USA
| | | | - Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - Patrick S.G. Chain
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Alan W. Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Stuart P. Donachie
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| |
Collapse
|
11
|
Mishra S, Ghosh S, van Hullebusch ED, Singh S, Das AP. A Critical Review on the Recovery of Base and Critical Elements from Electronic Waste-Contaminated Streams Using Microbial Biotechnology. Appl Biochem Biotechnol 2023; 195:7859-7888. [PMID: 36988841 DOI: 10.1007/s12010-023-04440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Pollution by end-of-life electronics is a rapid ever-increasing threat and is a universal concern with production of million metric tons of these wastes per annum. Electronic wastes (E-waste) are rejected electric or electronic equipment which have no other applications. The aggrandized unproper land filling of E-waste may generate hazardous effects on living organisms and ecosystem. At present, millions of tons of E-waste await the advancement of more efficient and worthwhile recycling techniques. Recovery of base and critical elements from electronic scraps will not only reduce the mining of these elements from natural resources but also reduces the contamination caused by the hazardous chemicals (mostly organic micropollutants) released from these wastes when unproperly disposed of. Bioleaching is reported to be the most eco-friendly process for metal recycling from spent electronic goods. A detailed investigation of microbial biodiversity and a molecular understanding of the metabolic pathways of bioleaching microorganisms will play a vital function in extraction of valuable minerals from the end-of-life scraps. Bioleaching technique as an economic and green technology costs around 7 USD per kg for effective reusing of E-waste as compared to other physical and chemical techniques. This review provides a summary of worldwide scenario of electronic pollutants; generation, composition and hazardous components of electronic waste; recycling of valuable elements through bioleaching; mechanism of bioleaching; microorganisms involved in base and critical element recovery from E-waste; commercial bioleaching operations; and upcoming aspects of this eco-friendly technique.
Collapse
Affiliation(s)
- Sunanda Mishra
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | | | - Eric D van Hullebusch
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France
| | - Shikha Singh
- Department of Life Sciences, Rama Devi Women's University, 751022, Bhubaneswar, Odisha, India
| | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, 751022, Bhubaneswar, Odisha, India.
| |
Collapse
|
12
|
Vezzola M, Tosi S, Doria E, Bonazzi M, Alvaro M, Sanfilippo A. Interaction between a Martian Regolith Simulant and Fungal Organic Acids in the Biomining Perspective. J Fungi (Basel) 2023; 9:976. [PMID: 37888232 PMCID: PMC10607307 DOI: 10.3390/jof9100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
The aim of this study was to evaluate the potential of Aspergillus tubingensis in extracting metals from rocks simulating Martian regolith through biomining. The results indicated that the fungal strain produced organic acids, particularly oxalic acid, in the first five days, leading to a rapid reduction in the pH of the culture medium. This acidic medium is ideal for bioleaching, a process that employs acidolysis and complexolysis to extract metals from rocks. Additionally, the strain synthesized siderophores, molecules capable of mobilizing metals from solid matrices, as verified by the blue CAS colorimetric test. The secretion of siderophores in the culture medium proved advantageous for biomining. The siderophores facilitated the leaching of metal ions, such as manganese, from the rock matrix into the acidified water solution. In addition, the susceptibility of the Martian regolith simulant to the biomining process was assessed by determining the particle size distribution, acid composition after treatment, and geochemical composition of the rock. Although the preliminary results demonstrate successful manganese extraction, further research is required to optimize the extraction technique. To conclude, the A. tubingensis strain exhibits promising abilities in extracting metals from rocks through biomining. Its use could prove useful in future in situ mining operations and environmental remediation efforts. Further research is required to optimize the process and evaluate its feasibility on a larger scale.
Collapse
Affiliation(s)
- Michele Vezzola
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (S.T.); (M.A.); (A.S.)
| | - Solveig Tosi
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (S.T.); (M.A.); (A.S.)
| | - Enrico Doria
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| | - Mattia Bonazzi
- Institute of Geosciences and Earth Resources of Pavia, C.N.R, 27100 Pavia, Italy;
| | - Matteo Alvaro
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (S.T.); (M.A.); (A.S.)
| | - Alessio Sanfilippo
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (S.T.); (M.A.); (A.S.)
| |
Collapse
|
13
|
Cui H, Zhang X, Chen J, Qian X, Zhong Y, Ma C, Zhang H, Liu K. The Construction of a Microbial Synthesis System for Rare Earth Enrichment and Material Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303457. [PMID: 37243571 DOI: 10.1002/adma.202303457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Rare earth materials play an irreplaceable role in biomedical and high technology fields. However, typical mining and extraction approaches to rare earth elements (REEs) often lead to severe environmental problems and resource wastage due to the involvement of hazardous chemicals. Although biomining shows elegant alternatives, there are still grand challenges to sustainably isolate and recover REEs in nature because of insufficient metal-extracting microbes and RE-scavenging macromolecular tools. To obtain high-performance rare earth materials directly from rare earth ore, a new generation of biological synthesis strategies needs to be developed for the efficient preparation of REEs. The microbial synthesis system established here has achieved active biomanufacturing of high-purity rare earth products. Further, through employing robust affinity columns bioconjugated with structurally engineered proteins, outstanding separation of Eu/Lu and Dy/La is acquired with the purity of 99.9% (Eu), 97.1% (La), and 92.7% (Dy). More importantly, in situ one-pot synthesis of lanthanide-dependent methanol dehydrogenase is well harnessed and exclusively adsorbs La, Ce, Pr, and Nd in RE tailing for advanced biocatalysis, indicating high value-added application. Therefore, this novel biosynthetic platform provides an insightful roadmap to expand the scope of chassis engineering in terms of biofoundry and to manufacture valuable bioproducts related to REEs.
Collapse
Affiliation(s)
- Huijing Cui
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xin Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jing Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xining Qian
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuewen Zhong
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
15
|
Soleimanifar M, Rodriguez-Freire L. Biointeraction of cerium oxide and neodymium oxide nanoparticles with pure culture methylobacterium extorquens AM1. CHEMOSPHERE 2023:139113. [PMID: 37270036 DOI: 10.1016/j.chemosphere.2023.139113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
Rare earth elements (REE) are valuable raw materials in our modern life. Extensive REE application from electronic devices to medical instruments and wind turbines, and non-uniform distribution of these resources around the world, make them strategically and economically important for countries. Current REE physical and chemical mining and recycling methods could have negative environmental consequences, and biologically-mediated techniques could be applied to overcome this issue. In this study, the bioextraction of cerium oxide and neodymium oxide nanoparticles (REE-NP) by a pure culture Methylobacterium extorquens AM1 (ATCC®14718™) was investigated in batch experiments. Results show that adding up to 1000 ppm CeO2 or Nd2O3 nanoparticles (REE-NP) did not seem to affect the bacterial growth over 14-days contact time. Effect of methylamine hydrochloride as an essential electron donor and carbon source for microbial oxidation and growth was also observed inasmuch as there was approximately no growth when it does not exist in the medium. Although very low concentrations of cerium and neodymium in the liquid phase were measured, concentrations of 45 μg/gcell Ce and 154 μg/gcell Nd could be extracted by M. extorquens AM1. Furthermore, SEM-EDS and STEM-EDS confirmed surface and intracellular accumulation of nanoparticles. These results confirmed the ability of M. extorquens to accumulate REE nanoparticles.
Collapse
Affiliation(s)
- Maedeh Soleimanifar
- John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology, 07102, Newark, NJ, United States.
| | - Lucia Rodriguez-Freire
- John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology, 07102, Newark, NJ, United States
| |
Collapse
|
16
|
Abstract
Bioprinting as an extension of 3D printing offers capabilities for printing tissues and organs for application in biomedical engineering. Conducting bioprinting in space, where the gravity is zero, can enable new frontiers in tissue engineering. Fabrication of soft tissues, which usually collapse under their own weight, can be accelerated in microgravity conditions as the external forces are eliminated. Furthermore, human colonization in space can be supported by providing critical needs of life and ecosystems by 3D bioprinting without relying on cargos from Earth, e.g., by development and long-term employment of living engineered filters (such as sea sponges-known as critical for initiating and maintaining an ecosystem). This review covers bioprinting methods in microgravity along with providing an analysis on the process of shipping bioprinters to space and presenting a perspective on the prospects of zero-gravity bioprinting.
Collapse
Affiliation(s)
- Misagh Rezapour Sarabi
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul, Turkey 34450
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 70569
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Savas Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul, Turkey 34450
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 70569
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul, Turkey 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul, Turkey 34450
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey 34684
| |
Collapse
|
17
|
Averesch NJH, Berliner AJ, Nangle SN, Zezulka S, Vengerova GL, Ho D, Casale CA, Lehner BAE, Snyder JE, Clark KB, Dartnell LR, Criddle CS, Arkin AP. Microbial biomanufacturing for space-exploration-what to take and when to make. Nat Commun 2023; 14:2311. [PMID: 37085475 PMCID: PMC10121718 DOI: 10.1038/s41467-023-37910-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/05/2023] [Indexed: 04/23/2023] Open
Abstract
As renewed interest in human space-exploration intensifies, a coherent and modernized strategy for mission design and planning has become increasingly crucial. Biotechnology has emerged as a promising approach to increase resilience, flexibility, and efficiency of missions, by virtue of its ability to effectively utilize in situ resources and reclaim resources from waste streams. Here we outline four primary mission-classes on Moon and Mars that drive a staged and accretive biomanufacturing strategy. Each class requires a unique approach to integrate biomanufacturing into the existing mission-architecture and so faces unique challenges in technology development. These challenges stem directly from the resources available in a given mission-class-the degree to which feedstocks are derived from cargo and in situ resources-and the degree to which loop-closure is necessary. As mission duration and distance from Earth increase, the benefits of specialized, sustainable biomanufacturing processes also increase. Consequentially, we define specific design-scenarios and quantify the usefulness of in-space biomanufacturing, to guide techno-economics of space-missions. Especially materials emerged as a potentially pivotal target for biomanufacturing with large impact on up-mass cost. Subsequently, we outline the processes needed for development, testing, and deployment of requisite technologies. As space-related technology development often does, these advancements are likely to have profound implications for the creation of a resilient circular bioeconomy on Earth.
Collapse
Affiliation(s)
- Nils J H Averesch
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.
| | - Aaron J Berliner
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
| | - Shannon N Nangle
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- Circe Bioscience Inc., Somerville, MA, USA.
| | - Spencer Zezulka
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
- School of Information, University of California Berkeley, Berkeley, CA, USA
| | - Gretchen L Vengerova
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Davian Ho
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Cameran A Casale
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Benjamin A E Lehner
- Department of Bionanoscience, Delft University of Technology, Delft, South Holland, Netherlands
| | | | - Kevin B Clark
- Cures Within Reach, Chicago, IL, USA
- Champions Program, eXtreme Science and Engineering Discovery Environment (XSEDE), Urbana, IL, USA
| | - Lewis R Dartnell
- Department of Life Sciences, University of Westminster, London, UK
| | - Craig S Criddle
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
18
|
Fernandez BG, Rothschild LJ, Fagliarone C, Chiavarini S, Billi D. Feasibility as feedstock of the cyanobacterium Chroococcidiopsis sp. 029 cultivated with urine-supplemented moon and mars regolith simulants. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
19
|
Santomartino R, Averesch NJH, Bhuiyan M, Cockell CS, Colangelo J, Gumulya Y, Lehner B, Lopez-Ayala I, McMahon S, Mohanty A, Santa Maria SR, Urbaniak C, Volger R, Yang J, Zea L. Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat Commun 2023; 14:1391. [PMID: 36944638 PMCID: PMC10030976 DOI: 10.1038/s41467-023-37070-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Finding sustainable approaches to achieve independence from terrestrial resources is of pivotal importance for the future of space exploration. This is relevant not only to establish viable space exploration beyond low Earth-orbit, but also for ethical considerations associated with the generation of space waste and the preservation of extra-terrestrial environments. Here we propose and highlight a series of microbial biotechnologies uniquely suited to establish sustainable processes for in situ resource utilization and loop-closure. Microbial biotechnologies research and development for space sustainability will be translatable to Earth applications, tackling terrestrial environmental issues, thereby supporting the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | - Nils J H Averesch
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
- Center for Utilization of Biological Engineering in Space, Berkeley, CA, USA
| | | | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Yosephine Gumulya
- Centre for Microbiome Research, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Anurup Mohanty
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA, 98104, USA
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Sergio R Santa Maria
- Space Biosciences, NASA Ames Research Center, Mountain View, CA, USA
- KBR, Moffett Field, Mountain View, CA, USA
| | - Camilla Urbaniak
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- ZIN Technologies Inc, Middleburg Heights, OH, USA
| | - Rik Volger
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
20
|
Zhang X, Shi H, Tan N, Zhu M, Tan W, Daramola D, Gu T. Advances in bioleaching of waste lithium batteries under metal ion stress. BIORESOUR BIOPROCESS 2023; 10:19. [PMID: 38647921 PMCID: PMC10992134 DOI: 10.1186/s40643-023-00636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
In modern societies, the accumulation of vast amounts of waste Li-ion batteries (WLIBs) is a grave concern. Bioleaching has great potential for the economic recovery of valuable metals from various electronic wastes. It has been successfully applied in mining on commercial scales. Bioleaching of WLIBs can not only recover valuable metals but also prevent environmental pollution. Many acidophilic microorganisms (APM) have been used in bioleaching of natural ores and urban mines. However, the activities of the growth and metabolism of APM are seriously inhibited by the high concentrations of heavy metal ions released by the bio-solubilization process, which slows down bioleaching over time. Only when the response mechanism of APM to harsh conditions is well understood, effective strategies to address this critical operational hurdle can be obtained. In this review, a multi-scale approach is used to summarize studies on the characteristics of bioleaching processes under metal ion stress. The response mechanisms of bacteria, including the mRNA expression levels of intracellular genes related to heavy metal ion resistance, are also reviewed. Alleviation of metal ion stress via addition of chemicals, such as spermine and glutathione is discussed. Monitoring using electrochemical characteristics of APM biofilms under metal ion stress is explored. In conclusion, effective engineering strategies can be proposed based on a deep understanding of the response mechanisms of APM to metal ion stress, which have been used to improve bioleaching efficiency effectively in lab tests. It is very important to engineer new bioleaching strains with high resistance to metal ions using gene editing and synthetic biotechnology in the near future.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ningjie Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Damilola Daramola
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA.
| |
Collapse
|
21
|
Lee HD, Grady CJ, Krell K, Strebeck C, Good NM, Martinez-Gomez NC, Gilad AA. A Novel Protein for the Bioremediation of Gadolinium Waste. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522788. [PMID: 36711778 PMCID: PMC9881998 DOI: 10.1101/2023.01.05.522788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several hundreds of tons of gadolinium-based contrast agents (GBCAs) are being dumped into the environment every year. Although macrocyclic GBCAs exhibit superior stability compared to their linear counterparts, we have found that the structural integrity of chelates are susceptible to ultraviolet light, regardless of configuration. In this study, we present a synthetic protein termed GLamouR that binds and reports gadolinium in an intensiometric manner. We then explore the extraction of gadolinium from GBCA-spiked artificial urine samples and investigate if the low picomolar concentrations reported in gadolinium-contaminated water sources pose a barrier for bioremediation. Based on promising results, we anticipate GLamouR can be used for detecting and mining REEs beyond gadolinium as well and hope to expand the biological toolbox for such applications.
Collapse
Affiliation(s)
- Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Connor J. Grady
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Katie Krell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Cooper Strebeck
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Nathan M. Good
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - N. Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Assaf A. Gilad
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
Vélez Justiniano YA, Goeres DM, Sandvik EL, Kjellerup BV, Sysoeva TA, Harris JS, Warnat S, McGlennen M, Foreman CM, Yang J, Li W, Cassilly CD, Lott K, HerrNeckar LE. Mitigation and use of biofilms in space for the benefit of human space exploration. Biofilm 2023; 5:100102. [PMID: 36660363 PMCID: PMC9843197 DOI: 10.1016/j.bioflm.2022.100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures. On the International Space Station, biofilms were found in human-inhabited environments on a multitude of hardware surfaces. Moreover, studies have identified phenotypic and genetic changes in the microorganisms under microgravity conditions including changes in microbe surface colonization and pathogenicity traits. Lack of consistent research in microgravity-grown biofilms can lead to deficient understanding of altered microbial behavior in space. This could subsequently create problems in engineered systems or negatively impact human health on crewed spaceflights. It is especially relevant to long-term and remote space missions that will lack resupply and service. Conversely, biofilms are also known to benefit plant growth and are essential for human health (i.e., gut microbiome). Eventually, biofilms may be used to supply metabolic pathways that produce organic and inorganic components useful to sustaining life on celestial bodies beyond Earth. This article will explore what is currently known about biofilms in space and will identify gaps in the aerospace industry's knowledge that should be filled in order to mitigate or to leverage biofilms to the advantage of spaceflight.
Collapse
Affiliation(s)
- Yo-Ann Vélez Justiniano
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA,Corresponding author.
| | - Darla M. Goeres
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | | | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Tatyana A. Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Jacob S. Harris
- Biomedical and Environmental Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Stephan Warnat
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew McGlennen
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Christine M. Foreman
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Wenyan Li
- Laboratory Support Services and Operations (LASSO), NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | - Katelynn Lott
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Lauren E. HerrNeckar
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA
| |
Collapse
|
23
|
Sorouri B, Rodriguez CI, Gaut BS, Allison SD. Variation in Sphingomonas traits across habitats and phylogenetic clades. Front Microbiol 2023; 14:1146165. [PMID: 37138640 PMCID: PMC10150699 DOI: 10.3389/fmicb.2023.1146165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Whether microbes show habitat preferences is a fundamental question in microbial ecology. If different microbial lineages have distinct traits, those lineages may occur more frequently in habitats where their traits are advantageous. Sphingomonas is an ideal bacterial clade in which to investigate how habitat preference relates to traits because these bacteria inhabit diverse environments and hosts. Here we downloaded 440 publicly available Sphingomonas genomes, assigned them to habitats based on isolation source, and examined their phylogenetic relationships. We sought to address whether: (1) there is a relationship between Sphingomonas habitat and phylogeny, and (2) whether there is a phylogenetic correlation between key, genome-based traits and habitat preference. We hypothesized that Sphingomonas strains from similar habitats would cluster together in phylogenetic clades, and key traits that improve fitness in specific environments should correlate with habitat. Genome-based traits were categorized into the Y-A-S trait-based framework for high growth yield, resource acquisition, and stress tolerance. We selected 252 high quality genomes and constructed a phylogenetic tree with 12 well-defined clades based on an alignment of 404 core genes. Sphingomonas strains from the same habitat clustered together within the same clades, and strains within clades shared similar clusters of accessory genes. Additionally, key genome-based trait frequencies varied across habitats. We conclude that Sphingomonas gene content reflects habitat preference. This knowledge of how environment and host relate to phylogeny may also help with future functional predictions about Sphingomonas and facilitate applications in bioremediation.
Collapse
Affiliation(s)
- Bahareh Sorouri
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
- *Correspondence: Bahareh Sorouri,
| | - Cynthia I. Rodriguez
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| | - Steven D. Allison
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
- Department of Earth System Science, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
Overbey EG, Das S, Cope H, Madrigal P, Andrusivova Z, Frapard S, Klotz R, Bezdan D, Gupta A, Scott RT, Park J, Chirko D, Galazka JM, Costes SV, Mason CE, Herranz R, Szewczyk NJ, Borg J, Giacomello S. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight. CELL REPORTS METHODS 2022; 2:100325. [PMID: 36452864 PMCID: PMC9701605 DOI: 10.1016/j.crmeth.2022.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have experienced rapid development in recent years. The findings of spaceflight-based scRNA-seq and SRT investigations are likely to improve our understanding of life in space and our comprehension of gene expression in various cell systems and tissue dynamics. However, compared to their Earth-based counterparts, gene expression experiments conducted in spaceflight have not experienced the same pace of development. Out of the hundreds of spaceflight gene expression datasets available, only a few used scRNA-seq and SRT. In this perspective piece, we explore the growing importance of scRNA-seq and SRT in space biology and discuss the challenges and considerations relevant to robust experimental design to enable growth of these methods in the field.
Collapse
Affiliation(s)
- Eliah G. Overbey
- Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, New York, NY, USA
| | - Saswati Das
- Department of Biochemistry, Atal Bihari Vajpayee Institute of Medical Sciences & Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Pedro Madrigal
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Zaneta Andrusivova
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Solène Frapard
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rebecca Klotz
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, German
- yuri GmbH, Meckenbeuren, Germany
| | | | - Ryan T. Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | | - Jonathan M. Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V. Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Christopher E. Mason
- Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, New York, NY, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid 28040, Spain
| | - Nathaniel J. Szewczyk
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
25
|
Chen J, Liu Y, Diep P, Mahadevan R. Genetic engineering of extremely acidophilic Acidithiobacillus species for biomining: Progress and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129456. [PMID: 35777147 DOI: 10.1016/j.jhazmat.2022.129456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
With global demands for mineral resources increasing and ore grades decreasing, microorganisms have been increasingly deployed in biomining applications to recover valuable metals particularly from normally considered waste, such as low-grade ores and used consumer electronics. Acidithiobacillus are a genus of chemolithoautotrophic extreme acidophiles that are commonly found in mining process waters and acid mine drainage, which have been reported in several studies to aid in metal recovery from bioremediation of metal-contaminated sites. Compared to conventional mineral processing technologies, biomining is often cited as a more sustainable and environmentally friendly process, but long leaching cycles and low extraction efficiency are main disadvantages that have hampered its industrial applications. Genetic engineering is a powerful technology that can be used to enhance the performance of microorganisms, such as Acidithiobacillus species. In this review, we compile existing data on Acidithiobacillus species' physiological traits and genomic characteristics, progresses in developing genetic tools to engineer them: plasmids, shutter vectors, transformation methods, selection markers, promoters and reporter systems developed, and genome editing techniques. We further propose genetic engineering strategies for enhancing biomining efficiency of Acidithiobacillus species and provide our perspectives on their future applications.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
26
|
Ng S, Williamson C, van Zee M, Di Carlo D, Santa Maria SR. Enabling Clonal Analyses of Yeast in Outer Space by Encapsulation and Desiccation in Hollow Microparticles. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081168. [PMID: 36013347 PMCID: PMC9410522 DOI: 10.3390/life12081168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Studying microbes at the single-cell level in space can accelerate human space exploration both via the development of novel biotechnologies and via the understanding of cellular responses to space stressors and countermeasures. High-throughput technologies for screening natural and engineered cell populations can reveal cellular heterogeneity and identify high-performance cells. Here, we present a method to desiccate and preserve microbes in nanoliter-scale compartments, termed PicoShells, which are microparticles with a hollow inner cavity. In PicoShells, single cells are confined in an inner aqueous core by a porous hydrogel shell, allowing the diffusion of nutrients, wastes, and assay reagents for uninhibited cell growth and flexible assay protocols. Desiccated PicoShells offer analysis capabilities for single-cell derived colonies with a simple, low resource workflow, requiring only the addition of water to rehydrate hundreds of thousands of PicoShells and the single microbes encapsulated inside. Our desiccation method results in the recovery of desiccated microparticle morphology and porosity after a multi-week storage period and rehydration, with particle diameter and porosity metrics changing by less than 18% and 7%, respectively, compared to fresh microparticles. We also recorded the high viability of Saccharomyces cerevisiae yeast desiccated and rehydrated inside PicoShells, with only a 14% decrease in viability compared to non-desiccated yeast over 8.5 weeks, although we observed an 85% decrease in initial growth potential over the same duration. We show a proof-of-concept for a growth rate-based analysis of single-cell derived colonies in rehydrated PicoShells, where we identified 11% of the population that grows at an accelerated rate. Desiccated PicoShells thus provide a robust method for cell preservation before and during launch, promising a simple single-cell analysis method for studying heterogeneity in microbial populations in space.
Collapse
Affiliation(s)
- Simon Ng
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, CA 90095, USA; (S.N.); (C.W.); (M.v.Z.)
- Space Life Sciences Training Program, NASA Ames Research Center, Mountain View, CA 94035, USA
| | - Cayden Williamson
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, CA 90095, USA; (S.N.); (C.W.); (M.v.Z.)
| | - Mark van Zee
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, CA 90095, USA; (S.N.); (C.W.); (M.v.Z.)
| | - Dino Di Carlo
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, CA 90095, USA; (S.N.); (C.W.); (M.v.Z.)
- Department of Mechanical and Aerospace Engineering, University of California—Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California—Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (D.D.C.); (S.R.S.M.)
| | - Sergio R. Santa Maria
- Space Biosciences, NASA Ames Research Center, Mountain View, CA 94035, USA
- KBR, Fully Integrated Lifecycle Mission Support Services, Mountain View, CA 94035, USA
- Correspondence: (D.D.C.); (S.R.S.M.)
| |
Collapse
|
27
|
Prescott RD, Zamkovaya T, Donachie SP, Northup DE, Medley JJ, Monsalve N, Saw JH, Decho AW, Chain PSG, Boston PJ. Islands Within Islands: Bacterial Phylogenetic Structure and Consortia in Hawaiian Lava Caves and Fumaroles. Front Microbiol 2022; 13:934708. [PMID: 35935195 PMCID: PMC9349362 DOI: 10.3389/fmicb.2022.934708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Lava caves, tubes, and fumaroles in Hawai‘i present a range of volcanic, oligotrophic environments from different lava flows and host unexpectedly high levels of bacterial diversity. These features provide an opportunity to study the ecological drivers that structure bacterial community diversity and assemblies in volcanic ecosystems and compare the older, more stable environments of lava tubes, to the more variable and extreme conditions of younger, geothermally active caves and fumaroles. Using 16S rRNA amplicon-based sequencing methods, we investigated the phylogenetic distinctness and diversity and identified microbial interactions and consortia through co-occurrence networks in 70 samples from lava tubes, geothermal lava caves, and fumaroles on the island of Hawai‘i. Our data illustrate that lava caves and geothermal sites harbor unique microbial communities, with very little overlap between caves or sites. We also found that older lava tubes (500–800 yrs old) hosted greater phylogenetic diversity (Faith's PD) than sites that were either geothermally active or younger (<400 yrs old). Geothermally active sites had a greater number of interactions and complexity than lava tubes. Average phylogenetic distinctness, a measure of the phylogenetic relatedness of a community, was higher than would be expected if communities were structured at random. This suggests that bacterial communities of Hawaiian volcanic environments are phylogenetically over-dispersed and that competitive exclusion is the main driver in structuring these communities. This was supported by network analyses that found that taxa (Class level) co-occurred with more distantly related organisms than close relatives, particularly in geothermal sites. Network “hubs” (taxa of potentially higher ecological importance) were not the most abundant taxa in either geothermal sites or lava tubes and were identified as unknown families or genera of the phyla, Chloroflexi and Acidobacteria. These results highlight the need for further study on the ecological role of microbes in caves through targeted culturing methods, metagenomics, and long-read sequence technologies.
Collapse
Affiliation(s)
- Rebecca D. Prescott
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
- *Correspondence: Rebecca D. Prescott
| | - Tatyana Zamkovaya
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Stuart P. Donachie
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Diana E. Northup
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Joseph J. Medley
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Natalia Monsalve
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Jimmy H. Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Patrick S. G. Chain
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Penelope J. Boston
- National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
28
|
Averesch NJH, Shunk GK, Kern C. Cultivation of the Dematiaceous Fungus Cladosporium sphaerospermum Aboard the International Space Station and Effects of Ionizing Radiation. Front Microbiol 2022; 13:877625. [PMID: 35865919 PMCID: PMC9294542 DOI: 10.3389/fmicb.2022.877625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
In Space, cosmic radiation is a strong, ubiquitous form of energy with constant flux, and the ability to harness it could greatly enhance the energy-autonomy of expeditions across the solar system. At the same time, radiation is the greatest permanent health risk for humans venturing into deep space. To protect astronauts beyond Earth's magnetosphere, advanced shielding against ionizing as well as non-ionizing radiation is highly sought after. In search of innovative solutions to these challenges, biotechnology appeals with suitability for in situ resource utilization (ISRU), self-regeneration, and adaptability. Where other organisms fail, certain microscopic fungi thrive in high-radiation environments on Earth, showing high radioresistance. The adaptation of some of these molds to areas, such as the Chernobyl Exclusion Zone has coined the terms positive "radiotropism" and "radiotrophy", reflecting the affinity to and stimulation by radiation, and sometimes even enhanced growth under ionizing conditions. These abilities may be mediated by the pigment melanin, many forms of which also have radioprotective properties. The expectation is that these capabilities are extendable to radiation in space. To study its growth in space, an experiment cultivating Cladosporium sphaerospermum Penzig ATCC® 11289™ aboard the International Space Station (ISS) was conducted while monitoring radiation beneath the formed biomass in comparison to a no-growth negative control. A qualitative growth advantage in space was observable. Quantitatively, a 1.21 ± 0.37-times higher growth rate than in the ground control was determined, which might indicate a radioadaptive response to space radiation. In addition, a reduction in radiation compared to the negative control was discernable, which is potentially attributable to the fungal biomass.
Collapse
Affiliation(s)
- Nils J. H. Averesch
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States
| | - Graham K. Shunk
- Physics Department, North Carolina School of Science and Mathematics, Durham, NC, United States
- Higher Orbits “Go for Launch!” Program, Leesburg, VA, United States
| | - Christoph Kern
- Department of Statistics, Ludwig Maximilian University of Munich, Munich, Germany
- School of Social Sciences, University of Mannheim, Mannheim, Germany
| |
Collapse
|
29
|
Mineral Paragenesis Precipitating in Salt Flat Pools of Continental Environments Replicated in Microbial Mat Microcosms without Evaporation. MINERALS 2022. [DOI: 10.3390/min12050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mineral precipitation can be observed in natural environments, such as lagoons, rivers, springs, and soils. The primary precipitation process has long been believed to be abiotic due to evaporation, leading to phase supersaturation. However, biotic interactions of microbial metabolism, organic compounds, and dissolved ions leading to mineral precipitation has been shown in laboratory studies using single-organism culture. The increase in pH inducing calcium carbonate precipitation due to oxygenic photosynthesis by Cyanobacteria and the release of ions due to organic matter decomposition by Firmicutes-inducing magnesium carbonate precipitation are recognized examples. As microbes do not live as pure cultures in natural environments but form complex communities, such pure culture lab studies do not reflect natural conditions. In this study, we grew natural complex microbial communities in microcosm conditions using filtered brine as water column and two types of natural gypsum substrates, and we replenished incubations to avoid evaporation. We monitored microbial communities through optical microscopy and analyzed mineral paragenesis in association with and without microbes, using different analytical techniques, such X-ray diffraction, and optical and field emission scanning electron microscopies. To detect changes throughout the experiment, small amounts of water column brine were extracted for physicochemial determinations. We were able to detect mineral paragenesis, avoiding evaporation, including major phases of chemical sedimentary rocks, such as gypsum, calcium carbonate, and some silicates in association to microbes. In addition, we evidenced that the use of natural substrates positively impacts growth of microbial communities, promoting the development of more biomass. This study can be seen as the first attempt and proof of concept of differentiating biotic and abiotic participation in evaporitic deposits, as they can form mineral paragenesis without evaporation. Future studies with microcosm experiments using microbial mats will be needed to establish mineral precipitation induced by micro-organisms and their extracellular polymeric substances (EPS), specifically to replicate mineral paragenesis sedimented from natural brines.
Collapse
|
30
|
Napoli A, Micheletti D, Pindo M, Larger S, Cestaro A, de Vera JP, Billi D. Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station. Sci Rep 2022; 12:8437. [PMID: 35589950 PMCID: PMC9120168 DOI: 10.1038/s41598-022-12631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Despite the increasing interest in using microbial-based technologies to support human space exploration, many unknowns remain not only on bioprocesses but also on microbial survivability and genetic stability under non-Earth conditions. Here the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated for robustness of the repair capability of DNA lesions accumulated under Mars-like conditions (UV radiation and atmosphere) simulated in low Earth orbit using the EXPOSE-R2 facility installed outside the International Space Station. Genomic alterations were determined in a space-derivate of Chroococcidiopsis sp. CCMEE 029 obtained upon reactivation on Earth of the space-exposed cells. Comparative analysis of whole-genome sequences showed no increased variant numbers in the space-derivate compared to triplicates of the reference strain maintained on the ground. This result advanced cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Alessandro Napoli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Diego Micheletti
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Simone Larger
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Microgravity User Support Center, Linder Höhe, 51147, Cologne, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Rome, Italy.
| |
Collapse
|
31
|
Syrvatka V, Rabets A, Gromyko O, Luzhetskyy A, Fedorenko V. Scandium-microorganism interactions in new biotechnologies. Trends Biotechnol 2022; 40:1088-1101. [PMID: 35346528 DOI: 10.1016/j.tibtech.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Scandium (Sc) plays a special role in high-tech industries because of its wide application in green, space, and defense technologies. However, Sc mining and purification are problematic due to political, technological, and environmental difficulties. The deficit of this element limits global technological development. One sustainable solution to this problem is to use microorganisms to extract Sc from ore and waste, as well as to concentrate and separate it from other elements. Sc also demonstrates attractive metabolic effects on microbes that is of great interest in white biotechnology. Sc increases the production of proteins and secondary metabolites and activates poorly expressed genes. This review offers a comprehensive analysis of current knowledge on the application of Sc-microorganism interactions in promising biotechnologies, its perspectives, and future challenges.
Collapse
Affiliation(s)
- Vasyl Syrvatka
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andrii Rabets
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Oleksandr Gromyko
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Victor Fedorenko
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine.
| |
Collapse
|
32
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
33
|
Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles 2022; 26:7. [PMID: 34993644 PMCID: PMC8739323 DOI: 10.1007/s00792-021-01253-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
As we aim to expand human presence in space, we need to find viable approaches to achieve independence from terrestrial resources. Space biomining of the Moon, Mars and asteroids has been indicated as one of the promising approaches to achieve in-situ resource utilization by the main space agencies. Structural and expensive metals, essential mineral nutrients, water, oxygen and volatiles could be potentially extracted from extraterrestrial regolith and rocks using microbial-based biotechnologies. The use of bioleaching microorganisms could also be applied to space bioremediation, recycling of waste and to reinforce regenerative life support systems. However, the science around space biomining is still young. Relevant differences between terrestrial and extraterrestrial conditions exist, including the rock types and ores available for mining, and a direct application of established terrestrial biomining techniques may not be a possibility. It is, therefore, necessary to invest in terrestrial and space-based research of specific methods for space applications to learn the effects of space conditions on biomining and bioremediation, expand our knowledge on organotrophic and community-based bioleaching mechanisms, as well as on anaerobic biomining, and investigate the use of synthetic biology to overcome limitations posed by the space environments.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
34
|
Cockell CS. Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb Biotechnol 2022; 15:29-41. [PMID: 34534397 PMCID: PMC8719799 DOI: 10.1111/1751-7915.13927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022] Open
Abstract
The establishment of a permanent human settlement in space is one of humanity's ambitions. To achieve this, microorganisms will be used to carry out many functions such as recycling, food and pharmaceutical production, mining and other processes. However, the physical and chemical extremes in all locations beyond Earth exceed known growth limits of microbial life. Making microbes more tolerant of a greater range of extraterrestrial extremes will not produce organisms that can grow in unmodified extraterrestrial environments since in many of them not even liquid water can exist. However, by narrowing the gap, the engineering demands on bioindustrial processes can be reduced and greater robustness can be incorporated into the biological component. I identify and describe these required microbial biotechnological modifications and speculate on long-term possibilities such as microbial biotechnology on Saturn's moon Titan to support a human presence in the outer Solar System and bioprocessing of asteroids. A challenge for space microbial biotechnology in the coming decades is to narrow the microbial gap by systemically identifying the genes required to do this and incorporating them into microbial systems that can be used to carry out bioindustrial processes of interest.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for AstrobiologySchool of Physics and AstronomyUniversity of EdinburghEdinburghUK
| |
Collapse
|
35
|
Martínez-Bellange P, von Bernath D, Navarro CA, Jerez CA. Biomining of metals: new challenges for the next 15 years. Microb Biotechnol 2021; 15:186-188. [PMID: 34846776 PMCID: PMC8719796 DOI: 10.1111/1751-7915.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Diego von Bernath
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Claudio A Navarro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Carlos A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
36
|
Kaksonen AH, Deng X, Morris C, Khaleque HN, Zea L, Gumulya Y. Potential of Acidithiobacillus ferrooxidans to Grow on and Bioleach Metals from Mars and Lunar Regolith Simulants under Simulated Microgravity Conditions. Microorganisms 2021; 9:2416. [PMID: 34946018 PMCID: PMC8706024 DOI: 10.3390/microorganisms9122416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
The biomining microbes which extract metals from ores that have been applied in mining processes worldwide hold potential for harnessing space resources. Their cell growth and ability to extract metals from extraterrestrial minerals under microgravity environments, however, remains largely unknown. The present study used the model biomining bacterium Acidithiobacillus ferrooxidans to extract metals from lunar and Martian regolith simulants cultivated in a rotating clinostat with matched controls grown under the influence of terrestrial gravity. Analyses included assessments of final cell count, size, morphology, and soluble metal concentrations. Under Earth gravity, with the addition of Fe3+ and H2/CO2, A. ferrooxidans grew in the presence of regolith simulants to a final cell density comparable to controls without regoliths. The simulated microgravity appeared to enable cells to grow to a higher cell density in the presence of lunar regolith simulants. Clinostat cultures of A. ferrooxidans solubilised higher amounts of Si, Mn and Mg from lunar and Martian regolith simulants than abiotic controls. Electron microscopy observations revealed that microgravity stimulated the biosynthesis of intracellular nanoparticles (most likely magnetite) in anaerobically grown A. ferrooxidans cells. These results suggested that A. ferrooxidans has the potential for metal bioleaching and the production of useful nanoparticles in space.
Collapse
Affiliation(s)
- Anna H. Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Floreat 6014, Australia; (A.H.K.); (X.D.); (C.M.); (H.N.K.)
- School of Biomedical Sciences, University of Western Australia, Crawley 6009, Australia
| | - Xiao Deng
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Floreat 6014, Australia; (A.H.K.); (X.D.); (C.M.); (H.N.K.)
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Christina Morris
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Floreat 6014, Australia; (A.H.K.); (X.D.); (C.M.); (H.N.K.)
| | - Himel Nahreen Khaleque
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Floreat 6014, Australia; (A.H.K.); (X.D.); (C.M.); (H.N.K.)
| | - Luis Zea
- BioServe Space Technologies, Smead Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO 80303, USA;
| | - Yosephine Gumulya
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Floreat 6014, Australia; (A.H.K.); (X.D.); (C.M.); (H.N.K.)
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Woolloongabba 4102, Australia
| |
Collapse
|
37
|
Hallsworth JE, Mancinelli RL, Conley CA, Dallas TD, Rinaldi T, Davila AF, Benison KC, Rapoport A, Cavalazzi B, Selbmann L, Changela H, Westall F, Yakimov MM, Amils R, Madigan MT. Astrobiology of life on Earth. Environ Microbiol 2021; 23:3335-3344. [PMID: 33817931 DOI: 10.1111/1462-2920.15499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue 'Ecophysiology of Extremophiles'. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.
Collapse
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Rocco L Mancinelli
- Bay Area Environmental Research Institute, NASA Ames Research Center, Mountain View, CA, 94035, USA
| | | | - Tiffany D Dallas
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Teresa Rinaldi
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
| | | | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, 26506-6300, USA
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, Riga, LV-1004, Latvia
| | - Barbara Cavalazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.,Italian Antarctic National Museum (MNA), Mycological Section, Genoa, 16128, Italy
| | - Hitesh Changela
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Department of Earth and Planetary Science, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Frances Westall
- CNRS, Ctr Biophys Mol UPR 4301, Rue Charles Sadron, CS 80054, Orleans, F-45071, France
| | - Michail M Yakimov
- Institute of Marine Biological Resources and Biotechnology, IRBIM-CNR, Messina, 98122, Italy
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CBMSO, CSICUAM), Cantoblanco, Madrid, 28049, Spain.,Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
38
|
Pan A, Feng S, Hu X, Li Y. How environmental regulation affects China's rare earth export? PLoS One 2021; 16:e0250407. [PMID: 33886661 PMCID: PMC8062019 DOI: 10.1371/journal.pone.0250407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
China's rare earth export trade has developed so rapidly since 1990s that China has gradually occupied a leading position in the international market. However, this fast development was proceeding at the cost of the rare earth energy consumption and environmental devastation. Now China begins to attach great importance to environmental protection, which attracts many researchers. This study aims to analyze the influence of environmental regulation on China's rare earth export trade. And the original study is amongst the few to examine the relationship between environmental regulation and China's rare earth export with the product-level data. Different from previous studies, this paper selects China's rare earth export data from 1995 to 2015 and introduces product heterogeneity based on the rare earth production process. Moreover, this study uses the entropy weight method to measure the intensity of environmental regulation. The core conclusions are as follows: (1) Environmental regulation significantly promotes rather than restrains China's rare earth export. (2) According to the rare earth production process, this paper divides rare earth products into 3 kinds, that is, rare earth raw materials, rare earth useful components and rare earth end-use applications. Then, it is found that rare earth useful component export in processing and smelting is positively affected by environmental regulation. Rare earth raw materials and end-use applications in China's export are hardly affected. (3) Technological innovation has a mediating effect on the impact mechanism of environmental regulation on China's rare earth export, which means that environmental regulation significantly promotes technological innovation of enterprises, and thereby the rare earth export is increased. The findings are helpful for policymakers to resolve the issue of environmental devastation.
Collapse
Affiliation(s)
- An Pan
- School of Economics, Zhongnan University of Economics and Law, Wuhan, Hubei, China
| | - Shuangshuang Feng
- School of Economics, Zhongnan University of Economics and Law, Wuhan, Hubei, China
| | - Xinyuan Hu
- School of Economics, Zhongnan University of Economics and Law, Wuhan, Hubei, China
| | - Yaya Li
- School of Finance & Economics, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
39
|
Cockell CS, Santomartino R, Finster K, Waajen AC, Nicholson N, Loudon CM, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, Coninx I, Hatton J, Parmitano L, Krause J, Koehler A, Caplin N, Zuijderduijn L, Mariani A, Pellari S, Carubia F, Luciani G, Balsamo M, Zolesi V, Ochoa J, Sen P, Watt JAJ, Doswald-Winkler J, Herová M, Rattenbacher B, Wadsworth J, Everroad RC, Demets R. Microbially-Enhanced Vanadium Mining and Bioremediation Under Micro- and Mars Gravity on the International Space Station. Front Microbiol 2021; 12:641387. [PMID: 33868198 PMCID: PMC8047202 DOI: 10.3389/fmicb.2021.641387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
As humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining could be accomplished under extraterrestrial gravity conditions. We tested the hypothesis that the gravity (g) level influenced the efficacy with which biomining could be achieved from basalt, an abundant material on the Moon and Mars, by quantifying bioleaching by three different microorganisms under microgravity, simulated Mars and Earth gravitational conditions. One element of interest in mining is vanadium (V), which is added to steel to fabricate high strength, corrosion-resistant structural materials for buildings, transportation, tools and other applications. The results showed that Sphingomonas desiccabilis and Bacillus subtilis enhanced the leaching of vanadium under the three gravity conditions compared to sterile controls by 184.92 to 283.22%, respectively. Gravity did not have a significant effect on mean leaching, thus showing the potential for biomining on Solar System objects with diverse gravitational conditions. Our results demonstrate the potential to use microorganisms to conduct elemental mining and other bioindustrial processes in space locations with non-1 × g gravity. These same principles apply to extraterrestrial bioremediation and elemental recycling beyond Earth.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Finster
- Department of Biology - Microbiology, Aarhus University, Aarhus, Denmark
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Lorna J Eades
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany.,Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jon Ochoa
- ESTEC, Noordwijk, Netherlands.,Space Application Services NV/SA, Noordwijk, Netherlands
| | - Pia Sen
- Earth and Environmental Sciences Department, Rutgers University, Newark, NJ, United States
| | - James A J Watt
- School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeannine Doswald-Winkler
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Jennifer Wadsworth
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | | |
Collapse
|
40
|
Kang X, Csetenyi L, Gadd GM. Colonization and bioweathering of monazite by
Aspergillus niger
: solubilization and precipitation of rare earth elements. Environ Microbiol 2021; 23:3970-3986. [DOI: 10.1111/1462-2920.15402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Xia Kang
- Geomicrobiology Group, School of Life Sciences University of Dundee Dundee Scotland DD1 5EH UK
| | - Laszlo Csetenyi
- Concrete Technology Group, Department of Civil Engineering University of Dundee Dundee Scotland DD1 4HN UK
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences University of Dundee Dundee Scotland DD1 5EH UK
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment China University of Petroleum, 18 Fuxue Road, Changping District Beijing 102249 China
| |
Collapse
|