1
|
Schaefer T, Mittal N, Wang H, Ataman M, Candido S, Lötscher J, Velychko S, Tintignac L, Bock T, Börsch A, Baßler J, Rao TN, Zmajkovic J, Roffeis S, Löliger J, Jacob F, Dumlin A, Schürch C, Schmidt A, Skoda RC, Wymann MP, Hess C, Schöler HR, Zaehres H, Hurt E, Zavolan M, Lengerke C. Nuclear and cytosolic fractions of SOX2 synergize as transcriptional and translational co-regulators of cell fate. Cell Rep 2024; 43:114807. [PMID: 39368083 DOI: 10.1016/j.celrep.2024.114807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/28/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024] Open
Abstract
Stemness and pluripotency are mediated by transcriptional master regulators that promote self-renewal and repress cell differentiation, among which is the high-mobility group (HMG) box transcription factor SOX2. Dysregulated SOX2 expression, by contrast, leads to transcriptional aberrations relevant to oncogenic transformation, cancer progression, metastasis, therapy resistance, and relapse. Here, we report a post-transcriptional mechanism by which the cytosolic pool of SOX2 contributes to these events in an unsuspected manner. Specifically, a low-complexity region within SOX2's C-terminal segment connects to the ribosome to modulate the expression of cognate downstream factors. Independent of nuclear structures or DNA, this C-terminal functionality alone changes metabolic properties and induces non-adhesive growth when expressed in the cytosol of SOX2 knockout cells. We thus propose a revised model of SOX2 action where nuclear and cytosolic fractions cooperate to impose cell fate decisions via both transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- Thorsten Schaefer
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| | | | - Hui Wang
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland; Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Meric Ataman
- Biozentrum, University of Basel, Basel, Switzerland
| | - Silvia Candido
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Jonas Lötscher
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lionel Tintignac
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Jochen Baßler
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Tata Nageswara Rao
- Medical Research Center, Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland; Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Jakub Zmajkovic
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland; Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Sarah Roffeis
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Jordan Löliger
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Francis Jacob
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Alain Dumlin
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Christoph Schürch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Radek C Skoda
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Christoph Hess
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland; CITIID, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Holm Zaehres
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Ed Hurt
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland; Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Tang X, Huang Y, Fu W, Wang P, Feng L, Yang J, Zhu H, Huang X, Ming Q, Li P. Digirseophene A promotes recovery in injured developing cerebellum via AMPK/AKT/GSK3β pathway-mediated neural stem cell proliferation. Biomed Pharmacother 2024; 177:117046. [PMID: 38981241 DOI: 10.1016/j.biopha.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3β inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Xiangyu Tang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Yuting Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Wenying Fu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Pengbo Wang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Liyuan Feng
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Jie Yang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Hongyan Zhu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Xiuning Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Qianliang Ming
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| | - Peng Li
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| |
Collapse
|
3
|
Ghafoori SM, Sethi A, Petersen GF, Tanipour MH, Gooley PR, Forwood JK. RNA Binding Properties of SOX Family Members. Cells 2024; 13:1202. [PMID: 39056784 PMCID: PMC11274882 DOI: 10.3390/cells13141202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
SOX proteins are a family of transcription factors (TFs) that play critical functions in sex determination, neurogenesis, and chondrocyte differentiation, as well as cardiac, vascular, and lymphatic development. There are 20 SOX family members in humans, each sharing a 79-residue L-shaped high mobility group (HMG)-box domain that is responsible for DNA binding. SOX2 was recently shown to interact with long non-coding RNA and large-intergenic non-coding RNA to regulate embryonic stem cell and neuronal differentiation. The RNA binding region was shown to reside within the HMG-box domain; however, the structural details of this binding remain unclear. Here, we show that all SOX family members, except group H, interact with RNA. Our mutational experiments demonstrate that the disordered C-terminal region of the HMG-box domain plays an important role in RNA binding. Further, by determining a high-resolution structure of the HMG-box domain of the group H family member SOX30, we show that despite differences in RNA binding ability, SOX30 shares a very similar secondary structure with other SOX protein HMG-box domains. Together, our study provides insight into the interaction of SOX TFs with RNA.
Collapse
Affiliation(s)
- Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Ashish Sethi
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; (A.S.); (M.H.T.); (P.R.G.)
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168, Australia
| | - Gayle F. Petersen
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Mohammad Hossein Tanipour
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; (A.S.); (M.H.T.); (P.R.G.)
| | - Paul R. Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; (A.S.); (M.H.T.); (P.R.G.)
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| |
Collapse
|
4
|
Cross EM, Akbari N, Ghassabian H, Hoad M, Pavan S, Ariawan D, Donnelly CM, Lavezzo E, Petersen GF, Forwood JK, Alvisi G. A functional and structural comparative analysis of large tumor antigens reveals evolution of different importin α-dependent nuclear localization signals. Protein Sci 2024; 33:e4876. [PMID: 38108201 PMCID: PMC10807245 DOI: 10.1002/pro.4876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Nucleocytoplasmic transport regulates the passage of proteins between the nucleus and cytoplasm. In the best characterized pathway, importin (IMP) α bridges cargoes bearing basic, classical nuclear localization signals (cNLSs) to IMPβ1, which mediates transport through the nuclear pore complex. IMPα recognizes three types of cNLSs via two binding sites: the major binding site accommodates monopartite cNLSs, the minor binding site recognizes atypical cNLSs, while bipartite cNLSs simultaneously interact with both major and minor sites. Despite the growing knowledge regarding IMPα-cNLS interactions, our understanding of the evolution of cNLSs is limited. We combined bioinformatic, biochemical, functional, and structural approaches to study this phenomenon, using polyomaviruses (PyVs) large tumor antigens (LTAs) as a model. We characterized functional cNLSs from all human (H)PyV LTAs, located between the LXCXE motif and origin binding domain. Surprisingly, the prototypical SV40 monopartite NLS is not well conserved; HPyV LTA NLSs are extremely heterogenous in terms of structural organization, IMPα isoform binding, and nuclear targeting abilities, thus influencing the nuclear accumulation properties of full-length proteins. While several LTAs possess bipartite cNLSs, merkel cell PyV contains a hybrid bipartite cNLS whose upstream stretch of basic amino acids can function as an atypical cNLS, specifically binding to the IMPα minor site upon deletion of the downstream amino acids after viral integration in the host genome. Therefore, duplication of a monopartite cNLS and subsequent accumulation of point mutations, optimizing interaction with distinct IMPα binding sites, led to the evolution of bipartite and atypical NLSs binding at the minor site.
Collapse
Affiliation(s)
- Emily M. Cross
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
- Diamond Light SourceHarwell Science and Innovation CampusDidcotUnited Kingdom
| | - Nasim Akbari
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | | | - Mikayla Hoad
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
| | - Silvia Pavan
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Daryl Ariawan
- Dementia Research CentreMacquarie UniversitySydneyAustralia
| | - Camilla M. Donnelly
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
| | - Enrico Lavezzo
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | | | - Jade K. Forwood
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
- Gulbali InstituteCharles Sturt UniversityWagga WaggaAustralia
| | | |
Collapse
|
5
|
Ventura C, Banerjee A, Zacharopoulou M, Itzhaki LS, Bahar I. Tandem-repeat proteins conformational mechanics are optimized to facilitate functional interactions and complexations. Curr Opin Struct Biol 2024; 84:102744. [PMID: 38134536 DOI: 10.1016/j.sbi.2023.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
The architectures of tandem-repeat proteins are distinct from those of globular proteins. Individual modules, each comprising small structural motifs of 20-40 residues, are arrayed in a quasi one-dimensional fashion to form striking, elongated, horseshoe-like, and superhelical architectures, stabilized solely by short-range interaction. The spring-like shapes of repeat arrays point to elastic modes of action, and these proteins function as adapter molecules or 'hubs,' propagating signals within multi-subunit assemblies in diverse biological contexts. This flexibility is apparent in the dramatic variability observed in the structures of tandem-repeat proteins in different complexes. Here, using computational analysis, we demonstrate the striking ability of just one or a few global motions to recapitulate these structures. These findings show how the mechanics of repeat arrays are robustly enabled by their unique architecture. Thus, the repeating architecture has been optimized by evolution to favor functional modes of motions. The global motions enabling functional transitions can be fully visualized at http://bahargroup.org/tr_web.
Collapse
Affiliation(s)
- Carlos Ventura
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Maria Zacharopoulou
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK. https://twitter.com/maria_zach_
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
6
|
Zhao H, Bi F, Li M, Diao Y, Zhang C. E3 ubiquitin ligase RNF180 impairs IPO4/SOX2 complex stability and inhibits SOX2-mediated malignancy in ovarian cancer. Cell Signal 2024; 113:110961. [PMID: 37923100 DOI: 10.1016/j.cellsig.2023.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
RING finger protein 180 (RNF180), an E3 ubiquitin ligase, is thought to be a tumor suppressor gene. However, the detailed mechanism of its effect on ovarian cancer (OV) has not been elucidated. Importin 4 (IPO4) which belongs to transport protein is reported to have cancer-promoting effects on OV. Here, we explored the potential signaling pathways related to RNF180 and IPO4. It was first verified that RNF180 is downregulated and IPO4 is upregulated in OV. By overexpressing or knocking down RNF180 in OV cells, we confirmed that RNF180 inhibited the malignant behaviors of OV cells both in vitro and in vivo. Bioinformatics analysis and proteomics experiments found that RNF180 could interact with IPO4 and promote the degradation of IPO4 through ubiquitination. In addition, overexpression of IPO4 removed the inhibitory effect of RNF180 on OV. We subsequently found that IPO4 could bind to the oncogene Sex determining Region Y-box 2 (SOX2). Knockdown of IPO4 in OV cells decreased SOX2 protein level in nucleus and promoted cyclin-dependent kinase inhibitory protein-1 (p21) expression. Overexpression of RNF180 also inhibited the expression of SOX2 in nucleus. All these results indicated that RNF180 inhibited the nuclear translocation of SOX2 by promoting ubiquitination of IPO4, which ultimately promoted the expression of p21 and then suppressed the progression of OV. This study verified the tumor suppressor effect of RNF180 on OV, elucidated the mechanism of the molecule network related to RNF180 and IPO4 in OV and identified for OV.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyuan Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuhan Diao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Ye P, Gu R, Zhu H, Chen J, Han F, Nie X. SOX family transcription factors as therapeutic targets in wound healing: A comprehensive review. Int J Biol Macromol 2023; 253:127243. [PMID: 37806414 DOI: 10.1016/j.ijbiomac.2023.127243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The SOX family plays a vital role in determining the fate of cells and has garnered attention in the fields of cancer research and regenerative medicine. It also shows promise in the study of wound healing, as it actively participates in the healing processes of various tissues such as skin, fractures, tendons, and the cornea. However, our understanding of the mechanisms behind the SOX family's involvement in wound healing is limited compared to its role in cancer. Gaining insight into its role, distribution, interaction with other factors, and modifications in traumatized tissues could provide valuable new knowledge about wound healing. Based on current research, SOX2, SOX7, and SOX9 are the most promising members of the SOX family for future interventions in wound healing. SOX2 and SOX9 promote the renewal of cells, while SOX7 enhances the microvascular environment. The SOX family holds significant potential for advancing wound healing research. This article provides a comprehensive review of the latest research advancements and therapeutic tools related to the SOX family in wound healing, as well as the potential benefits and challenges of targeting the SOX family for wound treatment.
Collapse
Affiliation(s)
- Penghui Ye
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Rifang Gu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China
| | - Huan Zhu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jitao Chen
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
8
|
Donnelly CM, Vogel OA, Edwards MR, Taylor PE, Roby JA, Forwood JK, Basler CF. Henipavirus Matrix Protein Employs a Non-Classical Nuclear Localization Signal Binding Mechanism. Viruses 2023; 15:1302. [PMID: 37376602 DOI: 10.3390/v15061302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic species from the Henipavirus genus within the paramyxovirus family and are harbored by Pteropus Flying Fox species. Henipaviruses cause severe respiratory disease, neural symptoms, and encephalitis in various animals and humans, with human mortality rates exceeding 70% in some NiV outbreaks. The henipavirus matrix protein (M), which drives viral assembly and budding of the virion, also performs non-structural functions as a type I interferon antagonist. Interestingly, M also undergoes nuclear trafficking that mediates critical monoubiquitination for downstream cell sorting, membrane association, and budding processes. Based on the NiV and HeV M X-ray crystal structures and cell-based assays, M possesses a putative monopartite nuclear localization signal (NLS) (residues 82KRKKIR87; NLS1 HeV), positioned on an exposed flexible loop and typical of how many NLSs bind importin alpha (IMPα), and a putative bipartite NLS (244RR-10X-KRK258; NLS2 HeV), positioned within an α-helix that is far less typical. Here, we employed X-ray crystallography to determine the binding interface of these M NLSs and IMPα. The interaction of both NLS peptides with IMPα was established, with NLS1 binding the IMPα major binding site, and NLS2 binding as a non-classical NLS to the minor site. Co-immunoprecipitation (co-IP) and immunofluorescence assays (IFA) confirm the critical role of NLS2, and specifically K258. Additionally, localization studies demonstrated a supportive role for NLS1 in M nuclear localization. These studies provide additional insight into the critical mechanisms of M nucleocytoplasmic transport, the study of which can provide a greater understanding of viral pathogenesis and uncover a potential target for novel therapeutics for henipaviral diseases.
Collapse
Affiliation(s)
- Camilla M Donnelly
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Olivia A Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan R Edwards
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Paige E Taylor
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Justin A Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Demchenko A, Kondrateva E, Tabakov V, Efremova A, Salikhova D, Bukharova T, Goldshtein D, Balyasin M, Bulatenko N, Amelina E, Lavrov A, Smirnikhina S. Airway and Lung Organoids from Human-Induced Pluripotent Stem Cells Can Be Used to Assess CFTR Conductance. Int J Mol Sci 2023; 24:ijms24076293. [PMID: 37047264 PMCID: PMC10094586 DOI: 10.3390/ijms24076293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Airway and lung organoids derived from human-induced pluripotent stem cells (hiPSCs) are current models for personalized drug screening, cell–cell interaction studies, and lung disease research. We analyzed the existing differentiation protocols and identified the optimal conditions for obtaining organoids. In this article, we describe a step-by-step protocol for differentiating hiPSCs into airway and lung organoids. We obtained airway and lung organoids from a healthy donor and from five donors with cystic fibrosis. Analysis of the cellular composition of airway and lung organoids showed that airway organoids contain proximal lung epithelial cells, while lung organoids contain both proximal and distal lung epithelial cells. Forskolin-induced swelling of organoids derived from a healthy donor showed that lung organoids, as well as airway organoids, contain functional epithelial cells and swell after 24 h exposure to forskolin, which makes it a suitable model for analyzing the cystic fibrosis transmembrane conductance regulator (CFTR) channel conductance in vitro. Thus, our results demonstrate the feasibility of generating and characterizing airway and lung organoids from hiPSCs, which can be used for a variety of future applications.
Collapse
|
10
|
Xie X, Wang X, Liu Q, Li Y, Dong Z, Wang L, Xia Q, Zhao P. The tissue-specific expression of silkworm cuticle protein gene ASSCP2 is mediated by the Sox-2 transcription factor. Int J Biol Macromol 2023; 237:124182. [PMID: 36972822 DOI: 10.1016/j.ijbiomac.2023.124182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
The silk gland of silkworm is a unique organ in which silk proteins are synthesized, secreted, and transformed into fibers. The anterior silk gland (ASG) is located at the end of the silk gland, and is thought to be involved in silk fibrosis. In our previous study, a cuticle protein, ASSCP2, was identified. This protein is specifically and highly expressed in the ASG. In this work, the transcriptional regulation mechanism of ASSCP2 gene was studied by a transgenic route. The ASSCP2 promoter was analyzed, truncated sequentially, and used to initiate the expression of EGFP gene in silkworm larvae. After egg injection, seven transgenic silkworm lines were isolated. Molecular analysis revealed that the green fluorescent signal could not be detected when the promoter was truncated to -257 bp, suggesting that the -357 to -257 sequence is the key region responsible for the transcriptional regulation of the ASSCP2 gene. Furthermore, an ASG specific transcription factor Sox-2 was identified. EMSA assays showed that Sox-2 binds with the -357 to -257 sequence, and thus regulates the tissue-specific expression of ASSCP2. This study on the transcriptional regulation of ASSCP2 gene provides theoretical and experimental basis for further studies of the regulatory mechanism of tissue-specific genes.
Collapse
Affiliation(s)
- Xiaoqian Xie
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Qingsong Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Yi Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Zhaoming Dong
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Lingyan Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Cassin J, Stamou MI, Keefe KW, Sung KE, Bojo CC, Tonsfeldt KJ, Rojas RA, Ferreira Lopes V, Plummer L, Salnikov KB, Keefe DL, Ozata M, Genel M, Georgopoulos NA, Hall JE, Crowley WF, Seminara SB, Mellon PL, Balasubramanian R. Heterozygous mutations in SOX2 may cause idiopathic hypogonadotropic hypogonadism via dominant-negative mechanisms. JCI Insight 2023; 8:e164324. [PMID: 36602867 PMCID: PMC9977424 DOI: 10.1172/jci.insight.164324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Pathogenic SRY-box transcription factor 2 (SOX2) variants typically cause severe ocular defects within a SOX2 disorder spectrum that includes hypogonadotropic hypogonadism. We examined exome-sequencing data from a large, well-phenotyped cohort of patients with idiopathic hypogonadotropic hypogonadism (IHH) for pathogenic SOX2 variants to investigate the underlying pathogenic SOX2 spectrum and its associated phenotypes. We identified 8 IHH individuals harboring heterozygous pathogenic SOX2 variants with variable ocular phenotypes. These variant proteins were tested in vitro to determine whether a causal relationship between IHH and SOX2 exists. We found that Sox2 was highly expressed in the hypothalamus of adult mice and colocalized with kisspeptin 1 (KISS1) expression in the anteroventral periventricular nucleus of adult female mice. In vitro, shRNA suppression of mouse SOX2 protein in Kiss-expressing cell lines increased the levels of human kisspeptin luciferase (hKiss-luc) transcription, while SOX2 overexpression repressed hKiss-luc transcription. Further, 4 of the identified SOX2 variants prevented this SOX2-mediated repression of hKiss-luc. Together, these data suggest that pathogenic SOX2 variants contribute to both anosmic and normosmic forms of IHH, attesting to hypothalamic defects in the SOX2 disorder spectrum. Our study describes potentially novel mechanisms contributing to SOX2-related disease and highlights the necessity of SOX2 screening in IHH genetic evaluation irrespective of associated ocular defects.
Collapse
Affiliation(s)
- Jessica Cassin
- Department of Obstetrics, Gynecology, and Reproductive Sciences; Center for Reproductive Science and Medicine; and
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Maria I. Stamou
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kimberly W. Keefe
- Center for Infertility and Reproductive Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Kaitlin E. Sung
- Department of Obstetrics, Gynecology, and Reproductive Sciences; Center for Reproductive Science and Medicine; and
| | - Celine C. Bojo
- Department of Obstetrics, Gynecology, and Reproductive Sciences; Center for Reproductive Science and Medicine; and
| | - Karen J. Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences; Center for Reproductive Science and Medicine; and
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Rebecca A. Rojas
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vanessa Ferreira Lopes
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lacey Plummer
- Center for Infertility and Reproductive Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Kathryn B. Salnikov
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David L. Keefe
- Center for Infertility and Reproductive Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Myron Genel
- Section of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Neoklis A. Georgopoulos
- Division of Endocrinology, Department of Medicine, University of Patras Medical School, Patras, Greece
| | - Janet E. Hall
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - William F. Crowley
- Endocrine Unit, Department of Medicine, and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephanie B. Seminara
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pamela L. Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences; Center for Reproductive Science and Medicine; and
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Ravikumar Balasubramanian
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Aktas SH, Taskin-Tok T, Al-Khafaji K, Akın-Balı DF. A detailed understanding of the COL10A1 and SOX9 genes interaction based on potentially damaging mutations in gastric cancer using computational techniques. J Biomol Struct Dyn 2022; 40:11533-11544. [PMID: 34380365 DOI: 10.1080/07391102.2021.1960194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) has limited effective treatment options and is followed up with biomarkers that have insufficient sensitivity and specificity. Recent studies on Collagen Type X Alpha 1 Chain (COL10A1) show that the COL10A1 gene may be a diagnostic and/or prognostic biomarker for different cancer types. Moreover, its relationship with the Sex determining Region Y (SRY)-related High-Mobility Group (HMG) box (SOX9) gene which is also a transcription factor, was discovered recently, and co-expression of these two genes are associated with the development of GC. However, to the best of our knowledge, there is no study in the literature on how potential damaging mutations in the SOX9 and COL10A1 genes can affect their interactions. The aim of this study is to investigate the interactions of wild-type and potentially damaging mutated structures of COL10A1 and SOX9 genes. Thus, outputs for drug development and therapeutic strategies for GC can be obtained. For this purpose, structure validation and energy minimization analyses as well as docking and binding affinity calculations were performed. As a result, it was found that all investigated mutations (P563S, I588L, T624A, H165R and N110T) increased the binding affinity between the COL10A1-SOX9 complex, especially the N110T and H165R mutants in SOX9. As a conclusion, the N110T and H165R mutants in SOX9 may contribute to tumor progression. Therefore, it is important to consider these mutations for future therapeutic strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sedef Hande Aktas
- Vocational School of Health Services, Eskisehir Osmangazi University, Eskisehir, Turkey.,Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey.,Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Khattab Al-Khafaji
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey
| | | |
Collapse
|
13
|
Connors JP, Stelzer JW, Garvin PM, Wellington IJ, Solovyova O. The Role of the Innate Immune System in Wear Debris-Induced Inflammatory Peri-Implant Osteolysis in Total Joint Arthroplasty. Bioengineering (Basel) 2022; 9:764. [PMID: 36550970 PMCID: PMC9774505 DOI: 10.3390/bioengineering9120764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Periprosthetic osteolysis remains a leading complication of total hip and knee arthroplasty, often resulting in aseptic loosening of the implant and necessitating revision surgery. Wear-induced particulate debris is the main cause initiating this destructive process. The purpose of this article is to review recent advances in understanding of how wear debris causes osteolysis, and emergent strategies for the avoidance and treatment of this disease. A strong activator of the peri-implant innate immune this debris-induced inflammatory cascade is dictated by macrophage secretion of TNF-α, IL-1, IL-6, and IL-8, and PGE2, leading to peri-implant bone resorption through activation of osteoclasts and inhibition of osteoblasts through several mechanisms, including the RANK/RANKL/OPG pathway. Therapeutic agents against proinflammatory mediators, such as those targeting tumor necrosis factor (TNF), osteoclasts, and sclerostin, have shown promise in reducing peri-implant osteolysis in vitro and in vivo; however, radiographic changes and clinical diagnosis often lag considerably behind the initiation of osteolysis, making timely treatment difficult. Considerable efforts are underway to develop such diagnostic tools, therapies, and identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- John Patrick Connors
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - John W Stelzer
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - Patrick M Garvin
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - Ian J Wellington
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| | - Olga Solovyova
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA
| |
Collapse
|
14
|
Jinling D, Liyuan F, Wenying F, Yuting H, Xiangyu T, Xiuning H, Yu T, Qianliang M, Linming G, Ning G, Peng L. Parthenolide promotes expansion of Nestin+ progenitor cells via Shh modulation and contributes to post-injury cerebellar replenishment. Front Pharmacol 2022; 13:1051103. [PMID: 36386224 PMCID: PMC9651157 DOI: 10.3389/fphar.2022.1051103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
Background: Regeneration of injuries occurring in the central nervous system is extremely difficult. Studies have shown that the developing cerebellum can be repopulated by a group of Nestin-expressing progenitors (NEPs) after irradiation injury, suggesting that modulating the mobilization of NEPs is beneficial to promoting nerve regeneration. To date, however, effect of exogenous pharmaceutical agonist on NEPs mobilization remains unknown. Parthenolide (PTL), a sesquiterpene lactone isolated from shoots of feverfew. Although it has been shown to possess several pharmacological activities and is considered to have potential therapeutic effects on the regeneration of peripheral nerve injury, its efficacy in promoting central nervous system (CNS) regeneration is unclear. In this study, we aimed to elucidate the role and possible mechanism of PTL on regeneration in injured CNS after irradiation using a developing cerebellum model. Methods: We investigated the radioprotective effects of PTL on the developing cerebellum by immunoblotting as well as immunofluorescence staining and ROS detection in vivo and in vitro experiments, and then determined the effects of PTL on NEPs in Nestin CFP and Nestin GFP fluorescent mice. Inducible lineage tracing analysis was used in Nestin-CreERT2×ROSA26-LSL YFP mice to label and track the fate of NEPs in the cerebellum after irradiation. Combined with cell biology and molecular biology techniques to determine changes in various cellular components in the cerebellum and possible mechanisms of PTL on NEPs mobilization in the injured developing cerebellum. Results: We found that PTL could attenuate radiation-induced acute injury of granule neuron progenitors (GNPs) in irradiated cerebellar external granule layer (EGL) by alleviating apoptosis through regulation of the cells' redox state. Moreover, PTL increased cerebellar Shh production and secretion by inhibiting the PI3K/AKT pathway, thus promoting expansion of NEPs, which is the compensatory replenishment of granule neurons after radiation damage. Conclusion: Collectively, our results indicate that activation and expansion of NEPs are critical for regeneration of the injured cerebellum, and that PTL is a promising drug candidate to influence this process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Li Peng
- Department of Pharmacognosy and Traditional Chinese Medicine, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Dissecting Stemness in Aggressive Intracranial Meningiomas: Prognostic Role of SOX2 Expression. Int J Mol Sci 2022; 23:ijms231911690. [PMID: 36232992 PMCID: PMC9570252 DOI: 10.3390/ijms231911690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas are mostly benign tumors that, at times, can behave aggressively, displaying recurrence despite gross-total resection (GTR) and progression to overt malignancy. Such cases represent a clinical challenge, particularly because they are difficult to recognize at first diagnosis. SOX2 (Sex-determining region Y-box2) is a transcription factor with a key role in stem cell maintenance and has been associated with tumorigenesis in a variety of cancers. The purpose of the present work was to dissect the role of SOX2 in predicting the aggressiveness of meningioma. We analyzed progressive/recurrent WHO grade 1−2 meningiomas and WHO grade 3 meningiomas; as controls, non-recurring WHO grade 1 and grade 2 meningioma patients were enrolled. SOX2 expression was evaluated using both immunohistochemistry (IHC) and RT-PCR. The final analysis included 87 patients. IHC was able to reliably assess SOX2 expression, as shown by the good correlation with mRNA levels (Spearman R = 0.0398, p = 0.001, AUC 0.87). SOX2 expression was an intrinsic characteristic of any single tumor and did not change following recurrence or progression. Importantly, SOX2 expression at first surgery was strongly related to meningioma clinical behavior, histological grade and risk of recurrence. Finally, survival data suggest a prognostic role of SOX2 expression in the whole series, both for overall and for recurrence-free survival (p < 0.0001 and p = 0.0001, respectively). Thus, SOX2 assessment could be of great help to clinicians in informing adjuvant treatments during follow-up.
Collapse
|
16
|
The DevTox Germ Layer Reporter Platform: An Assay Adaptation of the Human Pluripotent Stem Cell Test. TOXICS 2022; 10:toxics10070392. [PMID: 35878297 PMCID: PMC9321663 DOI: 10.3390/toxics10070392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Environmental chemical exposures are a contributing factor to birth defects affecting infant morbidity and mortality. The USA EPA is committed to developing new approach methods (NAMs) to detect chemical risks to susceptible populations, including pregnant women. NAM-based coverage for cellular mechanisms associated with early human development could enhance identification of potential developmental toxicants (DevTox) for new and existing data-poor chemicals. The human pluripotent stem cell test (hPST) is an in vitro test method for rapidly identifying potential human developmental toxicants that employs directed differentiation of embryonic stem cells to measure reductions in SOX17 biomarker expression and nuclear localization. The objective of this study was to expand on the hPST principles to develop a model platform (DevTox GLR) that utilizes the transgenic RUES2-GLR cell line expressing fluorescent reporter fusion protein biomarkers for SOX17 (endoderm marker), BRA (mesoderm marker), and SOX2 (ectoderm and pluripotency marker). Initial assay adaption to definitive endoderm (DevTox GLR-Endo) was performed to emulate the hPST SOX17 endpoint and enable comparative evaluation of concordant chemical effects. Assay duration was reduced to two days and screening throughput scaled to 384-well format for enhanced speed and efficiency. Assay performance for 66 chemicals derived from reference and training set data resulted in a balanced accuracy of 72% (79% sensitivity and 65% specificity). The DevTox GLR-Endo assay demonstrates successful adaptation of the hPST concept with increased throughput, shorter assay duration, and minimal endpoint processing. The DevTox GLR model platform expands the in vitro NAM toolbox to rapidly identify potential developmental hazards and mechanistically characterize toxicant effects on pathways and processes associated with early human development.
Collapse
|
17
|
Mercurio S, Serra L, Pagin M, Nicolis SK. Deconstructing Sox2 Function in Brain Development and Disease. Cells 2022; 11:cells11101604. [PMID: 35626641 PMCID: PMC9139651 DOI: 10.3390/cells11101604] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.
Collapse
|
18
|
MERS-CoV ORF4b employs an unusual binding mechanism to target IMPα and block innate immunity. Nat Commun 2022; 13:1604. [PMID: 35338144 PMCID: PMC8956657 DOI: 10.1038/s41467-022-28851-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
The MERS coronavirus (MERS-CoV) is a highly pathogenic, emerging virus that produces accessory proteins to antagonize the host innate immune response. The MERS-CoV ORF4b protein has been shown to bind preferentially to the nuclear import adapter IMPα3 in infected cells, thereby inhibiting NF-κB-dependent innate immune responses. Here, we report high-resolution structures of ORF4b bound to two distinct IMPα family members. Each exhibit highly similar binding mechanisms that, in both cases, lack a prototypical Lys bound at their P2 site. Mutations within the NLS region dramatically alter the mechanism of binding, which reverts to the canonical P2 Lys binding mechanism. Mutational studies confirm that the novel binding mechanism is important for its nuclear import, IMPα interaction, and inhibition of innate immune signaling pathways. In parallel, we determined structures of the nuclear binding domain of NF-κB component p50 bound to both IMPα2 and α3, demonstrating that p50 overlaps with the ORF4b binding sites, suggesting a basis for inhibition. Our results provide a detailed structural basis that explains how a virus can target the IMPα nuclear import adapter to impair immunity, and illustrate how small mutations in ORF4b, like those found in closely related coronaviruses such as HKU5, change the IMPα binding mechanism. MERS-CoV ORF4b antagonizes host innate immune response, partially via blocking nuclear import adapter IMPα activity and preventing nuclear translocation of NF-κB. Here, Munasinghe and Edwards et al. biochemically and structurally define the interaction between ORF4b and IMPα-family members and find a non-canonical interaction between ORF4b NLS and IMPα2 and IMPα3.
Collapse
|
19
|
Florio TJ, Lokareddy RK, Yeggoni DP, Sankhala RS, Ott CA, Gillilan RE, Cingolani G. Differential recognition of canonical NF-κB dimers by Importin α3. Nat Commun 2022; 13:1207. [PMID: 35260573 PMCID: PMC8904830 DOI: 10.1038/s41467-022-28846-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nuclear translocation of the p50/p65 heterodimer is essential for NF-κB signaling. In unstimulated cells, p50/p65 is retained by the inhibitor IκBα in the cytoplasm that masks the p65-nuclear localization sequence (NLS). Upon activation, p50/p65 is translocated into the nucleus by the adapter importin α3 and the receptor importin β. Here, we describe a bipartite NLS in p50/p65, analogous to nucleoplasmin NLS but exposed in trans. Importin α3 accommodates the p50- and p65-NLSs at the major and minor NLS-binding pockets, respectively. The p50-NLS is the predominant binding determinant, while the p65-NLS induces a conformational change in the Armadillo 7 of importin α3 that stabilizes a helical conformation of the p65-NLS. Neither conformational change was observed for importin α1, which makes fewer bonds with the p50/p65 NLSs, explaining the preference for α3. We propose that importin α3 discriminates between the transcriptionally active p50/p65 heterodimer and p50/p50 and p65/65 homodimers, ensuring fidelity in NF-κB signaling. Nuclear translocation of the p50/p65 heterodimer is essential for NF-κB signaling. Here, the authors identify a bipartite Nuclear Localization Signal in the NF-κB p50/p65 heterodimer that is recognized with high affinity by importin α3.
Collapse
Affiliation(s)
- Tyler J Florio
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Daniel P Yeggoni
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Rajeshwer S Sankhala
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Connor A Ott
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY, 14853, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
20
|
Lin ZB, Li J, Ye L, Sun HS, Yu AY, Chen SH, Li FF. Novel SOX2 mutation in autosomal dominant cataract-microcornea syndrome. BMC Ophthalmol 2022; 22:70. [PMID: 35148715 PMCID: PMC8840263 DOI: 10.1186/s12886-022-02291-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Background Congenital cataract-microcornea syndrome (CCMC) is characterized by the association of congenital cataract and microcornea without any other systemic anomaly or dysmorphism. Although several causative genes have been reported in patients with CCMC, the genetic etiology of CCMC is yet to be clearly understood. Purpose To unravel the genetic cause of autosomal dominant family with CCMC. Methods All patients and available family members underwent a comprehensive ophthalmologic clinical examination in the hospital by expert ophthalmologists and carried out to clinically diagnosis. All the patients were screened by whole-exome sequencing and then validated using co-segregation by Sanger sequencing. Results Four CCMC patients from a Chinese family and five unaffected family members were enrolled in this study. Using whole-exome sequencing, a missense mutation c.295G > T (p.A99S, NM_003106.4) in the SOX2 gene was identified and validated by segregation analysis. In addition, this missense mutation was predicted to be damaging by multiple predictive tools. Variant p.Ala99Ser was located in a conservation high mobility group (HMG)-box domain in SOX2 protein, with a potential pathogenic impact of p.Ala99Ser on protein level. Conclusions A novel missense mutation (c.295G > T, p.Ala99Ser) in the SOX2 gene was found in this Han Chinese family with congenital cataract and microcornea. Our study determined that mutations in SOX2 were associated with CCMC, warranting further investigations on the pathogenesis of this disorder. This result expands the mutation spectrum of SOX2 and provides useful information to study the molecular pathogenesis of CCMC.
Collapse
Affiliation(s)
- Zhi-Bo Lin
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin Li
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Ye
- Shanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Sen Sun
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - A-Yong Yu
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi-Hao Chen
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fen-Fen Li
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
21
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
22
|
Tsimbalyuk S, Donnelly CM, Forwood JK. Structural characterization of human importin alpha 7 in its cargo-free form at 2.5 Å resolution. Sci Rep 2022; 12:315. [PMID: 35013395 PMCID: PMC8748863 DOI: 10.1038/s41598-021-03729-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
Shuttling of macromolecules between nucleus and cytoplasm is a tightly regulated process mediated through specific interactions between cargo and nuclear transport proteins. In the classical nuclear import pathway, importin alpha recognizes cargo exhibiting a nuclear localization signal, and this complex is transported through the nuclear pore complex by importin beta. Humans possess seven importin alpha isoforms that can be grouped into three subfamilies, with many cargoes displaying specificity towards these importin alpha isoforms. The cargo binding sites within importin alpha isoforms are highly conserved in sequence, suggesting that specificity potentially relies on structural differences. Structures of some importin alpha isoforms, both in cargo-bound and free states, have been previously solved. However, there are currently no known structures of cargo free importin alpha isoforms within subfamily 3 (importin alpha 5, 6, 7). Here, we present the first crystal structure of human importin alpha 7 lacking the IBB domain solved at 2.5 Å resolution. The structure reveals a typical importin alpha architecture comprised of ten armadillo repeats and is most structurally conserved with importin alpha 5. Very little difference in structure was observed between the cargo-bound and free states, implying that importin alpha 7 does not undergo conformational change when binding cargo. These structural insights provide a strong platform for further evaluation of structure–function relationships and understanding how isoform specificity within the importin alpha family plays a role in nuclear transport in health and disease.
Collapse
Affiliation(s)
- S Tsimbalyuk
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - C M Donnelly
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - J K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia. .,School of Dentistry and Medical Sciences, Charles Sturt University, Room 2, National Life Sciences Hub, Wagga Wagga, NSW, 2678, Australia.
| |
Collapse
|
23
|
Design and Characterization of a Cell-Penetrating Peptide Derived from the SOX2 Transcription Factor. Int J Mol Sci 2021; 22:ijms22179354. [PMID: 34502261 PMCID: PMC8431565 DOI: 10.3390/ijms22179354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
SOX2 is an oncogenic transcription factor overexpressed in nearly half of the basal-like triple-negative breast cancers associated with very poor outcomes. Targeting and inhibiting SOX2 is clinically relevant as high SOX2 mRNA levels are positively correlated with decreased overall survival and progression-free survival in patients affected with breast cancer. Given its key role as a master regulator of cell proliferation, SOX2 represents an important scaffold for the engineering of dominant-negative synthetic DNA-binding domains (DBDs) that act by blocking or interfering with the oncogenic activity of the endogenous transcription factor in cancer cells. We have synthesized an interference peptide (iPep) encompassing a truncated 24 amino acid long C-terminus of SOX2 containing a potential SOX-specific nuclear localization sequence, and the determinants of the binding of SOX2 to the DNA and to its transcription factor binding partners. We found that the resulting peptide (SOX2-iPep) possessed intrinsic cell penetration and promising nuclear localization into breast cancer cells, and decreased cellular proliferation of SOX2 overexpressing cell lines. The novel SOX2-iPep was found to exhibit a random coil conformation predominantly in solution. Molecular dynamics simulations were used to characterize the interactions of both the SOX2 transcription factor and the SOX2-iPep with FGF4-enhancer DNA in the presence of the POU domain of the partner transcription factor OCT4. Predictions of the free energy of binding revealed that the iPep largely retained the binding affinity for DNA of parental SOX2. This work will enable the future engineering of novel dominant interference peptides to transport different therapeutic cargo molecules such as anti-cancer drugs into cells.
Collapse
|
24
|
Pagin M, Pernebrink M, Giubbolini S, Barone C, Sambruni G, Zhu Y, Chiara M, Ottolenghi S, Pavesi G, Wei CL, Cantù C, Nicolis SK. Sox2 controls neural stem cell self-renewal through a Fos-centered gene regulatory network. Stem Cells 2021; 39:1107-1119. [PMID: 33739574 DOI: 10.1002/stem.3373] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.
Collapse
Affiliation(s)
- Miriam Pagin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Simone Giubbolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cristiana Barone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Gaia Sambruni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Yanfen Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Matteo Chiara
- Department of Biosciences, University of Milano, Milan, Italy
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milano, Milan, Italy
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
25
|
Pagin M, Pernebrink M, Pitasi M, Malighetti F, Ngan CY, Ottolenghi S, Pavesi G, Cantù C, Nicolis SK. FOS Rescues Neuronal Differentiation of Sox2-Deleted Neural Stem Cells by Genome-Wide Regulation of Common SOX2 and AP1(FOS-JUN) Target Genes. Cells 2021; 10:cells10071757. [PMID: 34359927 PMCID: PMC8303191 DOI: 10.3390/cells10071757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
The transcription factor SOX2 is important for brain development and for neural stem cells (NSC) maintenance. Sox2-deleted (Sox2-del) NSC from neonatal mouse brain are lost after few passages in culture. Two highly expressed genes, Fos and Socs3, are strongly downregulated in Sox2-del NSC; we previously showed that Fos or Socs3 overexpression by lentiviral transduction fully rescues NSC's long-term maintenance in culture. Sox2-del NSC are severely defective in neuronal production when induced to differentiate. NSC rescued by Sox2 reintroduction correctly differentiate into neurons. Similarly, Fos transduction rescues normal or even increased numbers of immature neurons expressing beta-tubulinIII, but not more differentiated markers (MAP2). Additionally, many cells with both beta-tubulinIII and GFAP expression appear, indicating that FOS stimulates the initial differentiation of a "mixed" neuronal/glial progenitor. The unexpected rescue by FOS suggested that FOS, a SOX2 transcriptional target, might act on neuronal genes, together with SOX2. CUT&RUN analysis to detect genome-wide binding of SOX2, FOS, and JUN (the AP1 complex) revealed that a high proportion of genes expressed in NSC are bound by both SOX2 and AP1. Downregulated genes in Sox2-del NSC are highly enriched in genes that are also expressed in neurons, and a high proportion of the "neuronal" genes are bound by both SOX2 and AP1.
Collapse
Affiliation(s)
- Miriam Pagin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine, Linköping University, SE-581 83 Linköping, Sweden;
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden
| | - Mattia Pitasi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Federica Malighetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Chew-Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Giulio Pavesi
- Department of Biosciences, University of Milano, Via Celoria 26, 20134 Milano, Italy;
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, SE-581 83 Linköping, Sweden;
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden
- Correspondence: (C.C.); (S.K.N.)
| | - Silvia K. Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
- Correspondence: (C.C.); (S.K.N.)
| |
Collapse
|