1
|
Schweingruber C, Nijssen J, Mechtersheimer J, Reber S, Lebœuf M, O'Brien NL, Mei I, Hedges E, Keuper M, Benitez JA, Radoi V, Jastroch M, Ruepp MD, Hedlund E. Single-cell RNA-sequencing reveals early mitochondrial dysfunction unique to motor neurons shared across FUS- and TARDBP-ALS. Nat Commun 2025; 16:4633. [PMID: 40389397 PMCID: PMC12089458 DOI: 10.1038/s41467-025-59679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/30/2025] [Indexed: 05/21/2025] Open
Abstract
Mutations in FUS and TARDBP cause amyotrophic lateral sclerosis (ALS), but the precise mechanisms of selective motor neuron degeneration remain unresolved. To address if pathomechanisms are shared across mutations and related to either gain- or loss-of-function, we performed single-cell RNA sequencing across isogenic induced pluripotent stem cell-derived neuron types, harbouring FUS P525L, FUS R495X, TARDBP M337V mutations or FUS knockout. Transcriptional changes were far more pronounced in motor neurons than interneurons. About 20% of uniquely dysregulated motor neuron transcripts were shared across FUS mutations, half from gain-of-function. Most indicated mitochondrial impairments, with attenuated pathways shared with mutant TARDBP M337V as well as C9orf72-ALS patient motor neurons. Mitochondrial motility was impaired in ALS motor axons, even with nuclear localized FUS mutants, demonstrating shared toxic gain-of-function mechanisms across FUS- and TARDBP-ALS, uncoupled from protein mislocalization. These early mitochondrial dysfunctions unique to motor neurons may affect survival and represent therapeutic targets in ALS.
Collapse
Affiliation(s)
- Christoph Schweingruber
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16C, 106 91, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solna v. 9, 171 77, Stockholm, Sweden
| | - Jik Nijssen
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solna v. 9, 171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solna v. 9, 171 77, Stockholm, Sweden
| | - Jonas Mechtersheimer
- UK Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Rd, SE5 9RX, London, United Kingdom
| | - Stefan Reber
- UK Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Rd, SE5 9RX, London, United Kingdom
| | - Mélanie Lebœuf
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16C, 106 91, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solna v. 9, 171 77, Stockholm, Sweden
| | - Niamh L O'Brien
- UK Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Rd, SE5 9RX, London, United Kingdom
| | - Irene Mei
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16C, 106 91, Stockholm, Sweden
| | - Erin Hedges
- UK Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Rd, SE5 9RX, London, United Kingdom
| | - Michaela Keuper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius v. 20C, 106 91, Stockholm, Sweden
| | - Julio Aguila Benitez
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solna v. 9, 171 77, Stockholm, Sweden
| | - Vlad Radoi
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16C, 106 91, Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius v. 20C, 106 91, Stockholm, Sweden
| | - Marc-David Ruepp
- UK Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Rd, SE5 9RX, London, United Kingdom.
| | - Eva Hedlund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16C, 106 91, Stockholm, Sweden.
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solna v. 9, 171 77, Stockholm, Sweden.
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solna v. 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
2
|
Novakovic M, Han Y, Kathe NC, Ni Y, Emmanouilidis L, Allain FHT. LLPS REDIFINE allows the biophysical characterization of multicomponent condensates without tags or labels. Nat Commun 2025; 16:4628. [PMID: 40389460 PMCID: PMC12089286 DOI: 10.1038/s41467-025-59759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) phenomenon plays a vital role in multiple cell biology processes, providing a mechanism to concentrate biomolecules and promote cellular reactions locally. Despite its significance in biology, there is a lack of conventional techniques suitable for studying biphasic samples in their biologically relevant form. Here, we present a label-free and non-invasive approach to characterize biomolecular condensates termed LLPS REstricted DIFusion of INvisible speciEs (REDIFINE). Relying on diffusion NMR measurements, REDIFINE exploits the exchange dynamics between molecules in the condensed and dispersed phases to determine not only diffusion constants and the fractions in both phases but also the average radius of the condensed droplets and the exchange rate between the phases. Observing proteins, RNAs, water, as well as small molecules, and even assessing the concentrations of biomolecules in both phases, REDIFINE analysis allows a rapid biophysical characterization of multicomponent condensates which is important to understand their functional roles. In comparing multiple systems, REDIFINE reveals that folded RNA-binding proteins form smaller and more dynamic droplets compared to the disordered ones.
Collapse
Affiliation(s)
- Mihajlo Novakovic
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| | - Yaning Han
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Nina C Kathe
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Yinan Ni
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Xie Q, Li K, Chen Y, Li Y, Jiang W, Cao W, Yu H, Fan D, Deng B. Gene therapy breakthroughs in ALS: a beacon of hope for 20% of ALS patients. Transl Neurodegener 2025; 14:19. [PMID: 40234983 PMCID: PMC12001736 DOI: 10.1186/s40035-025-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that remains incurable. Although the etiologies of ALS are diverse and the precise pathogenic mechanisms are not fully understood, approximately 20% of ALS cases are caused by genetic factors. Therefore, advancing targeted gene therapies holds significant promise, at least for the 20% of ALS patients with genetic etiologies. In this review, we summarize the main strategies and techniques of current ALS gene therapies based on ALS risk genes, and review recent findings from animal studies and clinical trials. Additionally, we highlight ALS-related genes with well-understood pathogenic mechanisms and the potential of numerous emerging gene-targeted therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Qingjian Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wenhua Jiang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Binbin Deng
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China.
| |
Collapse
|
4
|
Maita H, Nakagawa S. Balancing RNA processing and innate immune response: Possible roles for SMN condensates in snRNP biogenesis. Biochim Biophys Acta Gen Subj 2025; 1869:130764. [PMID: 39826814 DOI: 10.1016/j.bbagen.2025.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates like U-bodies are specialized cellular structures formed through multivalent interactions among intrinsically disordered regions. U-bodies sequester small nuclear ribonucleoprotein complexes (snRNPs) in the cytoplasm, and their formation in mammalian cells depends on stress conditions. Because of their location adjacent to P-bodies, U-bodies have been considered potential sites for snRNP storage or turnover. SMN, a chaperone for snRNP biogenesis, forms condensates through its Tudor domain. In fly models, defects in SMN trigger innate immune responses similar to those observed with excess cytoplasmic snRNA during viral infection in mammalian cells. Additionally, spinal muscular atrophy (SMA), caused by SMN deficiency, is associated with inflammation. Therefore, SMN may help prevent innate immune aberrant activation due to defective snRNP biogenesis by forming U-bodies to sequester these molecules. Further studies on U-body functions may provide therapeutic insights for diseases related to RNA metabolism.
Collapse
Affiliation(s)
- Hiroshi Maita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Shinichi Nakagawa
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
5
|
Chatterjee S, Maity A, Bahadur RP. Conformational switches in human RNA binding proteins involved in neurodegeneration. Biochim Biophys Acta Gen Subj 2025; 1869:130760. [PMID: 39798673 DOI: 10.1016/j.bbagen.2025.130760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Conformational switching in RNA binding proteins (RBPs) is crucial for regulation of RNA processing and transport. Dysregulation or mutations in RBPs and broad RNA processing abnormalities are related to many human diseases including neurodegenerative disorders. Here, we review the role of protein-RNA conformational switches in RBP-RNA complexes. RBP-RNA complexes exhibit wide range of conformational switching depending on the RNA molecule and its ability to induce conformational changes in its partner RBP. We categorize the conformational switches into three groups: rigid body, semi-flexible and full flexible. We also investigate conformational switches in large cellular assemblies including ribosome, spliceosome and RISC complexes. In addition, the role of intrinsic disorder in RBP-RNA conformational switches is discussed. We have also discussed the effect of different disease-causing mutations on conformational switching of proteins associated with neurodegenerative diseases. We believe that this study will enhance our understanding on the role of protein-RNA conformational switches. Furthermore, the availability of a large number of atomic structures of RBP-RNA complexes in near future would facilitate to create a complete repertoire of human RBP-RNA conformational switches.
Collapse
Affiliation(s)
- Sonali Chatterjee
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Atanu Maity
- Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
6
|
Li Y, Sun S. RNA dysregulation in neurodegenerative diseases. EMBO J 2025; 44:613-638. [PMID: 39789319 PMCID: PMC11790913 DOI: 10.1038/s44318-024-00352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Dysregulation of RNA processing has in recent years emerged as a significant contributor to neurodegeneration. The diverse mechanisms and molecular functions underlying RNA processing underscore the essential role of RNA regulation in maintaining neuronal health and function. RNA molecules are bound by RNA-binding proteins (RBPs), and interactions between RNAs and RBPs are commonly affected in neurodegeneration. In this review, we highlight recent progress in understanding dysregulated RNA-processing pathways and the causes of RBP dysfunction across various neurodegenerative diseases. We discuss both established and emerging mechanisms of RNA-mediated neuropathogenesis in this rapidly evolving field. Furthermore, we explore the development of potential RNA-targeting therapeutic approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yini Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Departments of Neuroscience, Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Song J. Molecular Mechanisms of Phase Separation and Amyloidosis of ALS/FTD-linked FUS and TDP-43. Aging Dis 2024; 15:2084-2112. [PMID: 38029395 PMCID: PMC11346406 DOI: 10.14336/ad.2023.1118] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
FUS and TDP-43, two RNA-binding proteins from the heterogeneous nuclear ribonucleoprotein family, have gained significant attention in the field of neurodegenerative diseases due to their association with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). They possess folded domains for binding ATP and various nucleic acids including DNA and RNA, as well as substantial intrinsically disordered regions (IDRs) including prion-like domains (PLDs) and RG-/RGG-rich regions. They play vital roles in various cellular processes, including transcription, splicing, microRNA maturation, RNA stability and transport and DNA repair. In particular, they are key components for forming ribonucleoprotein granules and stress granules (SGs) through homotypic or heterotypic liquid-liquid phase separation (LLPS). Strikingly, liquid-like droplets formed by FUS and TDP-43 may undergo aging to transform into less dynamic assemblies such as hydrogels, inclusions, and amyloid fibrils, which are the pathological hallmarks of ALS and FTD. This review aims to synthesize and consolidate the biophysical knowledge of the sequences, structures, stability, dynamics, and inter-domain interactions of FUS and TDP-43 domains, so as to shed light on the molecular mechanisms underlying their liquid-liquid phase separation (LLPS) and amyloidosis. The review further delves into the mechanisms through which ALS-causing mutants of the well-folded hPFN1 disrupt the dynamics of LLPS of FUS prion-like domain, providing key insights into a potential mechanism for misfolding/aggregation-prone proteins to cause neurodegenerative diseases and aging by gain of functions. With better understanding of different biophysical aspects of FUS and TDP-43, the ultimate goal is to develop drugs targeting LLPS and amyloidosis, which could mediate protein homeostasis within cells and lead to new treatments for currently intractable diseases, particularly neurodegenerative diseases such as ALS, FTD and aging. However, the study of membrane-less organelles and condensates is still in its infancy and therefore the review also highlights key questions that require future investigation.
Collapse
|
8
|
Miyake H, Kawaguchi RK, Kiryu H. RNAelem: an algorithm for discovering sequence-structure motifs in RNA bound by RNA-binding proteins. BIOINFORMATICS ADVANCES 2024; 4:vbae144. [PMID: 39399375 PMCID: PMC11471262 DOI: 10.1093/bioadv/vbae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Motivation RNA-binding proteins (RBPs) play a crucial role in the post-transcriptional regulation of RNA. Given their importance, analyzing the specific RNA patterns recognized by RBPs has become a significant research focus in bioinformatics. Deep Neural Networks have enhanced the accuracy of prediction for RBP-binding sites, yet understanding the structural basis of RBP-binding specificity from these models is challenging due to their limited interpretability. To address this, we developed RNAelem, which combines profile context-free grammar and the Turner energy model for RNA secondary structure to predict sequence-structure motifs in RBP-binding regions. Results RNAelem exhibited superior detection accuracy compared to existing tools for RNA sequences with structural motifs. Upon applying RNAelem to the eCLIP database, we were not only able to reproduce many known primary sequence motifs in the absence of secondary structures, but also discovered many secondary structural motifs that contained sequence-nonspecific insertion regions. Furthermore, the high interpretability of RNAelem yielded insightful findings such as long-range base-pairing interactions in the binding region of the U2AF protein. Availability and implementation The code is available at https://github.com/iyak/RNAelem.
Collapse
Affiliation(s)
- Hiroshi Miyake
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan
| | - Risa Karakida Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku 606-8507, Japan
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
9
|
Rizea RE, Corlatescu AD, Costin HP, Dumitru A, Ciurea AV. Understanding Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:9966. [PMID: 39337454 PMCID: PMC11432652 DOI: 10.3390/ijms25189966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This review offers an in-depth examination of amyotrophic lateral sclerosis (ALS), addressing its epidemiology, pathophysiology, clinical presentation, diagnostic techniques, and current as well as emerging treatments. The purpose is to condense key findings and illustrate the complexity of ALS, which is shaped by both genetic and environmental influences. We reviewed the literature to discuss recent advancements in understanding molecular mechanisms such as protein misfolding, mitochondrial dysfunction, oxidative stress, and axonal transport defects, which are critical for identifying potential therapeutic targets. Significant progress has been made in refining diagnostic criteria and identifying biomarkers, leading to earlier and more precise diagnoses. Although current drug treatments provide some benefits, there is a clear need for more effective therapies. Emerging treatments, such as gene therapy and stem cell therapy, show potential in modifying disease progression and improving the quality of life for ALS patients. The review emphasizes the importance of continued research to address challenges such as disease variability and the limited effectiveness of existing treatments. Future research should concentrate on further exploring the molecular foundations of ALS and developing new therapeutic approaches. The implications for clinical practice include ensuring the accessibility of new treatments and that healthcare systems are equipped to support ongoing research and patient care.
Collapse
Affiliation(s)
- Radu Eugen Rizea
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Department of Neurosurgery, "Bagdasar-Arseni" Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
| | - Adrian Dumitru
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Department of Morphopathology, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
10
|
Masuda A, Okamoto T, Kawachi T, Takeda JI, Hamaguchi T, Ohno K. Blending and separating dynamics of RNA-binding proteins develop architectural splicing networks spreading throughout the nucleus. Mol Cell 2024; 84:2949-2965.e10. [PMID: 39053456 DOI: 10.1016/j.molcel.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/28/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
The eukaryotic nucleus has a highly organized structure. Although the spatiotemporal arrangement of spliceosomes on nascent RNA drives splicing, the nuclear architecture that directly supports this process remains unclear. Here, we show that RNA-binding proteins (RBPs) assembled on RNA form meshworks in human and mouse cells. Core and accessory RBPs in RNA splicing make two distinct meshworks adjacently but distinctly distributed throughout the nucleus. This is achieved by mutual exclusion dynamics between the charged and uncharged intrinsically disordered regions (IDRs) of RBPs. These two types of meshworks compete for spatial occupancy on pre-mRNA to regulate splicing. Furthermore, the optogenetic enhancement of the RBP meshwork causes aberrant splicing, particularly of genes involved in neurodegeneration. Genetic mutations associated with neurodegenerative diseases are often found in the IDRs of RBPs, and cells harboring these mutations exhibit impaired meshwork formation. Our results uncovered the spatial organization of RBP networks to drive RNA splicing.
Collapse
Affiliation(s)
- Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takaaki Okamoto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Kawachi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| |
Collapse
|
11
|
Campagne S. U1 snRNP Biogenesis Defects in Neurodegenerative Diseases. Chembiochem 2024; 25:e202300864. [PMID: 38459794 DOI: 10.1002/cbic.202300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The U1 small ribonucleoprotein (U1 snRNP) plays a pivotal role in the intricate process of gene expression, specifically within nuclear RNA processing. By initiating the splicing reaction and modulating 3'-end processing, U1 snRNP exerts precise control over RNA metabolism and gene expression. This ribonucleoparticle is abundantly present, and its complex biogenesis necessitates shuttling between the nuclear and cytoplasmic compartments. Over the past three decades, extensive research has illuminated the crucial connection between disrupted U snRNP biogenesis and several prominent human diseases, notably various neurodegenerative conditions. The perturbation of U1 snRNP homeostasis has been firmly established in diseases such as Spinal Muscular Atrophy, Pontocerebellar hypoplasia, and FUS-mediated Amyotrophic Lateral Sclerosis. Intriguingly, compelling evidence suggests a potential correlation in Fronto-temporal dementia and Alzheimer's disease as well. Although the U snRNP biogenesis pathway is conserved across all eukaryotic cells, neurons, in particular, appear to be highly susceptible to alterations in spliceosome homeostasis. In contrast, other cell types exhibit a greater resilience to such disturbances. This vulnerability underscores the intricate relationship between U1 snRNP dynamics and the health of neuronal cells, shedding light on potential avenues for understanding and addressing neurodegenerative disorders.
Collapse
Affiliation(s)
- Sebastien Campagne
- University of Bordeaux, INSERM U1212, CNRS UMR5320, ARNA unit 146, rue Leo Saignat, 33077, Bordeaux
- Institut Européen de Chimie et de Biologie, 2, rue Robert Escarpit, 33600, Pessac
| |
Collapse
|
12
|
Song J. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface. Biomolecules 2024; 14:500. [PMID: 38672516 PMCID: PMC11048592 DOI: 10.3390/biom14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
13
|
de Vries T, Novakovic M, Ni Y, Smok I, Inghelram C, Bikaki M, Sarnowski CP, Han Y, Emmanouilidis L, Padroni G, Leitner A, Allain FHT. Specific protein-RNA interactions are mostly preserved in biomolecular condensates. SCIENCE ADVANCES 2024; 10:eadm7435. [PMID: 38446881 PMCID: PMC10917357 DOI: 10.1126/sciadv.adm7435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Many biomolecular condensates are enriched in and depend on RNAs and RNA binding proteins (RBPs). So far, only a few studies have addressed the characterization of the intermolecular interactions responsible for liquid-liquid phase separation (LLPS) and the impact of condensation on RBPs and RNAs. Here, we present an approach to study protein-RNA interactions inside biomolecular condensates by applying cross-linking of isotope labeled RNA and tandem mass spectrometry to phase-separating systems (LLPS-CLIR-MS). LLPS-CLIR-MS enables the characterization of intermolecular interactions present within biomolecular condensates at residue-specific resolution and allows a comparison with the same complexes in the dispersed phase. We observe that sequence-specific RBP-RNA interactions present in the dispersed phase are generally maintained inside condensates. In addition, LLPS-CLIR-MS identifies structural alterations at the protein-RNA interfaces, including additional unspecific contacts in the condensed phase. Our approach offers a procedure to derive structural information of protein-RNA complexes within biomolecular condensates that could be critical for integrative structural modeling of ribonucleoproteins (RNPs) in this form.
Collapse
Affiliation(s)
- Tebbe de Vries
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Mihajlo Novakovic
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Yinan Ni
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Izabela Smok
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Clara Inghelram
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Maria Bikaki
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Chris P. Sarnowski
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yaning Han
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Giacomo Padroni
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
14
|
Kim SC, Mitchell SJ, Qamar S, Whitcomb DJ, Ruepp MD, St George-Hyslop P, Cho K. Mimicking hypomethylation of FUS requires liquid-liquid phase separation to induce synaptic dysfunctions. Acta Neuropathol Commun 2023; 11:199. [PMID: 38105257 PMCID: PMC10726623 DOI: 10.1186/s40478-023-01703-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
The hypomethylation of fused in sarcoma (FUS) in frontotemporal lobar degeneration promotes the formation of irreversible condensates of FUS. However, the mechanisms by which these hypomethylated FUS condensates cause neuronal dysfunction are unknown. Here we report that expression of FUS constructs mimicking hypomethylated FUS causes aberrant dendritic FUS condensates in CA1 neurons. These hypomethylated FUS condensates exhibit spontaneous, and activity induced movement within the dendrite. They impair excitatory synaptic transmission, postsynaptic density-95 expression, and dendritic spine plasticity. These neurophysiological defects are dependent upon both the dendritic localisation of the condensates, and their ability to undergo liquid-liquid phase separation. These results indicate that the irreversible liquid-liquid phase separation is a key component of hypomethylated FUS pathophysiology in sporadic FTLD, and this can cause synapse dysfunction in sporadic FTLD.
Collapse
Affiliation(s)
- Seung Chan Kim
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, UK-Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9NU, UK
| | - Scott J Mitchell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, UK-Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9NU, UK
| | - Seema Qamar
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | | | - Marc-David Ruepp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, UK-Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9NU, UK
| | - Peter St George-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine (Division of Neurology), University Health Network and Tanz Centre for Research In Neurodegenerative Diseases, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3H2, Canada
- Taub Institute For Research On Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Irving Medical Center, 630 West 168 Street, New York, NY, 10032, USA
| | - Kwangwook Cho
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, UK-Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9NU, UK.
| |
Collapse
|
15
|
Balasubramanian S, Maharana S, Srivastava A. "Boundary residues" between the folded RNA recognition motif and disordered RGG domains are critical for FUS-RNA binding. J Biol Chem 2023; 299:105392. [PMID: 37890778 PMCID: PMC10687056 DOI: 10.1016/j.jbc.2023.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Fused in sarcoma (FUS) is an abundant RNA-binding protein, which drives phase separation of cellular condensates and plays multiple roles in RNA regulation. The RNA-binding ability of FUS protein is crucial to its cellular function. Here, our molecular simulation study on the FUS-RNA complex provides atomic resolution insights into the observations from biochemical studies and also illuminates our understanding of molecular driving forces that mediate the structure, stability, and interaction of the RNA recognition motif (RRM) and RGG domains of FUS with a stem-loop junction RNA. We observe clear cooperativity and division of labor among the ordered (RRM) and disordered domains (RGG1 and RGG2) of FUS that leads to an organized and tighter RNA binding. Irrespective of the length of RGG2, the RGG2-RNA interaction is confined to the stem-loop junction and the proximal stem regions. On the other hand, the RGG1 interactions are primarily with the longer RNA stem. We find that the C terminus of RRM, which make up the "boundary residues" that connect the folded RRM with the long disordered RGG2 stretch of the protein, plays a critical role in FUS-RNA binding. Our study provides high-resolution molecular insights into the FUS-RNA interactions and forms the basis for understanding the molecular origins of full-length FUS interaction with RNA.
Collapse
Affiliation(s)
| | - Shovamayee Maharana
- Department of Molecular and Cell Biology, Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India.
| |
Collapse
|
16
|
Kour S, Fortuna T, Anderson EN, Mawrie D, Bilstein J, Sivasubramanian R, Ward C, Roy R, Rajasundaram D, Sterneckert J, Pandey UB. Drosha-dependent microRNAs modulate FUS-mediated neurodegeneration in vivo. Nucleic Acids Res 2023; 51:11258-11276. [PMID: 37791873 PMCID: PMC10639082 DOI: 10.1093/nar/gkad774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.
Collapse
Affiliation(s)
- Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Tyler Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Jessica Bilstein
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Ramakrishnan Sivasubramanian
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rishit Roy
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, 01307, Germany
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
17
|
Moursy A, Cléry A, Gerhardy S, Betz KM, Rao S, Mazur J, Campagne S, Beusch I, Duszczyk MM, Robinson MD, Panse VG, Allain FHT. RNA recognition by Npl3p reveals U2 snRNA-binding compatible with a chaperone role during splicing. Nat Commun 2023; 14:7166. [PMID: 37935663 PMCID: PMC10630445 DOI: 10.1038/s41467-023-42962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
The conserved SR-like protein Npl3 promotes splicing of diverse pre-mRNAs. However, the RNA sequence(s) recognized by the RNA Recognition Motifs (RRM1 & RRM2) of Npl3 during the splicing reaction remain elusive. Here, we developed a split-iCRAC approach in yeast to uncover the consensus sequence bound to each RRM. High-resolution NMR structures show that RRM2 recognizes a 5´-GNGG-3´ motif leading to an unusual mille-feuille topology. These structures also reveal how RRM1 preferentially interacts with a CC-dinucleotide upstream of this motif, and how the inter-RRM linker and the region C-terminal to RRM2 contribute to cooperative RNA-binding. Structure-guided functional studies show that Npl3 genetically interacts with U2 snRNP specific factors and we provide evidence that Npl3 melts U2 snRNA stem-loop I, a prerequisite for U2/U6 duplex formation within the catalytic center of the Bact spliceosomal complex. Thus, our findings suggest an unanticipated RNA chaperoning role for Npl3 during spliceosome active site formation.
Collapse
Affiliation(s)
- Ahmed Moursy
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland.
| | - Stefan Gerhardy
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Sardona Therapeutics, San Francisco, CA, USA
| | - Katharina M Betz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Sanjana Rao
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jarosław Mazur
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sébastien Campagne
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- ARNA laboratory, INSERM U1212, University of Bordeaux, Bordeaux, France
| | - Irene Beusch
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
18
|
Thompson VF, Wieland DR, Mendoza-Leon V, Janis HI, Lay MA, Harrell LM, Schwartz JC. Binding of the nuclear ribonucleoprotein family member FUS to RNA prevents R-loop RNA:DNA hybrid structures. J Biol Chem 2023; 299:105237. [PMID: 37690693 PMCID: PMC10556777 DOI: 10.1016/j.jbc.2023.105237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
The protein FUS (FUSed in sarcoma) is a metazoan RNA-binding protein that influences RNA production by all three nuclear polymerases. FUS also binds nascent transcripts, RNA processing factors, RNA polymerases, and transcription machinery. Here, we explored the role of FUS binding interactions for activity during transcription. In vitro run-off transcription assays revealed FUS-enhanced RNA produced by a non-eukaryote polymerase. The activity also reduced the formation of R-loops between RNA products and their DNA template. Analysis by domain mutation and deletion indicated RNA-binding was required for activity. We interpret that FUS binds and sequesters nascent transcripts to prevent R-loops from forming with nearby DNA. DRIP-seq analysis showed that a knockdown of FUS increased R-loop enrichment near expressed genes. Prevention of R-loops by FUS binding to nascent transcripts has the potential to affect transcription by any RNA polymerase, highlighting the broad impact FUS can have on RNA metabolism in cells and disease.
Collapse
Affiliation(s)
- Valery F Thompson
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Daniel R Wieland
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Vivian Mendoza-Leon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Helen I Janis
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Michelle A Lay
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Lucas M Harrell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Jacob C Schwartz
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA.
| |
Collapse
|
19
|
Campagne S, Jutzi D, Malard F, Matoga M, Romane K, Feldmuller M, Colombo M, Ruepp MD, Allain FHT. Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor RBM39. Nat Commun 2023; 14:5366. [PMID: 37666821 PMCID: PMC10477243 DOI: 10.1038/s41467-023-40254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/14/2023] [Indexed: 09/06/2023] Open
Abstract
Pharmacologic depletion of RNA-binding motif 39 (RBM39) using aryl sulfonamides represents a promising anti-cancer therapy but requires high levels of the adaptor protein DCAF15. Consequently, novel approaches to deplete RBM39 in an DCAF15-independent manner are required. Here, we uncover that RBM39 autoregulates via the inclusion of a poison exon into its own pre-mRNA and identify the cis-acting elements that govern this regulation. We also determine the NMR solution structures of RBM39's tandem RNA recognition motifs (RRM1 and RRM2) bound to their respective RNA targets, revealing how RRM1 recognises RNA stem loops whereas RRM2 binds specifically to single-stranded N(G/U)NUUUG. Our results support a model where RRM2 selects the 3'-splice site of a poison exon and the RRM3 and RS domain stabilise the U2 snRNP at the branchpoint. Our work provides molecular insights into RBM39-dependent 3'-splice site selection and constitutes a solid basis to design alternative anti-cancer therapies.
Collapse
Affiliation(s)
- Sébastien Campagne
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland.
- University of Bordeaux, Inserm U1212, CNRS UMR5320, ARNA Laboratory, 33077, Bordeaux, France.
| | - Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9NU, UK
| | - Florian Malard
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
- University of Bordeaux, Inserm U1212, CNRS UMR5320, ARNA Laboratory, 33077, Bordeaux, France
| | - Maja Matoga
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Ksenija Romane
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Miki Feldmuller
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Martino Colombo
- University of Bern, Department of Chemistry and Biochemistry, 3012, Bern, Switzerland
- Celgene Institute of Translational Research in Europe (CITRE), Bristol Myers Squibb, 41092, Seville, Spain
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9NU, UK.
| | - Frédéric H-T Allain
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland.
| |
Collapse
|
20
|
Rossi S, Di Salvio M, Balì M, De Simone A, Apolloni S, D’Ambrosi N, Arisi I, Cipressa F, Cozzolino M, Cestra G. C9orf72 Toxic Species Affect ArfGAP-1 Function. Cells 2023; 12:2007. [PMID: 37566088 PMCID: PMC10416972 DOI: 10.3390/cells12152007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Compelling evidence indicates that defects in nucleocytoplasmic transport contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). In particular, hexanucleotide (G4C2) repeat expansions in C9orf72, the most common cause of genetic ALS, have a widespread impact on the transport machinery that regulates the nucleocytoplasmic distribution of proteins and RNAs. We previously reported that the expression of G4C2 hexanucleotide repeats in cultured human and mouse cells caused a marked accumulation of poly(A) mRNAs in the cell nuclei. To further characterize the process, we set out to systematically identify the specific mRNAs that are altered in their nucleocytoplasmic distribution in the presence of C9orf72-ALS RNA repeats. Interestingly, pathway analysis showed that the mRNAs involved in membrane trafficking are particularly enriched among the identified mRNAs. Most importantly, functional studies in cultured cells and Drosophila indicated that C9orf72 toxic species affect the membrane trafficking route regulated by ADP-Ribosylation Factor 1 GTPase Activating Protein (ArfGAP-1), which exerts its GTPase-activating function on the small GTPase ADP-ribosylation factor 1 to dissociate coat proteins from Golgi-derived vesicles. We demonstrate that the function of ArfGAP-1 is specifically affected by expanded C9orf72 RNA repeats, as well as by C9orf72-related dipeptide repeat proteins (C9-DPRs), indicating the retrograde Golgi-to-ER vesicle-mediated transport as a target of C9orf72 toxicity.
Collapse
Affiliation(s)
- Simona Rossi
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy; (S.R.); (I.A.)
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy;
| | - Michela Di Salvio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), 00185 Rome, Italy;
| | - Marilisa Balì
- Department of Biology and Biotechnology, University of Rome “La Sapienza”, 00185 Rome, Italy; (M.B.); (A.D.S.)
| | - Assia De Simone
- Department of Biology and Biotechnology, University of Rome “La Sapienza”, 00185 Rome, Italy; (M.B.); (A.D.S.)
| | - Savina Apolloni
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Nadia D’Ambrosi
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy;
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Ivan Arisi
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy; (S.R.); (I.A.)
- European Brain Research Institute “Rita Levi-Montalcini”, 00161 Rome, Italy
| | - Francesca Cipressa
- Department of Ecological and Biological Science, University of Tuscia, 01100 Viterbo, Italy;
| | - Mauro Cozzolino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy; (S.R.); (I.A.)
| | - Gianluca Cestra
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy;
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), 00185 Rome, Italy;
- Department of Biology and Biotechnology, University of Rome “La Sapienza”, 00185 Rome, Italy; (M.B.); (A.D.S.)
| |
Collapse
|
21
|
Rezvykh A, Ustyugov A, Chaprov K, Teterina E, Nebogatikov V, Spasskaya D, Evgen’ev M, Morozov A, Funikov S. Cytoplasmic aggregation of mutant FUS causes multistep RNA splicing perturbations in the course of motor neuron pathology. Nucleic Acids Res 2023; 51:5810-5830. [PMID: 37115004 PMCID: PMC10287951 DOI: 10.1093/nar/gkad319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Dysfunction of the RNA-binding protein (RBP) FUS implicated in RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Mutations affecting FUS nuclear localization can drive RNA splicing defects and stimulate the formation of non-amyloid inclusions in affected neurons. However, the mechanism by which FUS mutations contribute to the development of ALS remains uncertain. Here we describe a pattern of RNA splicing changes in the dynamics of the continuous proteinopathy induced by mislocalized FUS. We show that the decrease in intron retention of FUS-associated transcripts represents the hallmark of the pathogenesis of ALS and is the earliest molecular event in the course of progression of the disease. As FUS aggregation increases, the pattern of RNA splicing changes, becoming more complex, including a decrease in the inclusion of neuron-specific microexons and induction of cryptic exon splicing due to the sequestration of additional RBPs into FUS aggregates. Crucially, the identified features of the pathological splicing pattern are also observed in ALS patients in both sporadic and familial cases. Our data provide evidence that both a loss of nuclear FUS function due to mislocalization and the subsequent cytoplasmic aggregation of mutant protein lead to the disruption of RNA splicing in a multistep fashion during FUS aggregation.
Collapse
Affiliation(s)
- Alexander P Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Kirill D Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Ekaterina V Teterina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Vladimir O Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Daria S Spasskaya
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Michael B Evgen’ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| |
Collapse
|
22
|
Bertrand E, Demongin C, Dobra I, Rengifo-Gonzalez JC, Singatulina AS, Sukhanova MV, Lavrik OI, Pastré D, Hamon L. FUS fibrillation occurs through a nucleation-based process below the critical concentration required for liquid-liquid phase separation. Sci Rep 2023; 13:7772. [PMID: 37179431 PMCID: PMC10183042 DOI: 10.1038/s41598-023-34558-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
FUS is an RNA-binding protein involved in familiar forms of ALS and FTLD that also assembles into fibrillar cytoplasmic aggregates in some neurodegenerative diseases without genetic causes. The self-adhesive prion-like domain in FUS generates reversible condensates via the liquid-liquid phase separation process (LLPS) whose maturation can lead to the formation of insoluble fibrillar aggregates in vitro, consistent with the appearance of cytoplasmic inclusions in ageing neurons. Using a single-molecule imaging approach, we reveal that FUS can assemble into nanofibrils at concentrations in the nanomolar range. These results suggest that the formation of fibrillar aggregates of FUS could occur in the cytoplasm at low concentrations of FUS, below the critical ones required to trigger the liquid-like condensate formation. Such nanofibrils may serve as seeds for the formation of pathological inclusions. Interestingly, the fibrillation of FUS at low concentrations is inhibited by its binding to mRNA or after the phosphorylation of its prion-like domain, in agreement with previous models.
Collapse
Affiliation(s)
- Emilie Bertrand
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Clément Demongin
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Ioana Dobra
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | | | - Anastasia S Singatulina
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia, 630090
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia, 630090
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia, 630090
| | - David Pastré
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Loic Hamon
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France.
| |
Collapse
|
23
|
He S, Valkov E, Cheloufi S, Murn J. The nexus between RNA-binding proteins and their effectors. Nat Rev Genet 2023; 24:276-294. [PMID: 36418462 DOI: 10.1038/s41576-022-00550-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
Abstract
RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP-effector interactions and their roles in reducing the complexity of RNA networks. We discern the emerging unifying principles and discuss their utility in our understanding of RBP function, regulation of biological processes and contribution to human disease.
Collapse
Affiliation(s)
- Shiyang He
- Department of Biochemistry, University of California, Riverside, CA, USA
- Center for RNA Biology and Medicine, Riverside, CA, USA
| | - Eugene Valkov
- RNA Biology Laboratory & Center for Structural Biology, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
- Stem Cell Center, University of California, Riverside, CA, USA.
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
| |
Collapse
|
24
|
Gawade K, Plewka P, Häfner SJ, Lund AH, Marchand V, Motorin Y, Szczesniak MW, Raczynska KD. FUS regulates a subset of snoRNA expression and modulates the level of rRNA modifications. Sci Rep 2023; 13:2974. [PMID: 36806717 PMCID: PMC9941101 DOI: 10.1038/s41598-023-30068-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
FUS is a multifunctional protein involved in many aspects of RNA metabolism, including transcription, splicing, translation, miRNA processing, and replication-dependent histone gene expression. In this work, we show that FUS depletion results in the differential expression of numerous small nucleolar RNAs (snoRNAs) that guide 2'-O methylation (2'-O-Me) and pseudouridylation of specific positions in ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). Using RiboMeth-seq and HydraPsiSeq for the profiling of 2'-O-Me and pseudouridylation status of rRNA species, we demonstrated considerable hypermodification at several sites in HEK293T and SH-SY5Y cells with FUS knockout (FUS KO) compared to wild-type cells. We observed a similar direction of changes in rRNA modification in differentiated SH-SY5Y cells with the FUS mutation (R495X) related to the severe disease phenotype of amyotrophic lateral sclerosis (ALS). Furthermore, the pattern of modification of some rRNA positions was correlated with the abundance of corresponding guide snoRNAs in FUS KO and FUS R495X cells. Our findings reveal a new role for FUS in modulating the modification pattern of rRNA molecules, that in turn might generate ribosome heterogeneity and constitute a fine-tuning mechanism for translation efficiency/fidelity. Therefore, we suggest that increased levels of 2'-O-Me and pseudouridylation at particular positions in rRNAs from cells with the ALS-linked FUS mutation may represent a possible new translation-related mechanism that underlies disease development and progression.
Collapse
Affiliation(s)
- Kishor Gawade
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Patrycja Plewka
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Sophia J Häfner
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Virginie Marchand
- Université de Lorraine, UAR2008/US40 IBSLor CNRS-INSERM and UMR7365 IMoPA CNRS, Nancy, France
| | - Yuri Motorin
- Université de Lorraine, UAR2008/US40 IBSLor CNRS-INSERM and UMR7365 IMoPA CNRS, Nancy, France
| | - Michal W Szczesniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Katarzyna D Raczynska
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland.
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland.
| |
Collapse
|
25
|
Pokorná P, Krepl M, Campagne S, Šponer J. Conformational Heterogeneity of RNA Stem-Loop Hairpins Bound to FUS-RNA Recognition Motif with Disordered RGG Tail Revealed by Unbiased Molecular Dynamics Simulations. J Phys Chem B 2022; 126:9207-9221. [PMID: 36348631 DOI: 10.1021/acs.jpcb.2c06168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA-protein complexes use diverse binding strategies, ranging from structurally well-defined interfaces to completely disordered regions. Experimental characterization of flexible segments is challenging and can be aided by atomistic molecular dynamics (MD) simulations. Here, we used an extended set of microsecond-scale MD trajectories (400 μs in total) to study two FUS-RNA constructs previously characterized by nuclear magnetic resonance (NMR) spectroscopy. The FUS protein contains a well-structured RNA recognition motif domain followed by a presumably disordered RGG tail that binds RNA stem-loop hairpins. Our simulations not only provide several suggestions complementing the experiments but also reveal major methodological difficulties in studies of such complex RNA-protein interfaces. Despite efforts to stabilize the binding via system-specific force-field adjustments, we have observed progressive distortions of the RNA-protein interface inconsistent with experimental data. We propose that the dynamics is so rich that its converged description is not achievable even upon stabilizing the system. Still, after careful analysis of the trajectories, we have made several suggestions regarding the binding. We identify substates in the RNA loops, which can explain the NMR data. The RGG tail localized in the minor groove remains disordered, sampling countless transient interactions with the RNA. There are long-range couplings among the different elements contributing to the recognition, which can lead to allosteric communication throughout the system. Overall, the RNA-FUS systems form dynamical ensembles that cannot be fully represented by single static structures. Thus, albeit imperfect, MD simulations represent a viable tool to investigate dynamic RNA-protein complexes.
Collapse
Affiliation(s)
- Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Sébastien Campagne
- INSERM U1212, CNRS UMR 5320, ARNA Laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
26
|
Strohm L, Hu Z, Suk Y, Rühmkorf A, Sternburg E, Gattringer V, Riemenschneider H, Berutti R, Graf E, Weishaupt JH, Brill MS, Harbauer AB, Dormann D, Dengjel J, Edbauer D, Behrends C. Multi-omics profiling identifies a deregulated FUS-MAP1B axis in ALS/FTD-associated UBQLN2 mutants. Life Sci Alliance 2022; 5:5/11/e202101327. [PMID: 35777956 PMCID: PMC9258132 DOI: 10.26508/lsa.202101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Analysis of ALS patient-derived and engineered cells revealed that mutant UBQLN2 increases mRNA and protein of MAP1B which is mediated by dephosphorylation of FUS within its RNA-binding domain. Ubiquilin-2 (UBQLN2) is a ubiquitin-binding protein that shuttles ubiquitinated proteins to proteasomal and autophagic degradation. UBQLN2 mutations are genetically linked to the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). However, it remains elusive how UBQLN2 mutations cause ALS/FTD. Here, we systematically examined proteomic and transcriptomic changes in patient-derived lymphoblasts and CRISPR/Cas9–engineered HeLa cells carrying ALS/FTD UBQLN2 mutations. This analysis revealed a strong up-regulation of the microtubule-associated protein 1B (MAP1B) which was also observed in UBQLN2 knockout cells and primary rodent neurons depleted of UBQLN2, suggesting that a UBQLN2 loss-of-function mechanism is responsible for the elevated MAP1B levels. Consistent with MAP1B’s role in microtubule binding, we detected an increase in total and acetylated tubulin. Furthermore, we uncovered that UBQLN2 mutations result in decreased phosphorylation of MAP1B and of the ALS/FTD–linked fused in sarcoma (FUS) protein at S439 which is critical for regulating FUS-RNA binding and MAP1B protein abundance. Together, our findings point to a deregulated UBQLN2-FUS-MAP1B axis that may link protein homeostasis, RNA metabolism, and cytoskeleton dynamics, three molecular pathomechanisms of ALS/FTD.
Collapse
Affiliation(s)
- Laura Strohm
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Yongwon Suk
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alina Rühmkorf
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Erin Sternburg
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vanessa Gattringer
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Henrick Riemenschneider
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany.,German Center for Neurodegenerative Diseases Munich, Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Graf
- Institut für Humangenetik, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jochen H Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | | | - Angelika B Harbauer
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.,Max Planck Institute of Neurobiology, Martinsried, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Dorothee Dormann
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Molecule Biology, Mainz, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dieter Edbauer
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany.,German Center for Neurodegenerative Diseases Munich, Munich, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| |
Collapse
|
27
|
Chen PC, Han X, Shaw TI, Fu Y, Sun H, Niu M, Wang Z, Jiao Y, Teubner BJW, Eddins D, Beloate LN, Bai B, Mertz J, Li Y, Cho JH, Wang X, Wu Z, Liu D, Poudel S, Yuan ZF, Mancieri A, Low J, Lee HM, Patton MH, Earls LR, Stewart E, Vogel P, Hui Y, Wan S, Bennett DA, Serrano GE, Beach TG, Dyer MA, Smeyne RJ, Moldoveanu T, Chen T, Wu G, Zakharenko SS, Yu G, Peng J. Alzheimer's disease-associated U1 snRNP splicing dysfunction causes neuronal hyperexcitability and cognitive impairment. NATURE AGING 2022; 2:923-940. [PMID: 36636325 PMCID: PMC9833817 DOI: 10.1038/s43587-022-00290-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Recent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment. Specifically, N40K-Tg shows the reduction of GABAergic synapse components (e.g., the GABA receptor subunit of GABRA2), and concomitant postsynaptic hyperexcitability that is rescued by a GABA receptor agonist. Crossing of N40K-Tg and the 5xFAD amyloidosis model indicates that the RNA splicing defect synergizes with the amyloid cascade to remodel the brain transcriptome and proteome, deregulate synaptic proteins, and accelerate cognitive decline. Thus, our results support the contribution of U1 snRNP-mediated splicing dysfunction to AD pathogenesis.
Collapse
Affiliation(s)
- Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Timothy I. Shaw
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Yingxue Fu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J. W. Teubner
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Donnie Eddins
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lauren N. Beloate
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Biomedical Engineering and Electrical Engineering, Penn State University, State College, PA 16801, USA
| | - Bing Bai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Laboratory Medicine, Center for Precision Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Joseph Mertz
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: GlaxoSmithKline, Rockville, MD 20850, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xusheng Wang
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Present address: Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Suresh Poudel
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ariana Mancieri
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hyeong-Min Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary H. Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laurie R. Earls
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Biological Sciences, Loyola University of New Orleans, LA 70118, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yawei Hui
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David A. Bennett
- Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard J. Smeyne
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AK 72205, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gang Yu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Present address: Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
28
|
Portelli S, Albanaz A, Pires DEV, Ascher DB. Identifying the molecular drivers of ALS-implicated missense mutations. J Med Genet 2022; 60:484-490. [PMID: 36180205 DOI: 10.1136/jmg-2022-108798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressively fatal, neurodegenerative disease associated with both motor and non-motor symptoms, including frontotemporal dementia. Approximately 10% of cases are genetically inherited (familial ALS), while the majority are sporadic. Mutations across a wide range of genes have been associated; however, the underlying molecular effects of these mutations and their relation to phenotypes remain poorly explored. METHODS We initially curated an extensive list (n=1343) of missense mutations identified in the clinical literature, which spanned across 111 unique genes. Of these, mutations in genes SOD1, FUS and TDP43 were analysed using in silico biophysical tools, which characterised changes in protein stability, interactions, localisation and function. The effects of pathogenic and non-pathogenic mutations within these genes were statistically compared to highlight underlying molecular drivers. RESULTS Compared with previous ALS-dedicated databases, we have curated the most extensive missense mutation database to date and observed a twofold increase in unique implicated genes, and almost a threefold increase in the number of mutations. Our gene-specific analysis identified distinct molecular drivers across the different proteins, where SOD1 mutations primarily reduced protein stability and dimer formation, and those in FUS and TDP-43 were present within disordered regions, suggesting different mechanisms of aggregate formation. CONCLUSION Using our three genes as case studies, we identified distinct insights which can drive further research to better understand ALS. The information curated in our database can serve as a resource for similar gene-specific analyses, further improving the current understanding of disease, crucial for the development of treatment strategies.
Collapse
Affiliation(s)
- Stephanie Portelli
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia .,SCMB, The University of Queensland, Saint Lucia Campus, Saint Lucia, Queensland, Australia.,Systems and Computational Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Douglas Eduardo Valente Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia .,School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - David Benjamin Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia .,SCMB, The University of Queensland, Saint Lucia Campus, Saint Lucia, Queensland, Australia.,Systems and Computational Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Wu S, Yin Y, Du L. FUS aggregation following ischemic stroke favors brain astrocyte activation through inducing excessive autophagy. Exp Neurol 2022; 355:114144. [PMID: 35718207 DOI: 10.1016/j.expneurol.2022.114144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/04/2022]
Abstract
As is the case with neurodegenerative diseases, abnormal accumulation of aggregated proteins in neurons and glial are also known to implicate in the pathogenesis of ischemic stroke. However, the potential role of protein aggregates in brain ischemia remains largely unknown. Fused in Sarcoma (FUS) protein has a vital role in RNA metabolism and regulating cellular homeostasis. FUS pathology has been demonstrated in the formation of toxic aggregates and critically affecting cell viability in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but whether this also applies to neurological injury following cerebral ischemia is unclear. Herein, we demonstrated a critical role of aggregated FUS in astrocyte activation caused by cerebral ischemia and a possible underlying molecular mechanism. Cerebral ischemic injury significantly induced the formation of cytoplasmic FUS aggregates in reactive astrocytes and injured neurons, thereby aggravating neurofunctional damages and worsening stroke outcomes. Further analysis revealed that extranuclear aggregation of FUS in astrocytes was involved in the induction of excessive autophagy, which contributes to autophagic cell injury or death. In conclusion, our results reveal the important contribution of FUS aggregates in promoting astrocyte activation in stroke pathology independent of its transcriptional regulation activity. We thus propose that aggregation of FUS is an important pathological process in ischemic stroke and targeting FUS aggregates might be of unique therapeutic value in the development of future treatment strategies for ischemic stroke.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuye Yin
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
30
|
Nakaya T. A specific gene-splicing alteration in the SNRNP70 gene as a hallmark of an ALS subtype. Gene 2022; 818:146203. [PMID: 35101583 DOI: 10.1016/j.gene.2022.146203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) has been considered as one of the progressive neurodegenerative diseases. Numerous genetic factors in divergent molecular pathways have been identified as causative factors of ALS. However, the underlying molecular mechanism that causes this disease remains undetermined; as a result, this has driven the search to find consensus disease-specific hallmarks. In this study, we focused on the alteration of the ratio of two specific gene-splicing events in the SNRNP70 gene from RNA-seq data derived from patients with ALS and control subjects. The splicing profile was significantly and specifically changed in one previously identified ALS subtype. Conversely, the gene expression profile of other ALS cases containing a splicing alteration in the SNRNP70 gene was similar to that of the subtype, whereas ALS cases without this change have exhibited less similarity. These results indicate that this splicing event in the SNRNP70 gene could represent a novel and broadly applicable molecular hallmark of a subtype of ALS.
Collapse
Affiliation(s)
- Tadashi Nakaya
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan.
| |
Collapse
|
31
|
Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly. Proc Natl Acad Sci U S A 2022; 119:2114092119. [PMID: 35101980 PMCID: PMC8833184 DOI: 10.1073/pnas.2114092119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.
Collapse
|
32
|
Jobbins AM, Campagne S, Weinmeister R, Lucas CM, Gosliga AR, Clery A, Chen L, Eperon LP, Hodson MJ, Hudson AJ, Allain FHT, Eperon IC. Exon-independent recruitment of SRSF1 is mediated by U1 snRNP stem-loop 3. EMBO J 2022; 41:e107640. [PMID: 34779515 PMCID: PMC8724738 DOI: 10.15252/embj.2021107640] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single-molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1-independent process of binding to an ESE. Structural analysis and cross-linking data show that SRSF1 contacts U1 snRNA stem-loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5'SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals.
Collapse
Affiliation(s)
- Andrew M Jobbins
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Present address:
MRC London Institute of Medical SciencesLondonUK
- Present address:
Institute of Clinical SciencesImperial College LondonLondonUK
| | - Sébastien Campagne
- Institute of BiochemistryETH ZürichSwitzerland
- Present address:
Inserm U1212CNRS UMR5320ARNA LaboratoryBordeaux CedexFrance
| | - Robert Weinmeister
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Leicester Institute of Structural & Chemical Biology and Department of ChemistryUniversity of LeicesterLeicesterUK
| | - Christian M Lucas
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Alison R Gosliga
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Present address:
Institut für Industrielle GenetikAbt.(eilung) SystembiologieUniversität StuttgartStuttgartGermany
| | | | - Li Chen
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Lucy P Eperon
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Mark J Hodson
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Andrew J Hudson
- Leicester Institute of Structural & Chemical Biology and Department of ChemistryUniversity of LeicesterLeicesterUK
| | | | - Ian C Eperon
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| |
Collapse
|
33
|
Malard F, Mackereth CD, Campagne S. Principles and correction of 5'-splice site selection. RNA Biol 2022; 19:943-960. [PMID: 35866748 PMCID: PMC9311317 DOI: 10.1080/15476286.2022.2100971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022] Open
Abstract
In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.
Collapse
Affiliation(s)
- Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Cameron D Mackereth
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
34
|
Sahadevan S, Pérez-Berlanga M, Polymenidou M. Identification of RNA-RBP Interactions in Subcellular Compartments by CLIP-Seq. Methods Mol Biol 2022; 2428:305-323. [PMID: 35171488 DOI: 10.1007/978-1-0716-1975-9_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) allows the identification of RNA targets bound by a specific RNA-binding protein (RBP) in in vivo and ex vivo experimental models with high specificity. Due to the little RNA yield obtained after cross-linking, immunoprecipitation, polyacrylamide gel electrophoresis, membrane transfer, and RNA extraction, CLIP-seq is usually performed from relatively large amounts of starting material, like cell lysates or tissue homogenates. However, RBP binding of its specific RNA targets depends on its subcellular localization, and a different set of RNAs may be bound by the same RBP within distinct subcellular sites. To uncover these RNA subsets, preparation of CLIP-seq libraries from specific subcellular compartments and comparison to CLIP-seq datasets from total lysates is necessary, yet there are currently no available protocols for this. Here we describe the adaptation of CLIP-seq to identify the specific RNA targets of an RBP (FUS) at a small subcompartment, that is, neuronal synapses, including subcompartment isolation, RBP-RNA complex enrichment, and upscaling steps.
Collapse
Affiliation(s)
- Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
35
|
Jutzi D, Ruepp MD. Alternative Splicing in Human Biology and Disease. Methods Mol Biol 2022; 2537:1-19. [PMID: 35895255 DOI: 10.1007/978-1-0716-2521-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative pre-mRNA splicing allows for the production of multiple mRNAs from an individual gene, which not only expands the protein-coding potential of the genome but also enables complex mechanisms for the post-transcriptional control of gene expression. Regulation of alternative splicing entails a combinatorial interplay between an abundance of trans-acting splicing factors, cis-acting regulatory sequence elements and their concerted effects on the core splicing machinery. Given the extent and biological significance of alternative splicing in humans, it is not surprising that aberrant splicing patterns can cause or contribute to a wide range of diseases. In this introductory chapter, we outline the mechanisms that govern alternative pre-mRNA splicing and its regulation and discuss how dysregulated splicing contributes to human diseases affecting the motor system and the brain.
Collapse
Affiliation(s)
- Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| |
Collapse
|
36
|
Campagne S, de Vries T, Allain FHT. Probing the Interactions of Splicing Regulatory Small Molecules and Proteins with U1 snRNP Using NMR Spectroscopy. Methods Mol Biol 2022; 2537:247-262. [PMID: 35895269 DOI: 10.1007/978-1-0716-2521-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative RNA splicing is an essential part of gene expression that not only increases the protein diversity of metazoan but also provides an additional layer of gene expression regulation. The U1 small ribonucleoparticle (U1 snRNP) plays an essential role in seeding spliceosome assembly and its binding on weak 5'-splice sites is regulated by transient interactions with splicing factors. Recent progress in allele specific splicing correction has shown the therapeutic potential offered by small molecule splicing modifiers that specifically promotes the recruitment of U1 snRNP to modulate alternative splicing and gene expression. Here, we described a method to reconstitute U1 snRNP in vitro and to study labile interactions with protein or synthetic splicing factors using solution state NMR spectroscopy. This approach allowed us to validate direct interactions between splicing regulators and U1 snRNP and could also be useful for the screening of small molecules acting on splicing regulation.
Collapse
Affiliation(s)
- Sébastien Campagne
- ARNA Laboratory, INSERM U1212, CNRS 5320, University of Bordeaux, Bordeaux, France.
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Tebbe de Vries
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| |
Collapse
|
37
|
Zhang S, Sun J, Gu M, Wang G, Wang X. Circular RNA: A promising new star for the diagnosis and treatment of colorectal cancer. Cancer Med 2021; 10:8725-8740. [PMID: 34796685 PMCID: PMC8683543 DOI: 10.1002/cam4.4398] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract. According to the research of circular RNAs in the CRC field, compared with linear RNAs, circular RNAs are a special type of noncoding RNA that are covalently closed circular structures, which have no 5' cap structure and 3' polyA tail and are not affected by RNA exonuclease and actinomycin D. Biological functions Notably, circular RNAs have a high degree of stability and potential effect on gene regulation. Meanwhile, circular RNAs are involved in the sponge action of microRNAs and mediate protein translation and direct binding, alternative splicing, and histone modification. Relationships with CRC Studies have shown that circular RNAs are related to the proliferation, invasion, recurrence, metastasis, ferroptosis, apoptosis, and chemotherapy resistance of CRC. Conclusions This article provides a brief review based on the source, structural characteristics, mechanisms, biological functions of circular RNAs, and the relationships between CRC.
Collapse
Affiliation(s)
- Shunhao Zhang
- Graduate School of Nantong University, Nantong, China
| | - Jing Sun
- Graduate School of Nantong University, Nantong, China
| | - Minqi Gu
- Graduate School of Nantong University, Nantong, China
| | - Guihua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
38
|
Cao D. An autoregulation loop in fust-1 for circular RNA regulation in Caenorhabditis elegans. Genetics 2021; 219:iyab145. [PMID: 34740247 PMCID: PMC8570788 DOI: 10.1093/genetics/iyab145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Many circular RNAs (circRNAs) are differentially expressed in different tissues or cell types, suggestive of specific factors that regulate their biogenesis. Here, taking advantage of available mutation strains of RNA-binding proteins (RBPs) in Caenorhabditis elegans, I performed a screening of circRNA regulation in 13 conserved RBPs. Among them, loss of FUST-1, the homolog of Fused in Sarcoma (FUS), caused downregulation of multiple circRNAs. By rescue experiments, I confirmed FUST-1 as a circRNA regulator. Through RNA sequencing using circRNA-enriched samples, circRNAs targets regulated by FUST-1 were identified globally, with hundreds of them significantly altered. Furthermore, I showed that FUST-1 regulates circRNA formation with only small to little effect on the cognate linear mRNAs. When recognizing circRNA pre-mRNAs, FUST-1 can affect both exon-skipping and circRNA in the same genes. Moreover, I identified an autoregulation loop in fust-1, where FUST-1, isoform a (FUST-1A) promotes the skipping of exon 5 of its own pre-mRNA, which produces FUST-1, isoform b (FUST-1B) with different N-terminal sequences. FUST-1A is the functional isoform in circRNA regulation. Although FUST-1B has the same functional domains as FUST-1A, it cannot regulate either exon-skipping or circRNA formation. This study provided an in vivo investigation of circRNA regulation, which will be helpful to understand the mechanisms that govern circRNA formation.
Collapse
Affiliation(s)
- Dong Cao
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
39
|
Rossi S, Cozzolino M. Dysfunction of RNA/RNA-Binding Proteins in ALS Astrocytes and Microglia. Cells 2021; 10:cells10113005. [PMID: 34831228 PMCID: PMC8616248 DOI: 10.3390/cells10113005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic Lateral Sclerosis is a neurological disease that primarily affects motor neurons in the cortex, brainstem, and spinal cord. The process that leads to motor neuron degeneration is strongly influenced by non-motor neuronal events that occur in a variety of cell types. Among these, neuroinflammatory processes mediated by activated astrocytes and microglia play a relevant role. In recent years, it has become clear that dysregulation of essential steps of RNA metabolism, as a consequence of alterations in RNA-binding proteins (RBPs), is a central event in the degeneration of motor neurons. Yet, a causal link between dysfunctional RNA metabolism and the neuroinflammatory processes mediated by astrocytes and microglia in ALS has been poorly defined. In this review, we will discuss the available evidence showing that RBPs and associated RNA processing are affected in ALS astrocytes and microglia, and the possible mechanisms involved in these events.
Collapse
|
40
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
41
|
Kumar A, Chakraborty D, Mugnai ML, Straub JE, Thirumalai D. Sequence Determines the Switch in the Fibril Forming Regions in the Low-Complexity FUS Protein and Its Variants. J Phys Chem Lett 2021; 12:9026-9032. [PMID: 34516126 PMCID: PMC8826754 DOI: 10.1021/acs.jpclett.1c02310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Residues spanning distinct regions of the low-complexity domain of the RNA-binding protein, Fused in Sarcoma (FUS-LC), form fibril structures with different core morphologies. Solid-state NMR experiments show that the 214-residue FUS-LC forms a fibril with an S-bend (core-1, residues 39-95), while the rest of the protein is disordered. In contrast, the fibrils of the C-terminal variant (FUS-LC-C; residues 111-214) have a U-bend topology (core-2, residues 112-150). Absence of the U-bend in FUS-LC implies that the two fibril cores do not coexist. Computer simulations show that these perplexing findings could be understood in terms of the population of sparsely populated fibril-like excited states in the monomer. The propensity to form core-1 is higher compared to core-2. We predict that core-2 forms only in truncated variants that do not contain the core-1 sequence. At the monomer level, sequence-dependent enthalpic effects determine the relative stabilities of the core-1 and core-2 topologies.
Collapse
Affiliation(s)
- Abhinaw Kumar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mauro Lorenzo Mugnai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
42
|
Reber S, Jutzi D, Lindsay H, Devoy A, Mechtersheimer J, Levone BR, Domanski M, Bentmann E, Dormann D, Mühlemann O, Barabino SML, Ruepp MD. The phase separation-dependent FUS interactome reveals nuclear and cytoplasmic function of liquid-liquid phase separation. Nucleic Acids Res 2021; 49:7713-7731. [PMID: 34233002 PMCID: PMC8287939 DOI: 10.1093/nar/gkab582] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) of proteins and RNAs has emerged as the driving force underlying the formation of membrane-less organelles. Such biomolecular condensates have various biological functions and have been linked to disease. The protein Fused in Sarcoma (FUS) undergoes LLPS and mutations in FUS have been causally linked to the motor neuron disease Amyotrophic Lateral Sclerosis (ALS-FUS). LLPS followed by aggregation of cytoplasmic FUS has been proposed to be a crucial disease mechanism. However, it is currently unclear how LLPS impacts the behaviour of FUS in cells, e.g. its interactome. Hence, we developed a method allowing for the purification of LLPS FUS-containing droplets from cell lysates. We observe substantial alterations in the interactome, depending on its biophysical state. While non-LLPS FUS interacts mainly with factors involved in pre-mRNA processing, LLPS FUS predominantly binds to proteins involved in chromatin remodelling and DNA damage repair. Interestingly, also mitochondrial factors are strongly enriched with LLPS FUS, providing a potential explanation for the observed changes in mitochondrial gene expression in mouse models of ALS-FUS. In summary, we present a methodology to investigate the interactomes of phase separating proteins and provide evidence that LLPS shapes the FUS interactome with implications for function and disease.
Collapse
Affiliation(s)
- Stefan Reber
- United Kingdom Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Daniel Jutzi
- United Kingdom Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Helen Lindsay
- Department of Mathematics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anny Devoy
- United Kingdom Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Jonas Mechtersheimer
- United Kingdom Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Brunno Rocha Levone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Eva Bentmann
- Biomedical Center (BMC), Cell Biology, Ludwig Maximilians University Munich, Germany
| | - Dorothee Dormann
- Biomedical Center (BMC), Cell Biology, Ludwig Maximilians University Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Silvia M L Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| |
Collapse
|
43
|
Campagne S, de Vries T, Malard F, Afanasyev P, Dorn G, Dedic E, Kohlbrecher J, Boehringer D, Cléry A, Allain FHT. An in vitro reconstituted U1 snRNP allows the study of the disordered regions of the particle and the interactions with proteins and ligands. Nucleic Acids Res 2021; 49:e63. [PMID: 33677607 PMCID: PMC8216277 DOI: 10.1093/nar/gkab135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon–intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.
Collapse
Affiliation(s)
- Sébastien Campagne
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Tebbe de Vries
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Florian Malard
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Pavel Afanasyev
- Cryo-EM Knowledge Hub (CEMK), ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Georg Dorn
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Emil Dedic
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | | | - Daniel Boehringer
- Cryo-EM Knowledge Hub (CEMK), ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Antoine Cléry
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| |
Collapse
|
44
|
Martelly W, Fellows B, Kang P, Vashisht A, Wohlschlegel JA, Sharma S. Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing. RNA Biol 2021; 18:2576-2593. [PMID: 34105434 DOI: 10.1080/15476286.2021.1932360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
During spliceosome assembly, interactions that bring the 5' and 3' ends of an intron in proximity are critical for the production of mature mRNA. Here, we report synergistic roles for the stem-loops 3 (SL3) and 4 (SL4) of the human U1 small nuclear RNA (snRNA) in maintaining the optimal U1 snRNP function, and formation of cross-intron contact with the U2 snRNP. We find that SL3 and SL4 bind distinct spliceosomal proteins and combining a U1 snRNA activity assay with siRNA-mediated knockdown, we demonstrate that SL3 and SL4 act through the RNA helicase UAP56 and the U2 protein SF3A1, respectively. In vitro analysis using UV crosslinking and splicing assays indicated that SL3 likely promotes the SL4-SF3A1 interaction leading to enhancement of A complex formation and pre-mRNA splicing. Overall, these results highlight the vital role of the distinct contacts of SL3 and SL4 in bridging the pre-mRNA bound U1 and U2 snRNPs during the early steps of human spliceosome assembly.
Collapse
Affiliation(s)
- William Martelly
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bernice Fellows
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Paul Kang
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|
45
|
ALS-linked FUS mutants affect the localization of U7 snRNP and replication-dependent histone gene expression in human cells. Sci Rep 2021; 11:11868. [PMID: 34088960 PMCID: PMC8178370 DOI: 10.1038/s41598-021-91453-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
Abstract
Genes encoding replication-dependent histones lack introns, and the mRNAs produced are a unique class of RNA polymerase II transcripts in eukaryotic cells that do not end in a polyadenylated tail. Mature mRNAs are thus formed by a single endonucleolytic cleavage that releases the pre-mRNA from the DNA and is the only processing event necessary. U7 snRNP is one of the key factors that determines the cleavage site within the 3ʹUTR of replication-dependent histone pre-mRNAs. We have previously showed that the FUS protein interacts with U7 snRNA/snRNP and regulates the expression of histone genes by stimulating transcription and 3ʹ end maturation. Mutations in the FUS gene first identified in patients with amyotrophic lateral sclerosis (ALS) lead to the accumulation of the FUS protein in cytoplasmic inclusions. Here, we report that mutations in FUS lead to disruption of the transcriptional activity of FUS and mislocalization of U7 snRNA/snRNP in cytoplasmic aggregates in cellular models and primary neurons. As a consequence, decreased transcriptional efficiency and aberrant 3ʹ end processing of histone pre-mRNAs were observed. This study highlights for the first time the deregulation of replication-dependent histone gene expression and its involvement in ALS.
Collapse
|
46
|
Sahadevan S, Hembach KM, Tantardini E, Pérez-Berlanga M, Hruska-Plochan M, Megat S, Weber J, Schwarz P, Dupuis L, Robinson MD, De Rossi P, Polymenidou M. Synaptic FUS accumulation triggers early misregulation of synaptic RNAs in a mouse model of ALS. Nat Commun 2021; 12:3027. [PMID: 34021139 PMCID: PMC8140117 DOI: 10.1038/s41467-021-23188-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mutations disrupting the nuclear localization of the RNA-binding protein FUS characterize a subset of amyotrophic lateral sclerosis patients (ALS-FUS). FUS regulates nuclear RNAs, but its role at the synapse is poorly understood. Using super-resolution imaging we determined that the localization of FUS within synapses occurs predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosomes, we identified synaptic FUS RNA targets, encoding proteins associated with synapse organization and plasticity. Significant increase of synaptic FUS during early disease in a mouse model of ALS was accompanied by alterations in density and size of GABAergic synapses. mRNAs abnormally accumulated at the synapses of 6-month-old ALS-FUS mice were enriched for FUS targets and correlated with those depicting increased short-term mRNA stability via binding primarily on multiple exonic sites. Our study indicates that synaptic FUS accumulation in early disease leads to synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Collapse
Affiliation(s)
- Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Katharina M Hembach
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | | | | - Salim Megat
- Inserm, University of Strasbourg, Strasbourg, France
| | - Julien Weber
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zürich, Switzerland
| | - Luc Dupuis
- Inserm, University of Strasbourg, Strasbourg, France
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
47
|
Rapidly Growing Protein-Centric Technologies to Extensively Identify Protein-RNA Interactions: Application to the Analysis of Co-Transcriptional RNA Processing. Int J Mol Sci 2021; 22:ijms22105312. [PMID: 34070162 PMCID: PMC8158511 DOI: 10.3390/ijms22105312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
During mRNA transcription, diverse RNA-binding proteins (RBPs) are recruited to RNA polymerase II (RNAP II) transcription machinery. These RBPs bind to distinct sites of nascent RNA to co-transcriptionally operate mRNA processing. Recent studies have revealed a close relationship between transcription and co-transcriptional RNA processing, where one affects the other’s activity, indicating an essential role of protein–RNA interactions for the fine-tuning of mRNA production. Owing to their limited amount in cells, the detection of protein–RNA interactions specifically assembled on the transcribing RNAP II machinery still remains challenging. Currently, cross-linking and immunoprecipitation (CLIP) has become a standard method to detect in vivo protein–RNA interactions, although it requires a large amount of input materials. Several improved methods, such as infrared-CLIP (irCLIP), enhanced CLIP (eCLIP), and target RNA immunoprecipitation (tRIP), have shown remarkable enhancements in the detection efficiency. Furthermore, the utilization of an RNA editing mechanism or proximity labeling strategy has achieved the detection of faint protein–RNA interactions in cells without depending on crosslinking. This review aims to explore various methods being developed to detect endogenous protein–RNA interaction sites and discusses how they may be applied to the analysis of co-transcriptional RNA processing.
Collapse
|
48
|
Harley J, Clarke BE, Patani R. The Interplay of RNA Binding Proteins, Oxidative Stress and Mitochondrial Dysfunction in ALS. Antioxidants (Basel) 2021; 10:antiox10040552. [PMID: 33918215 PMCID: PMC8066094 DOI: 10.3390/antiox10040552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Jasmine Harley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E. Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence: (B.E.C.); (R.P.)
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Hospital for Neurology and Neurosurgery, University College London NHS, London WC1N 3BG, UK
- Correspondence: (B.E.C.); (R.P.)
| |
Collapse
|