1
|
Kalitnik A, Lassota A, Polańska O, Gąsior‐Głogowska M, Szefczyk M, Barbach A, Chilimoniuk J, Jęśkowiak‐Kossakowska I, Wojciechowska AW, Wojciechowski JW, Szulc N, Kotulska M, Burdukiewicz M. Experimental methods for studying amyloid cross-interactions. Protein Sci 2025; 34:e70151. [PMID: 40384558 PMCID: PMC12086524 DOI: 10.1002/pro.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/20/2025]
Abstract
Interactions between amyloid proteins represent the cornerstone of various pathogenic pathways, including prion conversion and co-development of distinct kinds of systemic amyloidosis. Various experimental methodologies provide insights into the effects of such cross-interactions on amyloid self-assembly, which range from acceleration to complete inhibition. Here, we present a comprehensive review of experimental methods most commonly used to study amyloid cross-interactions both in vitro and in vivo, such as fluorescence-based techniques, high-resolution imaging, and spectroscopic methods. Although each method provides distinct information on amyloid interactions, we highlight that no method can fully capture the complexity of this process. In order to achieve an exhaustive portrayal, it is necessary to employ a hybrid strategy combining different experimental techniques. A core set of fluorescence methods (e.g., thioflavin T) and high-resolution imaging techniques (e.g., atomic force microscopy or Cryo-EM) are required to verify the lack of self-assembly or alterations in fibril morphology. At the same time, immuno-electron microscopy, mass spectrometry, or solid-state NMR can confirm the presence of heterotypic fibrils.
Collapse
Affiliation(s)
- Aleksandra Kalitnik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Anna Lassota
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Oliwia Polańska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Marlena Gąsior‐Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of ChemistryWroclaw University of Science and TechnologyWrocławPoland
| | - Agnieszka Barbach
- Department of Experimental OncologyHirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocławPoland
| | | | | | - Alicja W. Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Jakub W. Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
- Sano Centre for Computational MedicineKrakówPoland
| | - Natalia Szulc
- Department of Physics and BiophysicsWrocław University of Environmental and Life SciencesWrocławPoland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Michał Burdukiewicz
- Clinical Research CentreMedical University of BiałystokBiałystokPoland
- Institute of BiotechnologyVilnius UniversityVilniausLithuania
| |
Collapse
|
2
|
Mainali N, Balasubramaniam M, Pahal S, Griffin WST, Shmookler Reis RJ, Ayyadevara S. Altered protein homeostasis in cardiovascular diseases contributes to Alzheimer's-like neuropathology. Basic Res Cardiol 2025:10.1007/s00395-025-01109-w. [PMID: 40332607 DOI: 10.1007/s00395-025-01109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVD is known to increase the risk of subsequent neurodegeneration but the mechanism(s) and proteins involved have yet to be elucidated. We previously showed that myocardial infarction (MI), induced in mice and compared to sham-MI mice, leads to increases in protein aggregation, endoplasmic reticulum (ER) stress in both heart and brain, and changes in proteostatic pathways. In this study, we further investigate the molecular mechanisms altered by induced MI in mice, which were also implicated by proteomics of postmortem human hippocampal aggregates from Alzheimer's disease (AD) and cardiovascular disease (CVD) patients, vs. age-matched controls (AMC). We utilized intra-aggregate crosslinking to identify protein-protein contacts or proximities, and thus to reconstruct aggregate "contactomes" (nonfunctional interactomes). We used leave-one-out analysis (LOOA) to determine the contribution of each protein to overall aggregate cohesion, and gene ontology meta-analyses of constituent proteins to define critical organelles, processes, and pathways that distinguish AD and/or CVD from AMC aggregates. We identified influential proteins in both AD and CVD aggregates, many of which are associated with pathways or processes previously implicated in neurodegeneration such as mitochondrial, oxidative, and endoplasmic-reticulum stress; protein aggregation and proteostasis; the ubiquitin proteasome system and autophagy; axonal transport; and synapses.
Collapse
Affiliation(s)
- Nirjal Mainali
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | - Sonu Pahal
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - W Sue T Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA.
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
3
|
Gatch AJ, Ding F. Cross-Interaction with Amyloid-β Drives Pathogenic Structural Transformation within the Amyloidogenic Core Region of TDP-43. ACS Chem Neurosci 2025; 16:1565-1581. [PMID: 40167418 PMCID: PMC12003063 DOI: 10.1021/acschemneuro.5c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) is the world's most prevalent neurodegenerative disorder, characterized neuropathologically by senile plaques and neurofibrillary tangles formed by amyloid-β (Aβ) and tau, respectively. Notably, a subset of AD patients also exhibits pathological aggregates composed of TAR DNA-Binding Protein 43 (TDP-43). Clinically, the presence of TDP-43 copathology in AD correlates with more severe cognitive decline and faster disease progression. While previous studies have shown that TDP-43 can exacerbate Aβ toxicity and modulate its assembly dynamics by delaying fibrillization and promoting oligomer formation, the impact of the Aβ interaction on the structural dynamics and aggregation of TDP-43 remains unclear. Here, we employed all-atom discrete molecular dynamics simulations to study the direct interaction between Aβ42, the more amyloidogenic isoform of Aβ, and the amyloidogenic core region (ACR) of TDP-43, which spans residues 311-360 and is critical for TDP-43 aggregation. We found that monomeric Aβ42 could strongly bind to the ACR, establishing sustained contact through intermolecular hydrogen bonding. In contrast, simulation of ACR dimerization revealed a transient helix-helix interaction, experimentally known to drive the phase separation behavior of TDP-43. The binding of the ACR to an Aβ42 fibril seed resulted in significant structural transformation, with the complete unfolding of the helical region being observed. Furthermore, interaction with the Aβ42 fibril seed catalyzed the formation of a parallel, in-register intermolecular β-sheet between two ACR monomers. Collectively, our computational study provides important theoretical insights into TDP-43 pathology in AD, demonstrating that Aβ42, especially in its fibrillar form, may catalyze the pathogenic structural transformation within the TDP-43 ACR that initiates its aberrant aggregation.
Collapse
Affiliation(s)
- Adam J. Gatch
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
4
|
Sun KT, Mok SA. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Neurotherapeutics 2025; 22:e00512. [PMID: 39755501 PMCID: PMC12047394 DOI: 10.1016/j.neurot.2024.e00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau. We aim to provide an overview of how specific molecular factors can impact aggregation kinetics and aggregate structure to promote disease. Looking toward the future, we highlight some research areas of focus that would accelerate efforts to effectively target protein aggregation in AD.
Collapse
Affiliation(s)
- Kerry T Sun
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
5
|
Mondal R, Deb S, Shome G, Sarkar V, Lahiri D, Datta SS, Benito-León J. Molecular dynamics of amyloid-β transport in Alzheimer's disease: Exploring therapeutic plasma exchange with albumin replacement - Current insights and future perspectives. Neurologia 2025; 40:306-328. [PMID: 40280630 DOI: 10.1016/j.nrleng.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/07/2023] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION The complex process of amyloid-β (Aβ) transportation across the blood-brain and blood-cerebrospinal fluid barriers is crucial for preventing Aβ accumulation, which linked to dementia and neurodegeneration. This review explores therapeutic plasma exchange with albumin replacement in Alzheimer's disease, based on the dynamics of amyloid-β between the brain, plasma, and cerebrospinal fluid. METHODOLOGY A comprehensive literature review was conducted using PubMed/Medline, Cochrane Library, and open databases (bioRxiv, MedRixv, preprint.org) up to April 30, 2023. The first search utilized the following MeSH terms and keywords: 'Plasma Exchange', 'Plasmapheresis', 'Therapeutic plasma exchange', 'Apheresis', 'Aβ', 'p-tau', 'Total-tau', 'Alzheimer's disease', 'Cognitive dysfunction', 'neurodegenerative diseases', 'centrifugation', 'membranous', and 'filtration' in the Title/Abstract, yielding 146 results. A second search with the keywords: 'Albumin', 'Aβ', 'BBB', 'Alzheimer's dementia', and 'Nerve degeneration' resulted in 125 additional articles for analysis. Finally, a third search using keywords: 'Albumin structural domains', 'Albumin-Aβ interactions', 'Albumin-endothelial interactions', and 'Post-Translational Modification' produced 193 results for further review. RESULTS/DISCUSSION Therapeutic plasma exchange shows potential as a disease-modifying therapy for dementia, specifically for Alzheimer's disease. Additionally, the promising role of albumin supplementation in cognitive improvement has attracted attention. However, clinical evidence supporting therapeutic plasma exchange for dementia remains limited, necessitating further research and development to mitigate potential adverse effects. A deeper understanding of the molecular dynamics of Aβ transportation and the mechanisms of therapeutic plasma exchange is essential. A critical evaluation of existing evidence highlights the importance of balancing potential benefits with associated risks, which will guide the development and application of these treatments in neurodegenerative diseases.
Collapse
Affiliation(s)
- R Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India
| | - S Deb
- Department of Neuroscience, SN Pradhan Center for Neuroscience, University of Calcutta, Kolkata 700019, India
| | - G Shome
- Department of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - V Sarkar
- Department of Neuroscience, SN Pradhan Center for Neuroscience, University of Calcutta, Kolkata 700019, India
| | - D Lahiri
- Baycrest Academy of Research and Education, Toronto, Canada; Rotman Research Institute, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Canada; Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - S S Datta
- Department of Transfusion Medicine, Tata Medical Center, Kolkata 700160, India
| | - J Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain.
| |
Collapse
|
6
|
Mitra J, Kodavati M, Dharmalingam P, Guerrero EN, Rao KS, Garruto RM, Hegde ML. Endogenous TDP-43 mislocalization in a novel knock-in mouse model reveals DNA repair impairment, inflammation, and neuronal senescence. Acta Neuropathol Commun 2025; 13:54. [PMID: 40057796 PMCID: PMC11889789 DOI: 10.1186/s40478-025-01962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 03/14/2025] Open
Abstract
TDP-43 mislocalization and aggregation are key pathological features of amyotrophic lateral sclerosis (ALS)- and frontotemporal dementia (FTD). However, existing transgenic hTDP-43 WT or ∆NLS-overexpression animal models primarily focus on late-stage TDP-43 proteinopathy. To complement these models and to study the early-stage motor neuron-specific pathology during pre-symptomatic phases of disease progression, we generated a new endogenous knock-in (KI) mouse model using a combination of CRISPR/Cas9 and FLEX Cre-switch strategy for the conditional expression of a mislocalized Tdp-43∆NLS variant of mouse Tdp-43. This variant is expressed either in the whole body (WB) or specifically in the motor neurons (MNs) in two distinct models. These mice exhibit loss of nuclear Tdp-43, with concomitant cytosolic accumulation and aggregation in targeted cells, leading to increased DNA double-strand breaks (DSBs), signs of inflammation, and associated cellular senescence. Notably, unlike WT Tdp-43, which functionally interacts with Xrcc4 and DNA Ligase 4, the key DSB repair proteins in the non-homologous end-joining (NHEJ) pathway, the Tdp-43∆NLS mutant sequesters them into cytosolic aggregates, exacerbating neuronal damage in mouse brain. The mutant mice also exhibit myogenic degeneration in hindlimb soleus muscles and distinct motor deficits, consistent with the characteristics of motor neuron disease (MND). Our findings reveal progressive degenerative mechanisms in motor neurons expressing endogenous Tdp-43∆NLS mutant, independent of Tdp-43 overexpression or other confounding factors. Thus, this unique Tdp-43 KI mouse model, which displays key molecular and phenotypic features of Tdp-43 proteinopathy, offers a significant opportunity to characterize the early-stage progression of MND further and also opens avenues for developing DNA repair-targeted approaches for treating TDP-43 pathology-linked neurodegenerative diseases.
Collapse
Affiliation(s)
- Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Prakash Dharmalingam
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Erika N Guerrero
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Gorgas Memorial Institute for Health Studies, Avenida Justo Arosemena y Calle 35, Panama City, Republic of Panama
- Sistema Nacional de Investigación, SENACYT, Panama City, Republic of Panama
| | - K S Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to Be University, Green Fields, Vaddeswaram, Andhra Pradesh, 522502, India
| | - Ralph M Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Neuroscience, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Santiago J, Pocevičiūtė D, Wennström M. Perivascular phosphorylated TDP-43 inclusions are associated with Alzheimer's disease pathology and loss of CD146 and Aquaporin-4. Brain Pathol 2025; 35:e13304. [PMID: 39251230 PMCID: PMC11835440 DOI: 10.1111/bpa.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
The majority of patients with Alzheimer's disease (AD) exhibit aggregates of Trans-active response DNA binding protein 43 (TDP-43) in their hippocampus, which is associated with a more aggressive disease progression. The TDP-43 inclusions are commonly found in neurons, but also in astrocytes. The impact of the inclusions in astrocytes is less known. In the current study, we investigate the presence of phosphorylated TDP-43 (pTDP-43) inclusions in astrocytic endfeet and their potential association with blood-brain barrier (BBB) damage, glymphatic system dysfunction, and AD pathology. By staining postmortem hippocampal sections from AD patients and non-demented controls against TDP-43 and pTDP-43 together with the astrocytic markers glial fibrillary acidic protein (GFAP), astrocytic endfeet marker Aquaporin-4 (AQP4), and markers for BBB alterations (CD146) and leakiness (Immunoglobulin A), we demonstrate a close association between perivascular pTDP-43 or TDP-43 inclusions and GFAP or AQP4. These perivascular inclusions were more prominent in AD and correlated with the disease severity and loss of CD146 and AQP4. The findings indicate a relationship between pTDP-43 accumulation in astrocytic endfeet and BBB and glymphatic system dysfunction, which may contribute to the downstream pathological events seen in AD patients and the aggressive disease progression.
Collapse
Affiliation(s)
- Jessica Santiago
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | | | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| |
Collapse
|
8
|
Alamri SH, Haque S, Alghamdi BS, Tayeb HO, Azhari S, Farsi RM, Elmokadem A, Alamri TA, Harakeh S, Prakash A, Kumar V. Comprehensive mapping of mutations in TDP-43 and α-Synuclein that affect stability and binding. J Biomol Struct Dyn 2025; 43:1818-1830. [PMID: 38126188 DOI: 10.1080/07391102.2023.2293258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Abnormal aggregation and amyloid inclusions of TAR DNA-binding protein 43 (TDP-43) and α-Synuclein (α-Syn) are frequently co-observed in amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Several reports showed TDP-43 C-terminal domain (CTD) and α-Syn interact with each other and the aggregates of these two proteins colocalized together in different cellular and animal models. Molecular dynamics simulation was conducted to elucidate the stability of the TDP-43 and Syn complex structure. The interfacial mutations in protein complexes changes the stability and binding affinity of the protein that may cause diseases. Here, we have utilized the computational saturation mutagenesis approach including structure-based stability and binding energy calculations to compute the systemic effects of missense mutations of TDP-43 CTD and α-Syn on protein stability and binding affinity. Most of the interfacial mutations of CTD and α-Syn were found to destabilize the protein and reduced the protein binding affinity. The results thus shed light on the functional consequences of missense mutations observed in TDP-43 associated proteinopathies and may provide the mechanisms of co-morbidities involving these two proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sultan H Alamri
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Badra S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- The Mind and Brain Studies Initiative, Neuroscience Research Unit, Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shereen Azhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abear Elmokadem
- Department of Hematology/Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki A Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Jeddah, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Gurgaon, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| |
Collapse
|
9
|
Yin H, Wang Y, Ren Z, Xiao Z, Zhang Y, Wang Y, Guo Z, Chen L, Bao X, Bei Y, Fu X, Zeng L. TDP43 is a newly identified substrate for PS1, enhancing the expression of APP following cleavage. Cell Death Discov 2025; 11:76. [PMID: 39988698 PMCID: PMC11847911 DOI: 10.1038/s41420-025-02340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Alzheimer's disease (AD) has been comprehensively studied; however, most research has focused on Aβ plaque deposition and Tau protein phosphorylation. Emerging evidence suggests that TDP43 may be significantly involved AD and potentially worsening its pathology. To investigate the role of TDP43 in the pathological development of AD, we employed the STRING protein network interaction tool to identify potential relationships between TDP43 and other proteins, including PS1 and APP. Subsequent co-immunoprecipitation experiments were conducted, and the results indicated that TDP43 could interact with PS1. Further studies have shown that the interaction between the two would also lead to the loss of nuclear localization of TDP43. We also found that overexpression or knockdown of PS1 in both primary cells, HeLa and NSC34 cells indicated that TDP43 is likely to be a substrate of PS1. Subsequent use of the L685,458 and z-VAD, the PS1 mutant plasmids D257A and D385A, and bioinformatics approaches demonstrated that PS1 is dependent on γ-secretase and caspase activity to cleave TDP43, and that the cleavage site is at amino acid 315 of TDP43. Besides, our study demonstrated that the interaction of TDP43 with PS1 in primary cells, HeLa and NSC34 cells can promote APP expression, resulting in elevated Aβ levels. Finally, we investigated whether the interaction between TDP43 and PS1 affects the expression of other PS1 substrates, Notch and E-cadherin. Our results demonstrated that TDP43 cleaved by PS1 only promoted APP expression and had no effect on other PS1 substrates. In conclusion, these results suggest that TDP43 is a new substrate of PS1 and that TDP43 cleaved by PS1 promotes APP expression, which leads to increased Aβ content, which may explain why TDP43 promotes AD development. These insights enhance our understanding of TDP43's role in AD development.
Collapse
Affiliation(s)
- Hanlan Yin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yuxiang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zhichao Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zixuan Xiao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yibo Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zining Guo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Lu Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xinlu Bao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yingshuo Bei
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xueqi Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Linlin Zeng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
10
|
Zhang P, Liu Y, Jin X, Hu Z, Yang J, Lu H, Hang T, Song M. Alzheimer's disease-like pathology induced by Porphyromonas gingivalis in middle-aged mice is mediated by NLRP3 inflammasome via the microbiota-gut-brain axis. J Alzheimers Dis 2025; 103:487-505. [PMID: 39639573 DOI: 10.1177/13872877241302498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Porphyromonas gingivalis (P. gingivalis) has been found to enter the brain and induce inflammation, contributing to Alzheimer's disease (AD). P. gingivalis is also closely linked to gut dysbiosis. However, does P. gingivalis induce AD-like pathology through the microbiota-gut-brain axis? There is limited literature on this topic. OBJECTIVE To determine the precise causal link among P. gingivalis, intestinal inflammation, and AD-related pathology. METHODS 12- to 13-month-old female C57BL/6J mice were subjected to ligature placement and oral administration of P. gingivalis over a 24-week period. Then, cognitive performance was evaluated with behavioral tests, while AD neuropathological changes, neuroinflammation, and intestinal inflammation were assessed through qPCR, immunofluorescence, and western blot, and gut microbiota was analyzed by 16S rRNA. RESULTS Mice exposed to P. gingivalis showed impaired behavior in open field test, novel object recognition, and Y-maze tests. The bacterium infiltrated their brains, increasing Aβ42, AβPP, and Aβ fragments, promoting tau phosphorylation and microglial activation, and reducing levels of ZO-1, PSD95, SYP, and NeuN proteins. Inflammatory factors like NLRP3, caspase-1, IL-1β, IL-6, and TNF-α were elevated in both brains and intestine, while ZO-1 and occludin levels decreased in intestine. P. gingivalis also altered gut microbial compositions. CONCLUSIONS P. gingivalis induced gut dysbiosis and activated the NLRP3 inflammasome in the intestine and brains of mice. This led to impairment of both the intestinal and brain-blood barriers, triggering neuroinflammation and promoting the progression of AD. These findings highlight the critical role of NLRP3 inflammasome activation in the microbiota-gut-brain axis in the AD-like pathology induced by P. gingivalis.
Collapse
Affiliation(s)
- Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Xin Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Zhaoliang Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Jucui Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Haotian Lu
- International Department of High School, AFF to Nanjing Normal University Jiangning Campus, Nanjing, China
| | - Taijun Hang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Min Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
12
|
Pongrácová E, Buratti E, Romano M. Prion-like Spreading of Disease in TDP-43 Proteinopathies. Brain Sci 2024; 14:1132. [PMID: 39595895 PMCID: PMC11591745 DOI: 10.3390/brainsci14111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
TDP-43 is a ubiquitous nuclear protein that plays a central role in neurodegenerative disorders collectively known as TDP-43 proteinopathies. Under physiological conditions, TDP-43 is primarily localized to the nucleus, but in its pathological form it aggregates in the cytoplasm, contributing to neuronal death. Given its association with numerous diseases, particularly ALS and FTLD, the mechanisms underlying TDP-43 aggregation and its impact on neuronal function have been extensively investigated. However, little is still known about the spreading of this pathology from cell to cell. Recent research has unveiled the possibility that TDP-43 may possess prion-like properties. Specifically, misfolded TDP-43 aggregates can act as templates inducing conformational changes in native TDP-43 molecules and propagating the misfolded state across neural networks. This review summarizes the mounting and most recent evidence from in vitro and in vivo studies supporting the prion-like hypothesis and its underlying mechanisms. The prion-like behavior of TDP-43 has significant implications for diagnostics and therapeutics. Importantly, emerging strategies such as small molecule inhibitors, immunotherapies, and gene therapies targeting TDP-43 propagation offer promising avenues for developing effective treatments. By elucidating the mechanisms of TDP-43 spreading, we therefore aim to pave the way for novel therapies for TDP-43-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma Pongrácová
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
13
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
14
|
Shade LMP, Katsumata Y, Abner EL, Aung KZ, Claas SA, Qiao Q, Heberle BA, Brandon JA, Page ML, Hohman TJ, Mukherjee S, Mayeux RP, Farrer LA, Schellenberg GD, Haines JL, Kukull WA, Nho K, Saykin AJ, Bennett DA, Schneider JA, Ebbert MTW, Nelson PT, Fardo DW. GWAS of multiple neuropathology endophenotypes identifies new risk loci and provides insights into the genetic risk of dementia. Nat Genet 2024; 56:2407-2421. [PMID: 39379761 PMCID: PMC11549054 DOI: 10.1038/s41588-024-01939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Genome-wide association studies (GWAS) have identified >80 Alzheimer's disease and related dementias (ADRD)-associated genetic loci. However, the clinical outcomes used in most previous studies belie the complex nature of underlying neuropathologies. Here we performed GWAS on 11 ADRD-related neuropathology endophenotypes with participants drawn from the following three sources: the National Alzheimer's Coordinating Center, the Religious Orders Study and Rush Memory and Aging Project, and the Adult Changes in Thought study (n = 7,804 total autopsied participants). We identified eight independent significantly associated loci, of which four were new (COL4A1, PIK3R5, LZTS1 and APOC2). Separately testing known ADRD loci, 19 loci were significantly associated with at least one neuropathology after false-discovery rate adjustment. Genetic colocalization analyses identified pleiotropic effects and quantitative trait loci. Methylation in the cerebral cortex at two sites near APOC2 was associated with cerebral amyloid angiopathy. Studies that include neuropathology endophenotypes are an important step in understanding the mechanisms underlying genetic ADRD risk.
Collapse
Affiliation(s)
- Lincoln M P Shade
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Khine Zin Aung
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Steven A Claas
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Qi Qiao
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Anthony Brandon
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Madeline L Page
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Richard P Mayeux
- Department of Neurology, Columbia University, New York City, NY, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Walter A Kukull
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
- Department of Pathology, Rush Medical College, Chicago, IL, USA
| | - Mark T W Ebbert
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
Andrade-Guerrero J, Martínez-Orozco H, Villegas-Rojas MM, Santiago-Balmaseda A, Delgado-Minjares KM, Pérez-Segura I, Baéz-Cortés MT, Del Toro-Colin MA, Guerra-Crespo M, Arias-Carrión O, Diaz-Cintra S, Soto-Rojas LO. Alzheimer's Disease: Understanding Motor Impairments. Brain Sci 2024; 14:1054. [PMID: 39595817 PMCID: PMC11592238 DOI: 10.3390/brainsci14111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, profoundly impacts health and quality of life. While cognitive impairments-such as memory loss, attention deficits, and disorientation-predominate in AD, motor symptoms, though common, remain underexplored. These motor symptoms, including gait disturbances, reduced cardiorespiratory fitness, muscle weakness, sarcopenia, and impaired balance, are often associated with advanced stages of AD and contribute to increased mortality. Emerging evidence, however, suggests that motor symptoms may be present in earlier stages and can serve as predictive markers for AD in older adults. Despite a limited understanding of the underlying mechanisms driving these motor symptoms, several key pathways have been identified, offering avenues for further investigation. This review provides an in-depth analysis of motor symptoms in AD, discussing its progression, potential mechanisms, and therapeutic strategies. Addressing motor symptoms alongside cognitive decline may enhance patient functionality, improve quality of life, and support more comprehensive disease management strategies.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Humberto Martínez-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Karen M. Delgado-Minjares
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Mauricio T. Baéz-Cortés
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Miguel A. Del Toro-Colin
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Ciudad de México 14080, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| |
Collapse
|
16
|
Ho PC, Hsieh TC, Tsai KJ. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: From pathomechanisms to therapeutic strategies. Ageing Res Rev 2024; 100:102441. [PMID: 39069095 DOI: 10.1016/j.arr.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Proteostasis failure is a common pathological characteristic in neurodegenerative diseases. Revitalizing clearance systems could effectively mitigate these diseases. The transactivation response (TAR) DNA-binding protein 43 (TDP-43) plays a critical role as an RNA/DNA-binding protein in RNA metabolism and synaptic function. Accumulation of TDP-43 aggregates in the central nervous system is a hallmark of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Autophagy, a major and highly conserved degradation pathway, holds the potential for degrading aggregated TDP-43 and alleviating FTLD/ALS. This review explores the causes of TDP-43 aggregation, FTLD/ALS-related genes, key autophagy factors, and autophagy-based therapeutic strategies targeting TDP-43 proteinopathy. Understanding the underlying pathological mechanisms of TDP-43 proteinopathy can facilitate therapeutic interventions.
Collapse
Affiliation(s)
- Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Chi Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
17
|
Gatch AJ, Ding F. TDP-43 Promotes Amyloid-Beta Toxicity by Delaying Fibril Maturation via Direct Molecular Interaction. ACS Chem Neurosci 2024; 15:2936-2953. [PMID: 39073874 PMCID: PMC11323227 DOI: 10.1021/acschemneuro.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Amyloid-β (Aβ) is a peptide that undergoes self-assembly into amyloid fibrils, which compose the hallmark plaques observed in Alzheimer's disease (AD). TAR DNA-binding protein 43 (TDP-43) is a protein with mislocalization and aggregation implicated in amyotrophic lateral sclerosis and other neurodegenerative diseases. Recent work suggests that TDP-43 may interact with Aβ, inhibiting the formation of amyloid fibrils and worsening AD pathology, but the molecular details of their interaction remain unknown. Using all-atom discrete molecular dynamics simulations, we systematically investigated the direct molecular interaction between Aβ and TDP-43. We found that Aβ monomers were able to bind near the flexible nuclear localization sequence of the N-terminal domain (NTD) of TDP-43, adopting β-sheet rich conformations that were promoted by the interaction. Furthermore, Aβ associated with the nucleic acid binding interface of the tandem RNA recognition motifs of TDP-43 via electrostatic interactions. Using the computational peptide array method, we found the strongest C-terminal domain interaction with Aβ to be within the amyloidogenic core region of TDP-43. With experimental evidence suggesting that the NTD is necessary for inhibiting Aβ fibril growth, we also simulated the NTD with an Aβ40 fibril seed. We found that the NTD was able to strongly bind the elongation surface of the fibril seed via extensive hydrogen bonding and could also diffuse along the lateral surface via electrostatic interactions. Our results suggest that TDP-43 binding to the elongation surface, thereby sterically blocking Aβ monomer addition, is responsible for the experimentally observed inhibition of fibril growth. We conclude that TDP-43 may promote Aβ toxicity by stabilizing the oligomeric state and kinetically delaying fibril maturation.
Collapse
Affiliation(s)
- Adam J. Gatch
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
18
|
Carlos AF, Koga S, Graff-Radford NR, Baker MC, Rademakers R, Ross OA, Dickson DW, Josephs KA. Senile plaque-associated transactive response DNA-binding protein 43 in Alzheimer's disease: A case report spanning 16 years of memory loss. Neuropathology 2024; 44:115-125. [PMID: 37525358 PMCID: PMC10828111 DOI: 10.1111/neup.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
Transactive response DNA-binding protein 43 (TDP-43) pathological inclusions are found in frontotemporal lobar degeneration (FTLD-TDP) and Alzheimer's disease (AD-TDP). While clinically different, TDP-43 inclusions in FTLD-TDP and AD can have similar morphological characteristics. However, TDP-43 colocalizing with tau and forming "apple-bite" or "flame-shaped" neuronal cytoplasmic inclusions (NCI) are only found in AD-TDP. Here, we describe a case with AD and neuritic plaque-associated TDP-43. The patient was a 96-year-old right-handed Caucasian woman who had developed a slowly progressive amnestic syndrome compatible with typical AD at age 80. Genetic testing revealed APOE ε3/ε4, GRN r5848 CT, and MAPT H1/H2 genotype. Consistent with the old age at onset and long disease duration, limbic-predominant AD was found at autopsy, with high hippocampal yet low cortical neurofibrillary tangle (NFT) counts. Hippocampal and amygdala sclerosis were present. Immunohistochemistry for phospho-TDP-43 showed NCIs, dystrophic neurites, and rare neuronal intranuclear inclusions consistent with FTLD-TDP type A, as well as tau NFT-associated TDP-43 inclusions. These were frequent in the amygdala, entorhinal cortex, hippocampus, occipitotemporal gyrus, and inferior temporal gyrus but sparse in the mid-frontal cortex. Additionally, there were TDP-43-immunoreactive inclusions forming plaque-like structures in the molecular layer of the dentate fascia of the hippocampus. The presence of neuritic plaques in the same region was confirmed using thioflavin-S fluorescent microscopy and immunohistochemistry for phospho-tau. Double labeling immunofluorescence showed colocalization of TDP-43 and tau within neuritic plaques. Other pathologies included mild Lewy body pathology predominantly affecting the amygdala and olfactory bulb, aging-related tau astrogliopathy, and mixed small vessel disease (arteriolosclerosis and amyloid angiopathy) with several cortical microinfarcts. In conclusion, we have identified TDP-43 colocalizing with tau in neuritic plaques in AD, which expands the association of TDP-43 and tau in AD beyond NFTs. The clinical correlate of this plaque-associated TDP-43 appears to be a slowly progressive amnestic syndrome.
Collapse
Affiliation(s)
- Arenn F. Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32225 USA
| | | | - Matthew C. Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32225 USA
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Flanders 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Flanders 2000, Belgium
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32225 USA
| | | | | |
Collapse
|
19
|
Mitra J, Dharmalingam P, Kodavati M, Guerrero EN, Rao KS, Garruto RM, Hegde ML. Endogenous TDP-43 mislocalization in a novel knock-in mouse model reveals DNA repair impairment, inflammation, and neuronal senescence. RESEARCH SQUARE 2024:rs.3.rs-3879966. [PMID: 38343852 PMCID: PMC10854316 DOI: 10.21203/rs.3.rs-3879966/v2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
TDP-43 mislocalization and aggregation are key pathological features of motor neuron diseases (MND) including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, transgenic hTDP-43 WT or ΔNLS-overexpression animal models mainly capture late-stages TDP-43 proteinopathy, and do not provide a complete understanding of early motor neuron-specific pathology during pre-symptomatic phases. We have now addressed this shortcoming by generating a new endogenous knock-in (KI) mouse model using a combination of CRISPR/Cas9 and FLEX Cre-switch strategy for the conditional expression of a mislocalized Tdp-43ΔNLS variant of mouse Tdp-43. This variant is either expressed conditionally in whole mice or specifically in the motor neurons. The mice exhibit loss of nuclear Tdp-43 concomitant with its cytosolic accumulation and aggregation in targeted cells, leading to increased DNA double-strand breaks (DSBs), signs of inflammation and DNA damage-associated cellular senescence. Notably, unlike WT Tdp43 which functionally interacts with Xrcc4 and DNA Ligase 4, the key DSB repair proteins in the non-homologous end-joining (NHEJ) pathway, the Tdp-43ΔNLS mutant sequesters them into cytosolic aggregates, exacerbating neuronal damage in mice brain. The mutant mice also exhibit myogenic degeneration in limb muscles and distinct motor deficits, consistent with the characteristics of MND. Our findings reveal progressive degenerative mechanisms in motor neurons expressing endogenous Tdp-43ΔNLS mutant, independent of TDP-43 overexpression or other confounding etiological factors. Thus, this unique Tdp-43 KI mouse model, which displays key molecular and phenotypic features of Tdp-43 proteinopathy, offers a significant opportunity to further characterize the early-stage progression of MND and also opens avenues for developing DNA repair-targeted approaches for treating TDP-43 pathology-linked neurodegenerative diseases.
Collapse
Affiliation(s)
- Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Prakash Dharmalingam
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Erika N. Guerrero
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - K. S. Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh 522502, India
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, NY 13902, USA
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Muralidhar L. Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
20
|
Mitra J, Dharmalingam P, Kodavati MM, Guerrero EN, Rao KS, Garruto R, Hegde ML. Endogenous TDP-43 mislocalization in a novel knock-in mouse model reveals DNA repair impairment, inflammation, and neuronal senescence. RESEARCH SQUARE 2024:rs.3.rs-3879966. [PMID: 38343852 PMCID: PMC10854316 DOI: 10.21203/rs.3.rs-3879966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
TDP-43 mislocalization and aggregation are key pathological features of motor neuron diseases (MND) including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, transgenic hTDP-43 WT or ∆NLS-overexpression animal models mainly capture late-stages TDP-43 proteinopathy, and do not provide a complete understanding of early motor neuron-specific pathology during pre-symptomatic phases. We have now addressed this shortcoming by generating a new endogenous knock-in (KI) mouse model using a combination of CRISPR/Cas9 and FLEX Cre-switch strategy for the conditional expression of a mislocalized Tdp-43∆NLS variant of mouse Tdp-43. This variant is either expressed conditionally in whole mice or specifically in the motor neurons. The mice exhibit loss of nuclear Tdp-43 concomitant with its cytosolic accumulation and aggregation in targeted cells, leading to increased DNA double-strand breaks (DSBs), signs of inflammation and DNA damage-associated cellular senescence. Notably, unlike WT Tdp43 which functionally interacts with Xrcc4 and DNA Ligase 4, the key DSB repair proteins in the non-homologous end-joining (NHEJ) pathway, the Tdp-43∆NLS mutant sequesters them into cytosolic aggregates, exacerbating neuronal damage in mice brain. The mutant mice also exhibit myogenic degeneration in limb muscles and distinct motor deficits, consistent with the characteristics of MND. Our findings reveal progressive degenerative mechanisms in motor neurons expressing endogenous Tdp-43∆NLS mutant, independent of TDP-43 overexpression or other confounding etiological factors. Thus, this unique Tdp-43 KI mouse model, which displays key molecular and phenotypic features of Tdp-43 proteinopathy, offers a significant opportunity to further characterize the early-stage progression of MND and also opens avenues for developing DNA repair-targeted approaches for treating TDP-43 pathology-linked neurodegenerative diseases.
Collapse
|
21
|
Carlos AF, Sekiya H, Koga S, Gatto RG, Casey MC, Pham NTT, Sintini I, Machulda MM, Jack CR, Lowe VJ, Whitwell JL, Petrucelli L, Reichard RR, Petersen RC, Dickson DW, Josephs KA. Clinicopathologic features of a novel star-shaped transactive response DNA-binding protein 43 (TDP-43) pathology in the oldest old. J Neuropathol Exp Neurol 2023; 83:36-52. [PMID: 38086178 PMCID: PMC10746697 DOI: 10.1093/jnen/nlad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Transactive response DNA-binding protein 43 (TDP-43) pathology is categorized as type A-E in frontotemporal lobar degeneration and as type α-β in Alzheimer disease (AD) based on inclusion type. We screened amygdala slides of 131 cases with varying ages at death, clinical/neuroimaging findings, and AD neuropathologic changes for TDP-43 pathology using anti-phospho-TDP-43 antibodies. Seven cases (5%) only showed atypical TDP-43 inclusions that could not be typed. Immunohistochemistry and immunofluorescence assessed the atypical star-shaped TDP-43 pathology including its distribution, species, cellular localization, and colocalization with tau. All 7 had died at an extremely old age (median: 100 years [IQR: 94-101]) from nonneurological causes and none had dementia (4 cognitively unimpaired, 3 with amnestic mild cognitive impairment). Neuroimaging showed mild medial temporal involvement. Pathologically, the star-shaped TDP-43-positive inclusions were found in medial (subpial) amygdala and, occasionally, in basolateral regions. Hippocampus only showed TDP-43-positive neurites in the fimbria and subiculum while the frontal lobe was free of TDP-43 inclusions. The star-shaped inclusions were better detected with antibodies against N-terminal than C-terminal TDP-43. Double-labeling studies confirmed deposition of TDP-43 within astrocytes and colocalization with tau. We have identified a novel TDP-43 pathology with star-shaped morphology associated with superaging, with a homogeneous clinicopathologic picture, possibly representing a novel, true aging-related TDP-43 pathology.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rodolfo G Gatto
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Department of Psychiatry (Psychology), Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
23
|
De Marchi F, Munitic I, Vidatic L, Papić E, Rački V, Nimac J, Jurak I, Novotni G, Rogelj B, Vuletic V, Liscic RM, Cannon JR, Buratti E, Mazzini L, Hecimovic S. Overlapping Neuroimmune Mechanisms and Therapeutic Targets in Neurodegenerative Disorders. Biomedicines 2023; 11:2793. [PMID: 37893165 PMCID: PMC10604382 DOI: 10.3390/biomedicines11102793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Many potential immune therapeutic targets are similarly affected in adult-onset neurodegenerative diseases, such as Alzheimer's (AD) disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD), as well as in a seemingly distinct Niemann-Pick type C disease with primarily juvenile onset. This strongly argues for an overlap in pathogenic mechanisms. The commonly researched immune targets include various immune cell subsets, such as microglia, peripheral macrophages, and regulatory T cells (Tregs); the complement system; and other soluble factors. In this review, we compare these neurodegenerative diseases from a clinical point of view and highlight common pathways and mechanisms of protein aggregation, neurodegeneration, and/or neuroinflammation that could potentially lead to shared treatment strategies for overlapping immune dysfunctions in these diseases. These approaches include but are not limited to immunisation, complement cascade blockade, microbiome regulation, inhibition of signal transduction, Treg boosting, and stem cell transplantation.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Eliša Papić
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Igor Jurak
- Molecular Virology Laboratory, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Gabriela Novotni
- Department of Cognitive Neurology and Neurodegenerative Diseases, University Clinic of Neurology, Medical Faculty, University Ss. Cyril and Methodius, 91701 Skoplje, North Macedonia;
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vladimira Vuletic
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Rajka M. Liscic
- Department of Neurology, Sachsenklinik GmbH, Muldentalweg 1, 04828 Bennewitz, Germany;
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy;
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
24
|
Kulichikhin KY, Malikova OA, Zobnina AE, Zalutskaya NM, Rubel AA. Interaction of Proteins Involved in Neuronal Proteinopathies. Life (Basel) 2023; 13:1954. [PMID: 37895336 PMCID: PMC10608209 DOI: 10.3390/life13101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Proteinopathy is characterized by the accumulation of aggregates of a specific protein in a target organ, tissue, or cell. The aggregation of the same protein can cause different pathologies as single protein can adopt various amyloidogenic, disease-specific conformations. The conformation governs the interaction of amyloid aggregates with other proteins that are prone to misfolding and, thus, determines disease-specific spectrum of concomitant pathologies. In this regard, a detailed description of amyloid protein conformation as well as spectrum of its interaction with other proteins become a key point for drafting of precise description of the disease. The majority of clinical cases of neuronal proteinopathies is caused by the aggregation of rather limited range of amyloidogenic proteins. Here, we provided the characterization of pathologies, related to the aggregation of amyloid β peptide, tau protein, α-synuclein, TDP-43, and amylin, giving a short description of pathologies themselves, recent advances in elucidation of misfolded protein conformation, with emphasis on those protein aggregates extracted from biological samples, what is known about the interaction of this proteins, and the influence of this interaction on the progression of underlying disease and comorbidities.
Collapse
Affiliation(s)
- Konstantin Y. Kulichikhin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Oksana A. Malikova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Anastasia E. Zobnina
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Natalia M. Zalutskaya
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 192019 St. Petersburg, Russia;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| |
Collapse
|
25
|
Vadukul D, Papp M, Thrush RJ, Wang J, Jin Y, Arosio P, Aprile FA. α-Synuclein Aggregation Is Triggered by Oligomeric Amyloid-β 42 via Heterogeneous Primary Nucleation. J Am Chem Soc 2023; 145:18276-18285. [PMID: 37556728 PMCID: PMC10450681 DOI: 10.1021/jacs.3c03212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 08/11/2023]
Abstract
An increasing number of cases where amyloids of different proteins are found in the same patient are being reported. This observation complicates diagnosis and clinical intervention. Amyloids of the amyloid-β peptide or the protein α-synuclein are traditionally considered hallmarks of Alzheimer's and Parkinson's diseases, respectively. However, the co-occurrence of amyloids of these proteins has also been reported in patients diagnosed with either disease. Here, we show that soluble species containing amyloid-β can induce the aggregation of α-synuclein. Fibrils formed under these conditions are solely composed of α-synuclein to which amyloid-β can be found associated but not as part of the core of the fibrils. Importantly, by global kinetic analysis, we found that the aggregation of α-synuclein under these conditions occurs via heterogeneous primary nucleation, triggered by soluble aggregates containing amyloid-β.
Collapse
Affiliation(s)
- Devkee
M. Vadukul
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Marcell Papp
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Rebecca J. Thrush
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Jielei Wang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Yiyun Jin
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Francesco A. Aprile
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
26
|
Bustos LM, Sattler R. The Fault in Our Astrocytes - cause or casualties of proteinopathies of ALS/FTD and other neurodegenerative diseases? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1075805. [PMID: 39165755 PMCID: PMC11334001 DOI: 10.3389/fmmed.2023.1075805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 08/22/2024]
Abstract
Many neurodegenerative diseases fall under the class of diseases known as proteinopathies, whereby the structure and localization of specific proteins become abnormal. These aberrant proteins often aggregate within cells which disrupts vital homeostatic and physiological cellular functions, ultimately contributing to cell death. Although neurodegenerative disease research is typically neurocentric, there is evidence supporting the role of non-neuronal cells in the pathogenesis of these diseases. Specifically, the role of astrocytes in neurodegenerative diseases has been an ever-growing area of research. Astrocytes are one of the most abundant cell types in the central nervous system (CNS) and provide an array of essential homeostatic functions that are disrupted in neurodegenerative diseases. Astrocytes can exhibit a reactive phenotype that is characterized by molecular changes, as well as changes in morphology and function. In neurodegenerative diseases, there is potential for reactive astrocytes to assume a loss-of-function phenotype in homeostatic operations such as synapse maintenance, neuronal metabolic support, and facilitating cell-cell communication between glia and neurons. They are also able to concurrently exhibit gain-of-function phenotypes that can be destructive to neural networks and the astrocytes themselves. Additionally, astrocytes have been shown to internalize disease related proteins and reflect similar or exacerbated pathology that has been observed in neurons. Here, we review several major neurodegenerative disease-specific proteinopathies and what is known about their presence in astrocytes and the potential consequences regarding cell and non-cell autonomous neurodegeneration.
Collapse
Affiliation(s)
- Lynette M. Bustos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Barrow Neurological Institute, Phoenix, AZ, United States
| | - Rita Sattler
- Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
27
|
Lin NH, Goh A, Lin SH, Chuang KA, Chang CH, Li MH, Lu CH, Chen WY, Wei PH, Pan IH, Perng MD, Wen SF. Neuroprotective Effects of a Multi-Herbal Extract on Axonal and Synaptic Disruption in Vitro and Cognitive Impairment in Vivo. J Alzheimers Dis Rep 2023; 7:51-76. [PMID: 36777330 PMCID: PMC9912829 DOI: 10.3233/adr-220056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Background Alzheimer's disease (AD) is a multifactorial disorder characterized by cognitive decline. Current available therapeutics for AD have limited clinical benefit. Therefore, preventive therapies for interrupting the development of AD are critically needed. Molecules targeting multifunction to interact with various pathlogical components have been considered to improve the therapeutic efficiency of AD. In particular, herbal medicines with multiplicity of actions produce cognitive benefits on AD. Bugu-M is a multi-herbal extract composed of Ganoderma lucidum (Antler form), Nelumbo nucifera Gaertn., Ziziphus jujuba Mill., and Dimocarpus longan, with the ability of its various components to confer resilience to cognitive deficits. Objective To evaluate the potential of Bugu-M on amyloid-β (Aβ) toxicity and its in vitro mechanisms and on in vivo cognitive function. Methods We illustrated the effect of Bugu-M on Aβ25-35-evoked toxicity as well as its possible mechanisms to diminish the pathogenesis of AD in rat cortical neurons. For cognitive function studies, 2-month-old female 3×Tg-AD mice were administered 400 mg/kg Bugu-M for 30 days. Behavioral tests were performed to assess the efficacy of Bugu-M on cognitive impairment. Results In primary cortical neuronal cultures, Bugu-M mitigated Aβ-evoked toxicity by reducing cytoskeletal aberrations and axonal disruption, restoring presynaptic and postsynaptic protein expression, suppressing mitochondrial damage and apoptotic signaling, and reserving neurogenic and neurotrophic factors. Importantly, 30-day administration of Bugu-M effectively prevented development of cognitive impairment in 3-month-old female 3×Tg-AD mice. Conclusion Bugu-M might be beneficial in delaying the progression of AD, and thus warrants consideration for its preventive potential for AD.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Angela Goh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shyh-Horng Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kai-An Chuang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Hsuan Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Han Li
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chu-Hsun Lu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wen-Yin Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Pei-Hsuan Wei
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - I-Hong Pan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,
School of Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| | - Shu-Fang Wen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| |
Collapse
|
28
|
Weng YT, Chang YM, Chern Y. The Impact of Dysregulated microRNA Biogenesis Machinery and microRNA Sorting on Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24043443. [PMID: 36834853 PMCID: PMC9959302 DOI: 10.3390/ijms24043443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs involved in the differentiation, development, and function of cells in the body by targeting the 3'- untranslated regions (UTR) of mRNAs for degradation or translational inhibition. miRNAs not only affect gene expression inside the cells but also, when sorted into exosomes, systemically mediate the communication between different types of cells. Neurodegenerative diseases (NDs) are age-associated, chronic neurological diseases characterized by the aggregation of misfolded proteins, which results in the progressive degeneration of selected neuronal population(s). The dysregulation of biogenesis and/or sorting of miRNAs into exosomes was reported in several NDs, including Huntington's disease (HD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Many studies support the possible roles of dysregulated miRNAs in NDs as biomarkers and therapeutic treatments. Understanding the molecular mechanisms underlying the dysregulated miRNAs in NDs is therefore timely and important for the development of diagnostic and therapeutic interventions. In this review, we focus on the dysregulated miRNA machinery and the role of RNA-binding proteins (RBPs) in NDs. The tools that are available to identify the target miRNA-mRNA axes in NDs in an unbiased manner are also discussed.
Collapse
|
29
|
Lipoprotein Metabolism, Protein Aggregation, and Alzheimer's Disease: A Literature Review. Int J Mol Sci 2023; 24:ijms24032944. [PMID: 36769268 PMCID: PMC9918279 DOI: 10.3390/ijms24032944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The physiopathology of AD is well described by the presence of two neuropathological features: amyloid plaques and tau neurofibrillary tangles. In the last decade, neuroinflammation and cellular stress have gained importance as key factors in the development and pathology of AD. Chronic cellular stress occurs in degenerating neurons. Stress Granules (SGs) are nonmembranous organelles formed as a response to stress, with a protective role; however, SGs have been noted to turn into pathological and neurotoxic features when stress is chronic, and they are related to an increased tau aggregation. On the other hand, correct lipid metabolism is essential to good function of the brain; apolipoproteins are highly associated with risk of AD, and impaired cholesterol efflux and lipid transport are associated with an increased risk of AD. In this review, we provide an insight into the relationship between cellular stress, SGs, protein aggregation, and lipid metabolism in AD.
Collapse
|
30
|
Ge WY, Deng X, Shi WP, Lin WJ, Chen LL, Liang H, Wang XT, Zhang TD, Zhao FZ, Guo WH, Yin DC. Amyloid Protein Cross-Seeding Provides a New Perspective on Multiple Diseases In Vivo. Biomacromolecules 2023; 24:1-18. [PMID: 36507729 DOI: 10.1021/acs.biomac.2c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid protein cross-seeding is a peculiar phenomenon of cross-spreading among different diseases. Unlike traditional infectious ones, diseases caused by amyloid protein cross-seeding are spread by misfolded proteins instead of pathogens. As a consequence of the interactions among misfolded heterologous proteins or polypeptides, amyloid protein cross-seeding is considered to be the crucial cause of overlapping pathological transmission between various protein misfolding disorders (PMDs) in multiple tissues and cells. Here, we briefly review the phenomenon of cross-seeding among amyloid proteins. As an interesting example worth mentioning, the potential links between the novel coronavirus pneumonia (COVID-19) and some neurodegenerative diseases might be related to the amyloid protein cross-seeding, thus may cause an undesirable trend in the incidence of PMDs around the world. We then summarize the theoretical models as well as the experimental techniques for studying amyloid protein cross-seeding. Finally, we conclude with an outlook on the challenges and opportunities for basic research in this field. Cross-seeding of amyloid opens up a new perspective in our understanding of the process of amyloidogenesis, which is crucial for the development of new treatments for diseases. It is therefore valuable but still challenging to explore the cross-seeding system of amyloid protein as well as to reveal the structural basis and the intricate processes.
Collapse
Affiliation(s)
- Wan-Yi Ge
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Juan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huan Liang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Feng-Zhu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Non-commissioned Officer School, Army Medical University, Shijiazhuang 050081, China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
31
|
Molecular Investigations of Protein Aggregation in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 24:ijms24010704. [PMID: 36614144 PMCID: PMC9820914 DOI: 10.3390/ijms24010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder characterized by selective loss of lower and upper motor neurons (MNs) in the brain and spinal cord, resulting in paralysis and eventually death due to respiratory insufficiency. Although the fundamental physiological mechanisms underlying ALS are not completely understood, the key neuropathological hallmarks of ALS pathology are the aggregation and accumulation of ubiquitinated protein inclusions within the cytoplasm of degenerating MNs. Herein, we discuss recent insights into the molecular mechanisms that lead to the accumulation of protein aggregates in ALS. This will contribute to a better understanding of the pathophysiology of the disease and may open novel avenues for the development of therapeutic strategies.
Collapse
|
32
|
Duong MT, Wolk DA. Limbic-Predominant Age-Related TDP-43 Encephalopathy: LATE-Breaking Updates in Clinicopathologic Features and Biomarkers. Curr Neurol Neurosci Rep 2022; 22:689-698. [PMID: 36190653 PMCID: PMC9633415 DOI: 10.1007/s11910-022-01232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently defined neurodegenerative disease characterized by amnestic phenotype and pathological inclusions of TAR DNA-binding protein 43 (TDP-43). LATE is distinct from rarer forms of TDP-43 diseases such as frontotemporal lobar degeneration with TDP-43 but is also a common copathology with Alzheimer's disease (AD) and cerebrovascular disease and accelerates cognitive decline. LATE contributes to clinicopathologic heterogeneity in neurodegenerative diseases, so it is imperative to distinguish LATE from other etiologies. RECENT FINDINGS Novel biomarkers for LATE are being developed with magnetic resonance imaging (MRI) and positron emission tomography (PET). When cooccurring with AD, LATE exhibits identifiable patterns of limbic-predominant atrophy on MRI and hypometabolism on 18F-fluorodeoxyglucose PET that are greater than expected relative to levels of local AD pathology. Efforts are being made to develop TDP-43-specific radiotracers, molecularly specific biofluid measures, and genomic predictors of TDP-43. LATE is a highly prevalent neurodegenerative disease distinct from previously characterized cognitive disorders.
Collapse
Affiliation(s)
- Michael Tran Duong
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Chiu PY, Yang FC, Chiu MJ, Lin WC, Lu CH, Yang SY. Relevance of plasma biomarkers to pathologies in Alzheimer's disease, Parkinson's disease and frontotemporal dementia. Sci Rep 2022; 12:17919. [PMID: 36289355 PMCID: PMC9605966 DOI: 10.1038/s41598-022-22647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/18/2022] [Indexed: 01/20/2023] Open
Abstract
Amyloid plaques and tau tangles are pathological hallmarks of Alzheimer's disease (AD). Parkinson's disease (PD) results from the accumulation of α-synuclein. TAR DNA-binding protein (TDP-43) and total tau protein (T-Tau) play roles in FTD pathology. All of the pathological evidence was found in the biopsy. However, it is impossible to perform stein examinations in clinical practice. Assays of biomarkers in plasma would be convenient. It would be better to investigate the combinations of various biomarkers in AD, PD and FTD. Ninety-one subjects without neurodegenerative diseases, 76 patients with amnesic mild cognitive impairment (aMCI) or AD dementia, combined as AD family, were enrolled. One hundred and nine PD patients with normal cognition (PD-NC) or dementia (PDD), combined as PD family, were enrolled. Twenty-five FTD patients were enrolled for assays of plasma amyloid β 1-40 (Aβ1-40), Aβ1-42, T-Tau, α-synuclein and TDP-43 using immunomagnetic reduction (IMR). The results show that Aβs and T-Tau are major domains in AD family. α-synuclein is highly dominant in PD family. FTD is closely associated with TDP-43 and T-Tau. The dominant plasma biomarkers in AD family, PD family and FTD are consistent with pathology. This implies that plasma biomarkers are promising for precise and differential assessments of AD, PD and FTD in clinical practice.
Collapse
Affiliation(s)
- Pai-Yi Chiu
- grid.452796.b0000 0004 0634 3637Department of Neurology, Show Chwan Memorial Hospital, Chunghwa, 500 Taiwan ,MR-Guided Focus Ultrasound Center, Chang Bin Shaw Chwan Memorial Hospital, Changhwa, 505 Taiwan
| | - Fu-Chi Yang
- grid.278244.f0000 0004 0638 9360Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Ming-Jang Chiu
- grid.19188.390000 0004 0546 0241Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100 Taiwan ,grid.19188.390000 0004 0546 0241Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 100 Taiwan ,grid.19188.390000 0004 0546 0241Department of Psychology, National Taiwan University, Taipei, 106 Taiwan ,grid.19188.390000 0004 0546 0241Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106 Taiwan
| | - Wei-Che Lin
- grid.145695.a0000 0004 1798 0922Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833 Taiwan
| | - Cheng-Hsien Lu
- grid.145695.a0000 0004 1798 0922Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833 Taiwan
| | | |
Collapse
|
34
|
Chiang WC, Fang YS, Lye YS, Weng TY, Ganesan K, Huang SH, Chang LY, Chou SC, Chen YR. Hyperphosphorylation-Mimetic TDP-43 Drives Amyloid Formation and Possesses Neuronal Toxicity at the Oligomeric Stage. ACS Chem Neurosci 2022; 13:2599-2612. [PMID: 36007056 DOI: 10.1021/acschemneuro.1c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TDP-43 proteinopathies cover a range of neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Hyperphosphorylated TDP-43 was found within the inclusion bodies in disease lesions; however, the role of hyperphosphorylation and the toxic species are still ambiguous. To characterize the hyperphosphorylation effect of TDP-43, here, we employed five serine mutations implicated in the diseases at serine locations 379, 403, 404, 409, and 410 in the C-terminus to aspartate (S5D) and to alanine (S5A). We systematically characterized the conformation, liquid-liquid phase separation, oligomerization, and fibrillization of TDP-43 variants. Results revealed that the recombinant TDP-43 variants readily formed structurally similar spherical oligomers, as evidenced by circular dichroism spectroscopy, fluorescence spectroscopy, the TDP-43 oligomer-specific antibody assay, dynamic light scattering, and transmission electron microscopy. After incubation, only the phosphor-mimic S5D TDP-43 formed thioflavin-positive amyloid fibrils, whereas wild-type and S5A TDP-43 formed amorphous aggregates. We also examined membrane disruption, the cytotoxicity of human neuroblastoma, and the synaptic loss of primary neurons induced by oligomers and large aggregates of TDP-43. The results showed that all oligomeric TDP-43 variants were toxic regardless of hyperphosphorylation, but the fibrils and amorphous aggregates were not. Overall, our results demonstrated the hyperphosphorylation effect on fibril formation and the toxicity attributed from TDP-43 oligomers. This study facilitates the understanding and therapeutic development for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Wan-Chin Chiang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Yu-Sheng Fang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Kuang-Fu Rd., Sec. 2., Hsinchu 30013, Taiwan
| | - Yuh Shen Lye
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Yu Weng
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Kiruthika Ganesan
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Shih-Han Huang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Lan-Yun Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Shih-Chieh Chou
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Kuang-Fu Rd., Sec. 2., Hsinchu 30013, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
35
|
Babiloni C, Noce G, Di Bonaventura C, Lizio R, Eldellaa A, Tucci F, Salamone EM, Ferri R, Soricelli A, Nobili F, Famà F, Arnaldi D, Palma E, Cifelli P, Marizzoni M, Stocchi F, Bruno G, Di Gennaro G, Frisoni GB, Del Percio C. Alzheimer's Disease with Epileptiform EEG Activity: Abnormal Cortical Sources of Resting State Delta Rhythms in Patients with Amnesic Mild Cognitive Impairment. J Alzheimers Dis 2022; 88:903-931. [PMID: 35694930 DOI: 10.3233/jad-220442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with amnesic mild cognitive impairment due to Alzheimer's disease (ADMCI) typically show a "slowing" of cortical resting-state eyes-closed electroencephalographic (rsEEG) rhythms. Some of them also show subclinical, non-convulsive, and epileptiform EEG activity (EEA) with an unclear relationship with that "slowing." OBJECTIVE Here we tested the hypothesis that the "slowing" of rsEEG rhythms is related to EEA in ADMCI patients. METHODS Clinical and instrumental datasets in 62 ADMCI patients and 38 normal elderly (Nold) subjects were available in a national archive. No participant had received a clinical diagnosis of epilepsy. The eLORETA freeware estimated rsEEG cortical sources. The area under the receiver operating characteristic curve (AUROCC) indexed the accuracy of eLORETA solutions in the classification between ADMCI-EEA and ADMCI-noEEA individuals. RESULTS EEA was observed in 15% (N = 8) of the ADMCI patients. The ADMCI-EEA group showed: 1) more abnormal Aβ 42 levels in the cerebrospinal fluid as compared to the ADMCI-noEEA group and 2) higher temporal and occipital delta (<4 Hz) rsEEG source activities as compared to the ADMCI-noEEA and Nold groups. Those source activities showed moderate accuracy (AUROCC = 0.70-0.75) in the discrimination between ADMCI-noEEA versus ADMCI-EEA individuals. CONCLUSION It can be speculated that in ADMCI-EEA patients, AD-related amyloid neuropathology may be related to an over-excitation in neurophysiological low-frequency (delta) oscillatory mechanisms underpinning cortical arousal and quiet vigilance.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| | | | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Neurosciences/Mental Health, Sapienza University of Rome, Rome, Italy
| | | | - Ali Eldellaa
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Enrico M Salamone
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Epilepsy Unit, Department of Neurosciences/Mental Health, Sapienza University of Rome, Rome, Italy
| | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Flavio Nobili
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy.,Department of Neuroscience (DiNOGMI), University of Genoa, Genoa, Italy
| | - Francesco Famà
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy
| | - Pierangelo Cifelli
- IRCCS Neuromed, Pozzilli, (IS), Italy.,Department of Applied and Biotechnological Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Giovanni B Frisoni
- Department of Applied and Biotechnological Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
36
|
Chang YS, Lin CL, Lee CW, Lin HC, Wu YT, Shih YH. Exercise Normalized the Hippocampal Renin-Angiotensin System and Restored Spatial Memory Function, Neurogenesis, and Blood-Brain Barrier Permeability in the 2K1C-Hypertensive Mouse. Int J Mol Sci 2022; 23:ijms23105531. [PMID: 35628344 PMCID: PMC9146761 DOI: 10.3390/ijms23105531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hypertension is associated with blood-brain barrier alteration and brain function decline. Previously, we established the 2-kidney,1-clip (2K1C) hypertensive mice model by renin-angiotensin system (RAS) stimulating. We found that 2K1C-induced hypertension would impair hippocampus-related memory function and decrease adult hippocampal neurogenesis. Even though large studies have investigated the mechanism of hypertension affecting brain function, there remains a lack of efficient ways to halt this vicious effect. The previous study indicated that running exercise ameliorates neurogenesis and spatial memory function in aging mice. Moreover, studies showed that exercise could normalize RAS activity, which might be associated with neurogenesis impairment. Thus, we hypothesize that running exercise could ameliorate neurogenesis and spatial memory function impairment in the 2K1C-hypertension mice. In this study, we performed 2K1C surgery on eight-weeks-old C57BL/6 mice and put them on treadmill exercise one month after the surgery. The results indicate that running exercise improves the spatial memory and neurogenesis impairment of the 2K1C-mice. Moreover, running exercise normalized the activated RAS and blood-brain barrier leakage of the hippocampus, although the blood pressure was not decreased. In conclusion, running exercise could halt hypertension-induced brain impairment through RAS normalization.
Collapse
Affiliation(s)
- Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan;
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan;
- Department of Neurosurgery, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan 70043, Taiwan;
| | - Han-Chen Lin
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
| | - Yi-Ting Wu
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung County 92641, Taiwan;
| | - Yao-Hsiang Shih
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2144)
| |
Collapse
|
37
|
Abdul Aziz M, Md Ashraf G, Safiqul Islam M. Link of BIN1, CLU and IDE gene polymorphisms with the susceptibility of Alzheimer's disease: evidence from a meta-analysis. Curr Alzheimer Res 2022; 19:302-316. [PMID: 35546756 DOI: 10.2174/1567205019666220511140955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative disorder. The association of BIN1, CLU and IDE genetic polymorphisms with AD risk have been evaluated overtimes that produced conflicting outcomes. OBJECTIVE We performed this meta-analysis to investigate the contribution of BIN1 (rs744373 and rs7561528), CLU (rs11136000 and rs9331888), and IDE (rs1887922) polymorphisms to AD risk. METHODS From a systemic literature search up to July 15, 2021, we included 25 studies with rs744373, 16 studies with rs7561528, 37 studies with rs11136000, 16 studies with rs9331888, and 4 studies with rs1887922. To analyze the correlation, we constructed seven genetic models that used odds ratio and 95% confidence intervals. We used RevMan 5.4 for meta-analysis. RESULTS Our study suggests that BIN1 rs744373 is associated with a significantly increased risk of AD in five genetic models (OR>1). Again, CLU rs11136000 showed reduced association in all genetic models (OR<1). CLU rs9331888 revealed an increased association in two models (OR>1). The IDE rs1887922 showed significantly increased risk in four models (OR>1). From subgroup analysis, a significantly increased risk of AD was observed in Caucasians and Asians for BIN1 rs744373. Again, BIN1 rs7561528 showed a significantly enhanced risk of AD only in Caucasians. CLU rs11136000 showed significantly reduced risk in Caucasians but rs9331888 showed increased risk in the same ethnicity. CONCLUSION Our meta-analysis confirms the association of BIN1 rs744373, CLU rs9331888 and IDE rs1887922 polymorphisms with an increased risk of AD, especially in Caucasians. Again, CLU rs11136000 is associated with reduced AD risk in the overall population and Caucasians.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka-1205, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Safiqul Islam
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur-3814, Noakhali, Bangladesh
| |
Collapse
|
38
|
Chen WF, Shih YH, Liu HC, Cheng CI, Chang CI, Chen CY, Lin IP, Lin MY, Lee CH. 6-methoxyflavone suppresses neuroinflammation in lipopolysaccharide- stimulated microglia through the inhibition of TLR4/MyD88/p38 MAPK/NF-κB dependent pathways and the activation of HO-1/NQO-1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154025. [PMID: 35272244 DOI: 10.1016/j.phymed.2022.154025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Microglia-related neuroinflammation is associated with a variety of neurodegenerative diseases. Flavonoids have demonstrated different pharmacological effects, such as antioxidation, neuroprotection and anti-inflammation However, the effect of flavonoid 6-methoxyflavone (6-MeOF) on microglia-mediated neuroinflammation remain unknown. PURPOSE The current study aim to study the antineuroinflammatory effects of 6-MeOF in lipopolysaccharide- (LPS-) induced microglia in vitro and in vivo. METHODS Pretreatment of BV2 microglia cells with 6-MeOF for 1 h then stimulated with LPS (100 ng/ml) for 24 h. The expression levels of pro-inflammatory factors, NO and reactive oxygen species (ROS) were performed by the enzyme-linked immunosorbent assay (ELISA), Griess assay and flow cytometry. Western blotting was used to assess MAPK, NF-κB signal transducer and antioxidant enzymes-related proteins. Analysis of ROS and microglial morphology was confirmed in the zebrafish and mice brain, respectively. RESULTS Our results demonstrated that 6-MeOF dose-dependently prevent cell death and decreased the levels of pro-inflammatory mediators in LPS-stimulated BV2 microglia cells. Phosphorylated NF-κB/IκB and TLR4/MyD88/p38 MAPK/JNK proteins after exposure to 6-MeOF was suppressed in LPS-activated BV-2 microglial cells. 6-MeOF also presented antioxidant activity by reduction of NO, ROS, iNOS and COX-2 and the induction of the level of HO-1 and NQO1 expressions in LPS-activated BV2 microglial cells. Furthermore, we demonstrated that 6-MeOF inhibited LPS-induced NO generation in an experimental zebrafish model and prevent the LPS-induced microgliosis in the prefrontal cortex and substantia nigra of mice. CONCLUSION These results explored that 6-MeOF possesses potential as anti-inflammatory and anti-oxidant agents against microglia-associated neuroinflammatory disorders.
Collapse
Affiliation(s)
- Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123 Dapi Road, Niaosong District, Kaohsiung, 83300, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70 Lianhai Road, Gushan District, Kaohsiung City, 80424, Taiwan
| | - Yao-Hsiang Shih
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Sanmin District, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung, 80756, Taiwan
| | - Hsuan-Chih Liu
- Department of Orthopedics, Chi Mei medical center, Liouying, Tainan, 73659, Taiwan
| | - Cheng-I Cheng
- Department of Medical Imaging, Sin-Lau Medical Foundation the Presbyterian Church, Tainan, 70142, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Center for Active Natural Products Development, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung, 83102, Taiwan
| | - In-Pin Lin
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung, 80708, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
39
|
Latimer CS, Stair JG, Hincks JC, Currey HN, Bird TD, Keene CD, Kraemer BC, Liachko NF. TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans. Dis Model Mech 2022; 15:275149. [PMID: 35178571 PMCID: PMC9066518 DOI: 10.1242/dmm.049323] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although amyloid β (Aβ) and tau aggregates define the neuropathology of Alzheimer's disease (AD), TDP-43 has recently emerged as a co-morbid pathology in more than half of patients with AD. Individuals with concomitant Aβ, tau and TDP-43 pathology experience accelerated cognitive decline and worsened brain atrophy, but the molecular mechanisms of TDP-43 neurotoxicity in AD are unknown. Synergistic interactions among Aβ, tau and TDP-43 may be responsible for worsened disease outcomes. To study the biology underlying this process, we have developed new models of protein co-morbidity using the simple animal Caenorhabditis elegans. We demonstrate that TDP-43 specifically enhances tau but not Aβ neurotoxicity, resulting in neuronal dysfunction, pathological tau accumulation and selective neurodegeneration. Furthermore, we find that synergism between tau and TDP-43 is rescued by loss-of-function of the robust tau modifier sut-2. Our results implicate enhanced tau neurotoxicity as the primary driver underlying worsened clinical and neuropathological phenotypes in AD with TDP-43 pathology, and identify cell-type specific sensitivities to co-morbid tau and TDP-43. Determining the relationship between co-morbid TDP-43 and tau is crucial to understand, and ultimately treat, mixed pathology AD.
Collapse
Affiliation(s)
- Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jade G. Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Joshua C. Hincks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather N. Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Thomas D. Bird
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Neurology, University of Washington, Seattle, WA 98104, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C. Kraemer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA,Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Author for correspondence ()
| |
Collapse
|
40
|
Lye YS, Chen YR. TAR DNA-binding protein 43 oligomers in physiology and pathology. IUBMB Life 2022; 74:794-811. [PMID: 35229461 DOI: 10.1002/iub.2603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA/DNA-binding protein involved in RNA regulation and diseases. In 2006, TDP-43 inclusions were found in the disease lesions of several neurodegenerative diseases. It is the pathological hallmark in both amyotrophic lateral sclerosis and frontotemporal lobar dementia. It also presents in a large portion of patients with Alzheimer's disease. TDP-43 is prone to aggregate; however, the role of TDP-43 oligomers remains poorly understood in both physiological and pathological conditions. In this review, we emphasize the role of oligomeric TDP-43 in both physiological and pathological conditions and discuss the potential mechanisms of oligomer formation. Finally, we suggest therapeutic strategies against the TDP-43 oligomers in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuh Shen Lye
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
41
|
TDP-43 Pathology and Prionic Behavior in Human Cellular Models of Alzheimer’s Disease Patients. Biomedicines 2022; 10:biomedicines10020385. [PMID: 35203594 PMCID: PMC8962248 DOI: 10.3390/biomedicines10020385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder for which there is currently no effective treatment. Despite advances in the molecular pathology of the characteristic histopathological markers of the disease (tau protein and β-amyloid), their translation to the clinic has not provided the expected results. Increasing evidences have demonstrated the presence of aggregates of TDP-43 (TAR DNA binding protein 43) in the postmortem brains of patients diagnosed with AD. The present research is focused on of the study of the pathological role of TDP-43 in AD. For this purpose, immortalized lymphocytes samples from patients diagnosed with different severity of sporadic AD were used and the TDP-43 pathology was analyzed against controls, looking for differences in their fragmentation, phosphorylation and cellular location using Western blot and immunocytochemical techniques. The results revealed an increase in TDP-43 fragmentation, as well as increased phosphorylation and aberrant localization of TDP-43 in the cytosolic compartment of lymphocytes of patients diagnosed with severe AD. Moreover, a fragment of approximately 25 KD was found in the extracellular medium of cells derived from severe AD individuals that seem to have prion-like characteristics. We conclude that TDP-43 plays a key role in AD pathogenesis and its cell to cell propagation.
Collapse
|
42
|
Wang D, Zhao H, Shen Y, Chen Q. A Variety of Nucleic Acid Species Are Sensed by cGAS, Implications for Its Diverse Functions. Front Immunol 2022; 13:826880. [PMID: 35185917 PMCID: PMC8854490 DOI: 10.3389/fimmu.2022.826880] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) recognizes double-stranded DNA (dsDNA) derived from invading pathogens and induces an interferon response via activation of the key downstream adaptor protein stimulator of interferon genes (STING). This is the most classic biological function of the cGAS-STING signaling pathway and is critical for preventing pathogenic microorganism invasion. In addition, cGAS can interact with various types of nucleic acids, including cDNA, DNA : RNA hybrids, and circular RNA, to contribute to a diverse set of biological functions. An increasing number of studies have revealed an important relationship between the cGAS-STING signaling pathway and autophagy, cellular senescence, antitumor immunity, inflammation, and autoimmune diseases. This review details the mechanism of action of cGAS as it interacts with different types of nucleic acids, its rich biological functions, and the potential for targeting this pathway to treat various diseases.
Collapse
Affiliation(s)
| | | | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| |
Collapse
|
43
|
Prater KE, Latimer CS, Jayadev S. Glial TDP-43 and TDP-43 induced glial pathology, focus on neurodegenerative proteinopathy syndromes. Glia 2022; 70:239-255. [PMID: 34558120 PMCID: PMC8722378 DOI: 10.1002/glia.24096] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Since its discovery in 2006, TAR DNA binding protein 43 (TDP-43) has driven rapidly evolving research in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic predominant age-related TDP-43 encephalopathy (LATE). TDP-43 mislocalization or aggregation is the hallmark of TDP-43 proteinopathy and is associated with cognitive impairment that can be mapped to its regional deposition. Studies in human tissue and model systems demonstrate that TDP-43 may potentiate other proteinopathies such as the amyloid or tau pathology seen in Alzheimer's Disease (AD) in the combination of AD+LATE. Despite this growing body of literature, there remain gaps in our understanding of whether there is heterogeneity in TDP-43 driven mechanisms across cell types. The growing observations of correlation between TDP-43 proteinopathy and glial pathology suggest a relationship between the two, including pathogenic glial cell-autonomous dysfunction and dysregulated glial immune responses to neuronal TDP-43. In this review, we discuss the available data on TDP-43 in glia within the context of the neurodegenerative diseases ALS and FTLD and highlight the current lack of information about glial TDP-43 interaction in AD+LATE. TDP-43 has proven to be a significant modulator of cognitive and neuropathological outcomes. A deeper understanding of its role in diverse cell types may provide relevant insights into neurodegenerative syndromes.
Collapse
Affiliation(s)
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195,Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
44
|
A Microplate-Based Approach to Map Interactions between TDP-43 and α-Synuclein. J Clin Med 2022; 11:jcm11030573. [PMID: 35160025 PMCID: PMC8836581 DOI: 10.3390/jcm11030573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Trans-active response DNA-binding protein (TDP-43) is a multifunctional regulatory protein, whose abnormal deposition in neurons was linked to debilitating neurodegenerative diseases, such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration, Limbic-predominant age-related TDP-43 encephalopathy, and Alzheimer’s disease with a secondary pathology. Several reports showed that TDP-43 proteinopathy as a comorbidity can form aggregates with other pathological proteins. The co-deposition of alpha synuclein and TDP-43 inclusions was previously reported in glial cells and by observing TDP-43 proteinopathy in Lewy body disease. In this study, it was hypothesized that alpha synuclein and TDP-43 may co-aggregate, resulting in comorbid synucleinopathy and TDP-43 proteinopathy. A solid-phase microplate-based immunoassay was used to map out the epitopes of anti-TDP-43 antibodies and locate the interaction of TDP-43 with α-synuclein. A region of the low complexity domain of TDP-43 (aa 311–314) was shown to interact with full-length α-synuclein. Conversely, full-length TDP-43 was shown to bind to the non-amyloid beta component of α-synuclein. Using in silico sequence-based prediction, the affinity and dissociation constant of full-length TDP-43 and α-synuclein were calculated to be −10.83 kcal/mol and 1.13 × 10−8, respectively. Taken together, this microplate-based method is convenient, economical, and rapid in locating antibody epitopes as well as interaction sites of two proteins.
Collapse
|
45
|
Dong W, Zhou R, Chen J, Shu Z, Duan M. Phosphorylation Regulation on the Homo-Dimeric Binding of Transactive Response DNA-Binding Protein. J Chem Inf Model 2022; 62:5267-5275. [PMID: 35040651 DOI: 10.1021/acs.jcim.1c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The dimerization of transactive response DNA-binding protein of 43 kDa (TDP-43) is crucial for the RNA metabolism, and the higher-order aggregation of TDP-43 would induce several neurodegenerative diseases. The dimerization and aggregation of TDP-43 are regulated by the phosphorylation on its N-terminal domain (NTD). Understanding the regulation mechanism of TDP-43 NTD dimerization is crucial for the preventing of harmful aggregation and the associated diseases. In this study, the dimerization processes of wild-type (WT), phosphorylated S48 (pS48), and phosphomimic S48E mutation (S48E) of TDP-43 NTD are characterized by the enhanced sampling technology. Our results show that the phosphorylation not only shift the conformation population of bound and unbound state of TDP-43 NTD, but also would regulate the dimerization processes, including increase the binding free-energy barrier. The phosphomimic mutation would also shift the conformational space of TDP-43 NTD dimer to the unbound structures; however, the thermodynamic and kinetic properties of the dimerization processes between the phosphorylated and phosphomimic mutant systems are distinct, which reminds us to carefully study the phosphorylation regulation by using the phosphomimic mutations.
Collapse
Affiliation(s)
- Wanqian Dong
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou 350117, Fujian, China.,National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Rui Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Jiawen Chen
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technoloy, College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou 350117, Fujian, China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| |
Collapse
|
46
|
Howard E, Ballinger S, Kinney NG, Balgenorth Y, Ehrhardt A, Phillips JS, Irwin DJ, Grossman M, Cousins KA. Frontal Atrophy and Executive Dysfunction Relate to Complex Numbers Impairment in Progressive Supranuclear Palsy. J Alzheimers Dis 2022; 88:1553-1566. [PMID: 35811515 PMCID: PMC9915885 DOI: 10.3233/jad-215327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous research finds a range of numbers impairments in Parkinsonian syndromes (PS), but has largely focused on how visuospatial impairments impact deficits in basic numerical processes (e.g., magnitude judgments, chunking). Differentiation between these basic functions and more complex numerical processes often utilized in everyday tasks may help elucidate neurocognitive and neuroanatomic bases of numbers deficits in PS. OBJECTIVE To test neurocognitive and neuroanatomic correlates of complex numerical processing in PS, we assessed number abilities, neuropsychological performance, and cortical thickness in progressive supranuclear palsy (PSP) and Lewy body spectrum disorders (LBSD). METHODS Fifty-six patients (LBSD = 35; PSP = 21) completed a Numbers Battery, including basic and complex numerical tasks. The Mini-Mental State Exam (MMSE), letter fluency (LF), and Judgment of Line Orientation (JOLO) assessed global, executive, and visuospatial functioning respectively. Mann-Whitney U tests compared neuropsychological testing and rank-transformed analysis of covariance (ANCOVA) compared numbers performance between groups while adjusting for demographic variables. Spearman's and partial correlations related numbers performance to neuropsychological tasks. Neuroimaging assessed cortical thickness in disease groups and demographically-matched healthy controls. RESULTS PSP had worse complex numbers performance than LBSD (F = 6.06, p = 0.02) but similar basic numbers performance (F = 0.38, p > 0.1), covarying for MMSE and sex. Across syndromes, impaired complex numbers performance was linked to poor LF (rho = 0.34, p = 0.01) but not JOLO (rho = 0.23, p > 0.05). Imaging revealed significant frontal atrophy in PSP compared to controls, which was associated with worse LF and complex numbers performance. CONCLUSION PSP demonstrated selective impairments in complex numbers processing compared to LBSD. This complex numerical deficit may relate to executive dysfunction and frontal atrophy.
Collapse
Affiliation(s)
- Erica Howard
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha Ballinger
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolas G. Kinney
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yvonne Balgenorth
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Annabess Ehrhardt
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S. Phillips
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katheryn A.Q. Cousins
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Correspondence to: Katheryn A.Q. Cousins, PhD, 3400 Spruce St, Department of Neurology, 3W Gates Building, Philadel phia, PA 19104, USA. Tel.: +1 215 349 5863; Fax: +1 215 349 8464;
| |
Collapse
|
47
|
Zhu MH, Jogdand AH, Jang J, Nagella SC, Das B, Milosevic MM, Yan R, Antic SD. Evoked Cortical Depolarizations Before and After the Amyloid Plaque Accumulation: Voltage Imaging Study. J Alzheimers Dis 2022; 88:1443-1458. [PMID: 35811528 PMCID: PMC10493004 DOI: 10.3233/jad-220249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), synaptic dysfunction is thought to occur many years before the onset of cognitive decline. OBJECTIVE Detecting synaptic dysfunctions at the earliest stage of AD would be desirable in both clinic and research settings. METHODS Population voltage imaging allows monitoring of synaptic depolarizations, to which calcium imaging is relatively blind. We developed an AD mouse model (APPswe/PS1dE9 background) expressing a genetically-encoded voltage indicator (GEVI) in the neocortex. GEVI was restricted to the excitatory pyramidal neurons (unlike the voltage-sensitive dyes). RESULTS Expression of GEVI did not disrupt AD model formation of amyloid plaques. GEVI expression was stable in both AD model mice and Control (healthy) littermates (CTRL) over 247 days postnatal. Brain slices were stimulated in layer 2/3. From the evoked voltage waveforms, we extracted several parameters for comparison AD versus CTRL. Some parameters (e.g., temporal summation, refractoriness, and peak latency) were weak predictors, while other parameters (e.g., signal amplitude, attenuation with distance, and duration (half-width) of the evoked transients) were stronger predictors of the AD condition. Around postnatal age 150 days (P150) and especially at P200, synaptically-evoked voltage signals in brain slices were weaker in the AD groups versus the age- and sex-matched CTRL groups, suggesting an AD-mediated synaptic weakening that coincides with the accumulation of plaques. However, at the youngest ages examined, P40 and P80, the AD groups showed differentially stronger signals, suggesting "hyperexcitability" prior to the formation of plaques. CONCLUSION Our results indicate bidirectional alterations in cortical physiology in AD model mice; occurring both prior (P40-80), and after (P150-200) the amyloid deposition.
Collapse
Affiliation(s)
- Mei Hong Zhu
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Aditi H Jogdand
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Jinyoung Jang
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Sai C Nagella
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Brati Das
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Milena M Milosevic
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Srdjan D Antic
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| |
Collapse
|
48
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
49
|
Louka A, Bagnoli S, Rupert J, Esapa B, Tartaglia GG, Cellerino A, Pastore A, Terzibasi Tozzini E. New lessons on TDP-43 from old N. furzeri killifish. Aging Cell 2022; 21:e13517. [PMID: 34939315 PMCID: PMC8761016 DOI: 10.1111/acel.13517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/26/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis are fatal and incurable neurodegenerative diseases linked to the pathological aggregation of the TDP-43 protein. This is an essential DNA/RNA-binding protein involved in transcription regulation, pre-RNA processing, and RNA transport. Having suitable animal models to study the mechanisms of TDP-43 aggregation is crucial to develop treatments against disease. We have previously demonstrated that the killifish Nothobranchius furzeri offers the advantage of being the shortest-lived vertebrate with a clear aging phenotype. Here, we show that the two N. furzeri paralogs of TDP-43 share high sequence homology with the human protein and recapitulate its cellular and biophysical behavior. During aging, N. furzeri TDP-43 spontaneously forms insoluble intracellular aggregates with amyloid characteristics and colocalizes with stress granules. Our results propose this organism as a valuable new model of TDP-43-related pathologies making it a powerful tool for the study of disease mechanism.
Collapse
Affiliation(s)
- Alexandra Louka
- Department of Clinical and Basic NeuroscienceKing's College LondonUK‐DRI Centre at the Maurice Wohl InstituteLondonUK
| | | | - Jakob Rupert
- Department of Clinical and Basic NeuroscienceKing's College LondonUK‐DRI Centre at the Maurice Wohl InstituteLondonUK
- Universita' di Roma “La Sapienza”RomeItaly
| | - Benjamin Esapa
- Department of Clinical and Basic NeuroscienceKing's College LondonUK‐DRI Centre at the Maurice Wohl InstituteLondonUK
| | | | - Alessandro Cellerino
- Bio@SNSScuola Normale SuperiorePisaItaly
- Leibniz Institute on AgingFritz Lipmann InstituteJenaGermany
| | - Annalisa Pastore
- Department of Clinical and Basic NeuroscienceKing's College LondonUK‐DRI Centre at the Maurice Wohl InstituteLondonUK
- European Synchrotron Radiation FacilityGrenobleFrance
| | - Eva Terzibasi Tozzini
- Bio@SNSScuola Normale SuperiorePisaItaly
- Stazione Zoologica Anton Dohrn (SZN)NaplesItaly
| |
Collapse
|
50
|
Meneses A, Koga S, O’Leary J, Dickson DW, Bu G, Zhao N. TDP-43 Pathology in Alzheimer's Disease. Mol Neurodegener 2021; 16:84. [PMID: 34930382 PMCID: PMC8691026 DOI: 10.1186/s13024-021-00503-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/21/2021] [Indexed: 12/05/2022] Open
Abstract
Transactive response DNA binding protein of 43 kDa (TDP-43) is an intranuclear protein encoded by the TARDBP gene that is involved in RNA splicing, trafficking, stabilization, and thus, the regulation of gene expression. Cytoplasmic inclusion bodies containing phosphorylated and truncated forms of TDP-43 are hallmarks of amyotrophic lateral sclerosis (ALS) and a subset of frontotemporal lobar degeneration (FTLD). Additionally, TDP-43 inclusions have been found in up to 57% of Alzheimer's disease (AD) cases, most often in a limbic distribution, with or without hippocampal sclerosis. In some cases, TDP-43 deposits are also found in neurons with neurofibrillary tangles. AD patients with TDP-43 pathology have increased severity of cognitive impairment compared to those without TDP-43 pathology. Furthermore, the most common genetic risk factor for AD, apolipoprotein E4 (APOE4), is associated with increased frequency of TDP-43 pathology. These findings provide strong evidence that TDP-43 pathology is an integral part of multiple neurodegenerative conditions, including AD. Here, we review the biology and pathobiology of TDP-43 with a focus on its role in AD. We emphasize the need for studies on the mechanisms that lead to TDP-43 pathology, especially in the setting of age-related disorders such as AD.
Collapse
Affiliation(s)
- Axel Meneses
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Justin O’Leary
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|