1
|
Ascari A, Morona R. Recent insights into Wzy polymerases and lipopolysaccharide O-antigen biosynthesis. J Bacteriol 2025; 207:e0041724. [PMID: 40066993 PMCID: PMC12004945 DOI: 10.1128/jb.00417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Bacteria synthesize a plethora of complex surface-associated polysaccharides which enable them to persist and thrive in distinct niches. These glycans serve an array of purposes pertaining to virulence, colonization, antimicrobial resistance, stealth, and biofilm formation. The Wzx/Wzy-dependent pathway is universally the predominant system for bacterial polysaccharide synthesis. This system is responsible for the production of lipopolysaccharide (LPS) O-antigen (Oag), enterobacterial common antigen, capsule, and exopolysaccharides, with orthologs present in both Gram-negative and Gram-positive microbes. Studies focusing principally on Pseudomonas, Shigella, and Salmonella LPS Oag synthesis have provided much of the framework underpinning the biochemical and molecular mechanism behind polysaccharide synthesis via this pathway. LPS Oag production via the Wzx/Wzy-dependent pathway occurs through the stepwise activity of multiple key biosynthetic enzymes, including primarily the polymerase, Wzy, which is responsible for the Oag assembly, and the polysaccharide co-polymerase, Wzz, which effectively modulates the length of the glycan produced. In this review, we provide a comprehensive summary of the latest genetic, structural, and mechanistic data for the main protein candidates of the Wzx/Wzy-dependent pathway, in addition to an examination of their substrate specificities. Furthermore, we have reviewed recent insights pertaining to the dynamics/kinetics of glycan synthesis by this mechanism, including the interplay of the key proteins among themselves and in complex with their substrate. Lastly, we outline key gaps in the literature and suggest future research avenues, with the aim to stimulate ongoing research into this critical pathway responsible for the production of key virulence factors for numerous debilitating and lethal pathogens.
Collapse
Affiliation(s)
- Alice Ascari
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
Blöcher L, Schwabe J, Glatter T, Søgaard-Andersen L. Identification of EcpK, a bacterial tyrosine pseudokinase important for exopolysaccharide biosynthesis in Myxococcus xanthus. J Bacteriol 2025; 207:e0049924. [PMID: 40067014 PMCID: PMC12004946 DOI: 10.1128/jb.00499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/16/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteria synthesize chemically diverse capsular and secreted polysaccharides that function in many physiological processes and are widely used in industrial applications. In the ubiquitous Wzx/Wzy-dependent biosynthetic pathways for these polysaccharides, the polysaccharide co-polymerase (PCP) facilitates the polymerization of repeat units in the periplasm, and in Gram-negative bacteria, also polysaccharide translocation across the outer membrane. These PCPs belong to the PCP-2 family, are integral inner membrane proteins with extended periplasmic domains, and functionally depend on alternating between different oligomeric states. The oligomeric state is determined by a cognate cytoplasmic bacterial tyrosine kinase (BYK), which is either part of the PCP or a stand-alone protein. Interestingly, BYK-like proteins, which lack key catalytic residues and/or the phosphorylated Tyr residues, have been described. In Myxococcus xanthus, the exopolysaccharide (EPS) is synthesized and exported via the Wzx/Wzy-dependent EPS pathway in which EpsV serves as the PCP. Here, we confirm that EpsV lacks the BYK domain. Using phylogenomics, experiments, and computational structural biology, we identify EcpK as important for EPS biosynthesis and show that it structurally resembles canonical BYKs but lacks residues important for catalysis and Tyr phosphorylation. Using proteomic analyses, two-hybrid assays, and structural modeling, we demonstrate that EcpK directly interacts with EpsV. Based on these findings, we suggest that EcpK is a BY pseudokinase and functions as a scaffold, which by direct protein-protein interactions, rather than by Tyr phosphorylation, facilitates EpsV function. EcpK and EpsV homologs are present in other bacteria, suggesting broad conservation of this mechanism and establishing a phosphorylation-independent PCP-2 subfamily.IMPORTANCEBacteria produce a variety of polysaccharides with important biological functions. In Wzx/Wzy-dependent pathways for the biosynthesis of secreted and capsular polysaccharides in Gram-negative bacteria, the polysaccharide co-polymerase (PCP) is a key protein that facilitates repeat unit polymerization and polysaccharide translocation across the outer membrane. PCP function depends on assembly/disassembly cycles that are determined by the phosphorylation/dephosphorylation cycles of an associated bacterial tyrosine kinase (BYK). Here, we identify the BY pseudokinase EcpK as essential for exopolysaccharide biosynthesis in Myxococcus xanthus. Based on experiments and computational structural biology, we suggest that EcpK is a scaffold protein, guiding the assembly/disassembly cycles of the partner PCP via binding/unbinding cycles independently of Tyr phosphorylation/dephosphorylation cycles. We suggest that this novel mechanism is broadly conserved.
Collapse
Affiliation(s)
- Luca Blöcher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johannes Schwabe
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
3
|
Kuklewicz J, Zimmer J. Molecular insights into capsular polysaccharide secretion. Nature 2024; 628:901-909. [PMID: 38570679 PMCID: PMC11041684 DOI: 10.1038/s41586-024-07248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.
Collapse
Affiliation(s)
- Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Howard Hughes Medical Institute, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Hong Y, Hu D, Verderosa AD, Qin J, Totsika M, Reeves PR. Repeat-Unit Elongations To Produce Bacterial Complex Long Polysaccharide Chains, an O-Antigen Perspective. EcoSal Plus 2023; 11:eesp00202022. [PMID: 36622162 PMCID: PMC10729934 DOI: 10.1128/ecosalplus.esp-0020-2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 01/10/2023]
Abstract
The O-antigen, a long polysaccharide that constitutes the distal part of the outer membrane-anchored lipopolysaccharide, is one of the critical components in the protective outer membrane of Gram-negative bacteria. Most species produce one of the structurally diverse O-antigens, with nearly all the polysaccharide components having complex structures made by the Wzx/Wzy pathway. This pathway produces repeat-units of mostly 3-8 sugars on the cytosolic face of the cytoplasmic membrane that is translocated by Wzx flippase to the periplasmic face and polymerized by Wzy polymerase to give long-chain polysaccharides. The Wzy polymerase is a highly diverse integral membrane protein typically containing 10-14 transmembrane segments. Biochemical evidence confirmed that Wzy polymerase is the sole driver of polymerization, and recent progress also began to demystify its interacting partner, Wzz, shedding some light to speculate how the proteins may operate together during polysaccharide biogenesis. However, our knowledge of how the highly variable Wzy proteins work as part of the O-antigen processing machinery remains poor. Here, we discuss the progress to the current understanding of repeat-unit polymerization and propose an updated model to explain the formation of additional short chain O-antigen polymers found in the lipopolysaccharide of diverse Gram-negative species and their importance in the biosynthetic process.
Collapse
Affiliation(s)
- Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Dalong Hu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter R. Reeves
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Wiseman B, Widmalm G, Högbom M. Alternating L4 loop architecture of the bacterial polysaccharide co-polymerase WzzE. Commun Biol 2023; 6:802. [PMID: 37532793 PMCID: PMC10397196 DOI: 10.1038/s42003-023-05157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Lipopolysaccharides such as the enterobacterial common antigen are important components of the enterobacterial cell envelope that act as a protective barrier against the environment and are often polymerized by the inner membrane bound Wzy-dependent pathway. By employing cryo-electron microscopy we show that WzzE, the co-polymerase component of this pathway that is responsible for the length modulation of the enterobacterial common antigen, is octameric with alternating up-down conformations of its L4 loops. The alternating up-down nature of these essential loops, located at the top of the periplasmic bell, are modulated by clashing helical faces between adjacent protomers that flank the L4 loops around the octameric periplasmic bell. This alternating arrangement and a highly negatively charged binding face create a dynamic environment in which the polysaccharide chain is extended, and suggest a ratchet-type mechanism for polysaccharide elongation.
Collapse
Affiliation(s)
- Benjamin Wiseman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
6
|
Ovchinnikova OG, Treat LP, Teelucksingh T, Clarke BR, Miner TA, Whitfield C, Walker KA, Miller VL. Hypermucoviscosity Regulator RmpD Interacts with Wzc and Controls Capsular Polysaccharide Chain Length. mBio 2023; 14:e0080023. [PMID: 37140436 PMCID: PMC10294653 DOI: 10.1128/mbio.00800-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Klebsiella pneumoniae is a leading cause of nosocomial infections, including pneumonia, bacteremia, and urinary tract infections. Treatment options are increasingly restricted by the high prevalence of resistance to frontline antibiotics, including carbapenems, and the recently identified plasmid-conferred colistin resistance. The classical pathotype (cKp) is responsible for most of the nosocomial infections observed globally, and these isolates are often multidrug resistant. The hypervirulent pathotype (hvKp) is a primary pathogen capable of causing community-acquired infections in immunocompetent hosts. The hypermucoviscosity (HMV) phenotype is strongly associated with the increased virulence of hvKp isolates. Recent studies demonstrated that HMV requires capsule (CPS) synthesis and the small protein RmpD but is not dependent on the increased amount of capsule associated with hvKp. Here, we identified the structure of the capsular and extracellular polysaccharide isolated from hvKp strain KPPR1S (serotype K2) with and without RmpD. We found that the polymer repeat unit structure is the same in both strains and that it is identical to the K2 capsule. However, the chain length of CPS produced by strains expressing rmpD demonstrates more uniform length. This property was reconstituted in CPS from Escherichia coli isolates that possess the same CPS biosynthesis pathway as K. pneumoniae but naturally lack rmpD. Furthermore, we demonstrate that RmpD binds Wzc, a conserved capsule biosynthesis protein required for CPS polymerization and export. Based on these observations, we present a model for how the interaction of RmpD with Wzc could impact CPS chain length and HMV. IMPORTANCE Infections caused by Klebsiella pneumoniae continue to be a global public health threat; the treatment of these infections is complicated by the high frequency of multidrug resistance. K. pneumoniae produces a polysaccharide capsule required for virulence. Hypervirulent isolates also have a hypermucoviscous (HMV) phenotype that increases virulence, and we recently demonstrated that a horizontally acquired gene, rmpD, is required for HMV and hypervirulence but that the identity of the polymeric product(s) in HMV isolates is uncertain. Here, we demonstrate that RmpD regulates capsule chain length and interacts with Wzc, a part of the capsule polymerization and export machinery shared by many pathogens. We further show that RmpD confers HMV and regulates capsule chain length in a heterologous host (E. coli). As Wzc is a conserved protein found in many pathogens, it is possible that RmpD-mediated HMV and increased virulence may not be restricted to K. pneumoniae.
Collapse
Affiliation(s)
- Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Logan P. Treat
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tanisha Teelucksingh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taryn A. Miner
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kimberly A. Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Virginia L. Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Weckener M, Woodward LS, Clarke BR, Liu H, Ward PN, Le Bas A, Bhella D, Whitfield C, Naismith JH. The lipid linked oligosaccharide polymerase Wzy and its regulating co-polymerase, Wzz, from enterobacterial common antigen biosynthesis form a complex. Open Biol 2023; 13:220373. [PMID: 36944376 PMCID: PMC10030265 DOI: 10.1098/rsob.220373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
The enterobacterial common antigen (ECA) is a carbohydrate polymer that is associated with the cell envelope in the Enterobacteriaceae. ECA contains a repeating trisaccharide which is polymerized by WzyE, a member of the Wzy membrane protein polymerase superfamily. WzyE activity is regulated by a membrane protein polysaccharide co-polymerase, WzzE. Förster resonance energy transfer experiments demonstrate that WzyE and WzzE from Pectobacterium atrosepticum form a complex in vivo, and immunoblotting and cryo-electron microscopy (cryo-EM) analysis confirm a defined stoichiometry of approximately eight WzzE to one WzyE. Low-resolution cryo-EM reconstructions of the complex, aided by an antibody recognizing the C-terminus of WzyE, reveals WzyE sits in the central membrane lumen formed by the octameric arrangement of the transmembrane helices of WzzE. The pairing of Wzy and Wzz is found in polymerization systems for other bacterial polymers, including lipopolysaccharide O-antigens and capsular polysaccharides. The data provide new structural insight into a conserved mechanism for regulating polysaccharide chain length in bacteria.
Collapse
Affiliation(s)
- Miriam Weckener
- Structural Biology, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, UK
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Laura S. Woodward
- Centre Biomedical Sciences, North Haugh, University of St Andrews, St Andrews KY16 9ST, UK
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Huanting Liu
- Centre Biomedical Sciences, North Haugh, University of St Andrews, St Andrews KY16 9ST, UK
| | - Philip N. Ward
- Structural Biology, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, UK
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Audrey Le Bas
- Structural Biology, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, UK
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - David Bhella
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1Q, UK
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - James H. Naismith
- Structural Biology, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, UK
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
8
|
Avendaño R, Muñoz-Montero S, Rojas-Gätjens D, Fuentes-Schweizer P, Vieto S, Montenegro R, Salvador M, Frew R, Kim J, Chavarría M, Jiménez JI. Production of selenium nanoparticles occurs through an interconnected pathway of sulphur metabolism and oxidative stress response in Pseudomonas putida KT2440. Microb Biotechnol 2023; 16:931-946. [PMID: 36682039 PMCID: PMC10128140 DOI: 10.1111/1751-7915.14215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/23/2023] Open
Abstract
The soil bacterium Pseudomonas putida KT2440 has been shown to produce selenium nanoparticles aerobically from selenite; however, the molecular actors involved in this process are unknown. Here, through a combination of genetic and analytical techniques, we report the first insights into selenite metabolism in this bacterium. Our results suggest that the reduction of selenite occurs through an interconnected metabolic network involving central metabolic reactions, sulphur metabolism, and the response to oxidative stress. Genes such as sucA, D2HGDH and PP_3148 revealed that the 2-ketoglutarate and glutamate metabolism is important to convert selenite into selenium. On the other hand, mutations affecting the activity of the sulphite reductase decreased the bacteria's ability to transform selenite. Other genes related to sulphur metabolism (ssuEF, sfnCE, sqrR, sqr and pdo2) and stress response (gqr, lsfA, ahpCF and sadI) were also identified as involved in selenite transformation. Interestingly, suppression of genes sqrR, sqr and pdo2 resulted in the production of selenium nanoparticles at a higher rate than the wild-type strain, which is of biotechnological interest. The data provided in this study brings us closer to understanding the metabolism of selenium in bacteria and offers new targets for the development of biotechnological tools for the production of selenium nanoparticles.
Collapse
Affiliation(s)
- Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | | | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.,Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, Costa Rica
| | - Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Rafael Montenegro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Manuel Salvador
- Biotechnology Applications, IDENER Research & Development, Seville, Spain
| | - Rufus Frew
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Juhyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu, Korea
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Jose I Jiménez
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
9
|
Han Y, Luo P, Zeng H, Wang P, Xu J, Chen P, Chen X, Chen Y, Cao Q, Zhai R, Xia J, Deng S, Cheng A, Cheng C, Song H. The effect of O-antigen length determinant wzz on the immunogenicity of Salmonella Typhimurium for Escherichia coli O2 O-polysaccharides delivery. Vet Res 2023; 54:15. [PMID: 36849993 PMCID: PMC9969949 DOI: 10.1186/s13567-023-01142-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/15/2022] [Indexed: 03/01/2023] Open
Abstract
Attenuated Salmonella Typhimurium is a promising antigen delivery system for live vaccines such as polysaccharides. The length of polysaccharides is a well-known key factor in modulating the immune response induced by glycoconjugates. However, the relationship between the length of Lipopolysaccharide (LPS) O-antigen (OAg) and the immunogenicity of S. Typhimurium remains unclear. In this study, we assessed the effect of OAg length determined by wzzST on Salmonella colonization, cell membrane permeability, antimicrobial activity, and immunogenicity by comparing the S. Typhimurium wild-type ATCC14028 strain to those with various OAg lengths of the ΔwzzST mutant and ΔwzzST::wzzECO2. The analysis of the OAg length distribution revealed that, except for the very long OAg, the short OAg length of 2-7 repeat units (RUs) was obtained from the ΔwzzST mutant, the intermediate OAg length of 13-21 RUs was gained from ΔwzzST::wzzECO2, and the long OAg length of over 20 RUs was gained from the wild-type. In addition, we found that the OAg length affected Salmonella colonization, cell permeability, and antibiotic resistance. Immunization of mice revealed that shortening the OAg length by altering wzzST had an effect on serum bactericidal ability, complement deposition, and humoral immune response. S. Typhimurium mutant strain ΔwzzST::wzzECO2 possessed good immunogenicity and was the optimum option for delivering E. coli O2 O-polysaccharides. Furthermore, the attenuated strain ATCC14028 ΔasdΔcrpΔcyaΔrfbPΔwzzST::wzzECO2-delivered E. coli O2 OAg gene cluster outperforms the ATCC14028 ΔasdΔcrpΔcyaΔrfbP in terms of IgG eliciting, cytokine expression, and immune protection in chickens. This study sheds light on the role of OAg length in Salmonella characteristics, which may have a potential application in optimizing the efficacy of delivered polysaccharide vaccines.
Collapse
Affiliation(s)
- Yue Han
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China ,grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Luo
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Huan Zeng
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Pu Wang
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Jiali Xu
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Pengju Chen
- Henan Institute of Morden Chinese Veterinary Medicine, Zhengzhou, 450002 China ,Shangdong Xindehui Biotechnology Co., Ltd, Yunchengxian, 274700 China
| | - Xindan Chen
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Yuji Chen
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Qiyu Cao
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Ruidong Zhai
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Jing Xia
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Simin Deng
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Anchun Cheng
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Changyong Cheng
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Identification of the Shigella flexneri Wzy Domain Modulating Wzz pHS-2 Interaction and Detection of the Wzy/Wzz/Oag Complex. J Bacteriol 2022; 204:e0022422. [PMID: 35980183 PMCID: PMC9487639 DOI: 10.1128/jb.00224-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri implements the Wzy-dependent pathway to biosynthesize the O antigen (Oag) component of its surface lipopolysaccharide. The inner membrane polymerase WzySF catalyzes the repeat addition of undecaprenol-diphosphate-linked Oag (Und-PP-RUs) to produce a polysaccharide, the length of which is tightly regulated by two competing copolymerase proteins, WzzSF (short-type Oag; 10 to 17 RUs) and WzzpHS-2 (very-long-type Oag; >90 RUs). The nature of the interaction between WzySF and WzzSF/WzzpHS-2 in Oag polymerization remains poorly characterized, with the majority of the literature characterizing the individual protein constituents of the Wzy-dependent pathway. Here, we report instead a major investigation into the specific binding interactions of WzySF with its copolymerase counterparts. For the first time, a region of WzySF that forms a unique binding site for WzzpHS-2 has been identified. Specifically, this work has elucidated key WzySF moieties at the N- and C-terminal domains (NTD and CTD) that form an intramolecular pocket modulating the WzzpHS-2 interaction. Novel copurification data highlight that disruption of residues within this NTD-CTD pocket impairs the interaction with WzzpHS-2 without affecting WzzSF binding, thereby specifically disrupting polymerization of longer polysaccharide chains. This study provides a novel understanding of the molecular interaction of WzySF with WzzSF/WzzpHS-2 in the Wzy-dependent pathway and, furthermore, detects the Wzy/Wzz/Und-PP-Oag complex for the first time. Beyond S. flexneri, this work may be extended to provide insight into the interactions between protein homologues expressed by related species, especially members of Enterobacteriaceae, that produce dual Oag chain length determinants. IMPORTANCE Shigella flexneri is a pathogen causing significant morbidity and mortality, predominantly devastating the pediatric age group in developing countries. A major virulence factor contributing to S. flexneri pathogenesis is its surface lipopolysaccharide, which is comprised of three domains: lipid A, core oligosaccharide, and O antigen (Oag). The Wzy-dependent pathway is the most common biosynthetic mechanism implemented for Oag biosynthesis by Gram-negative bacteria, including S. flexneri. The nature of the interaction between the polymerase, WzySF, and the polysaccharide copolymerases, WzzSF and WzzpHS-2, in Oag polymerization is poorly characterized. This study investigates the molecular interplay between WzySF and its copolymerases, deciphering key interactions in the Wzy-dependent pathway that may be extended beyond S. flexneri, providing insight into Oag biosynthesis in Gram-negative bacteria.
Collapse
|
11
|
Furevi A, Udekwu KI, Widmalm G. Structural elucidation of the O-antigen polysaccharide from Escherichia coli O125ac and biosynthetic aspects thereof. Glycobiology 2022; 32:1089-1100. [PMID: 36087289 PMCID: PMC9680116 DOI: 10.1093/glycob/cwac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/07/2023] Open
Abstract
Enteropathogenic Escherichia coli O125, the cause of infectious diarrheal disease, is comprised of two serogroups, viz., O125ab and O125ac, which display the aggregative adherence pattern with epithelial cells. Herein, the structure of the O-antigen polysaccharide from E. coli O125ac:H6 has been elucidated. Sugar analysis revealed the presence of fucose, mannose, galactose and N-acetyl-galactosamine as major components. Unassigned 1H and 13C NMR data from one- and two-dimensional NMR experiments of the O125ac O-antigen in conjunction with sugar components were used as input to the CASPER program, which can determine polysaccharide structure in a fully automated way, and resulted in the following branched pentasaccharide structure of the repeating unit: →4)[β-d-Galp-(1 → 3)]-β-d-GalpNAc-(1 → 2)-α-d-Manp-(1 → 3)-α-l-Fucp-(1 → 3)-α-d-GalpNAc-(1→, where the side chain is denoted by square brackets. The proposed O-antigen structure was confirmed by 1H and 13C NMR chemical shift assignments and determination of interresidue connectivities. Based on this structure, that of the O125ab O-antigen, which consists of hexasaccharide repeating units with an additional glucosyl group, was possible to establish in a semi-automated fashion by CASPER. The putative existence of gnu and gne in the gene clusters of the O125 serogroups is manifested by N-acetyl-d-galactosamine residues as the initial sugar residue of the biological repeating unit as well as within the repeating unit. The close similarity between O-antigen structures is consistent with the presence of two subgroups in the E. coli O125 serogroup.
Collapse
Affiliation(s)
- Axel Furevi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Klas I Udekwu
- Department of Aquatic Sciences and Assessment, Swedish University of Agriculture, P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Göran Widmalm
- To whom correspondence should be addressed: Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden. e-mail:
| |
Collapse
|
12
|
Davies CP, Jurkiw T, Haendiges J, Reed E, Anderson N, Grasso-Kelley E, Hoffmann M, Zheng J. Changes in the genomes and methylomes of three Salmonella enterica serovars after long-term storage in ground black pepper. Front Microbiol 2022; 13:970135. [PMID: 36160197 PMCID: PMC9507087 DOI: 10.3389/fmicb.2022.970135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Low moisture foods (LMFs) have traditionally been recognized as safe for consumption, as most bacteria require higher water content to grow. However, outbreaks due to LMF foods are increasing, and the microbial pathogen Salmonella enterica is frequently implicated. S. enterica can survive in LMFs for years, but few serovars have been studied, and the mechanisms which underlie this longevity are not well understood. Here, we determine that S. enterica serovars S. Tennessee, S. Anatum, and S. Reading but not S. Oranienburg can survive in the ground black pepper for 6 years. S. Reading was not previously associated with any LMF. Using both Illumina and Pacific Biosciences sequencing technologies, we also document changes in the genomes and methylomes of the surviving serovars over this 6-year period. The three serovars acquired a small number of single nucleotide polymorphisms (SNPs) including seven substitutions (four synonymous, two non-synonymous, and one substitution in a non-coding region), and two insertion-deletions. Nine distinct N6-methyladenine (m6A) methylated motifs across the three serovars were identified including five which were previously known, Gm6ATC, CAGm6AG, BATGCm6AT, CRTm6AYN6CTC, and CCm6AN7TGAG, and four novel serovar-specific motifs, GRTm6AN8TTYG, GAm6ACN7GTA, GAA m6ACY, and CAAm6ANCC. Interestingly, the BATGCAT motif was incompletely methylated (35–64% sites across the genome methylated), suggesting a possible role in gene regulation. Furthermore, the number of methylated BATGCm6AT motifs increased after storage in ground black pepper for 6 years from 475 to 657 (S. Tennessee), 366 to 608 (S. Anatum), and 525 to 570 (S. Reading), thus warranting further study as an adaptive mechanism. This is the first long-term assessment of genomic changes in S. enterica in a low moisture environment, and the first study to examine the methylome of any bacteria over a period of years, to our knowledge. These data contribute to our understanding of S. enterica survival in LMFs, and coupled with further studies, will provide the information necessary to design effective interventions which reduce S. enterica in LMFs and maintain a healthy, safe food supply.
Collapse
Affiliation(s)
- Cary P. Davies
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, NEA, U.S. Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Cary P. Davies,
| | - Thomas Jurkiw
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Julie Haendiges
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Nathan Anderson
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, IL, United States
| | - Elizabeth Grasso-Kelley
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, IL, United States
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
13
|
Li H, Zhang Z, Liu J, Guo Z, Chen M, Li B, Xue H, Ji S, Li H, Qin L, Zhu L, Wang J, Zhu H. Identification of the Key Enzymes in WL Gum Biosynthesis and Critical Composition in Viscosity Control. Front Bioeng Biotechnol 2022; 10:918687. [PMID: 35711643 PMCID: PMC9197254 DOI: 10.3389/fbioe.2022.918687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
As an important microbial exopolysaccharide, the sphingan WL gum could be widely used in petroleum, food, and many other fields. However, its lower production is still limiting its wider application. Therefore, to gain insights into the bottlenecks of WL gum production by identifying the key enzymes in the WL gum biosynthesis pathway, more than 20 genes were over-expressed in Sphingomonas sp. WG and their effects on WL gum production and structure were investigated. Compared to the control strain, the WL gum production of welB over-expression strain was increased by 19.0 and 21.0% at 36 and 84 h, respectively. The WL gum production of both atrB and atrD over-expression strains reached 47 g/L, which was approximately 34.5% higher than that of the control strain at 36 h. Therefore, WelB, AtrB, and AtrD may be the key enzymes in WL production. Interestingly, the broth viscosity of most over-expression strains decreased, especially the welJ over-expression strain whose viscosity decreased by 99.3% at 84 h. Polysaccharides' structural features were investigated to find the critical components in viscosity control. The uronic acid content and total sugar content was affected by only a few genes, therefore, uronic acid and total sugar content may be not the key composition. In comparison, the acetyl degrees were enhanced by over-expression of most genes, which meant that acetyl content may be the critical factor and negatively correlated with the apparent viscosity of WL gum. This work provides useful information on the understanding of the bottlenecks of WL gum biosynthesis and will be helpful for the construction of high WL gum-yielding strains and rheological property controlling in different industries.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zaimei Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Jianlin Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zhongrui Guo
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Mengqi Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Benchao Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Han Xue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Sixue Ji
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Hang Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Lijian Qin
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Ling Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Hu Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China.,Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.,College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
14
|
Sande C, Whitfield C. Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella. EcoSal Plus 2021; 9:eESP00332020. [PMID: 34910576 PMCID: PMC11163842 DOI: 10.1128/ecosalplus.esp-0033-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Escherichia coli and Salmonella isolates produce a range of different polysaccharide structures that play important roles in their biology. E. coli isolates often possess capsular polysaccharides (K antigens), which form a surface structural layer. These possess a wide range of repeat-unit structures. In contrast, only one capsular polymer (Vi antigen) is found in Salmonella, and it is confined to typhoidal serovars. In both genera, capsules are vital virulence determinants and are associated with the avoidance of host immune defenses. Some isolates of these species also produce a largely secreted exopolysaccharide called colanic acid as part of their complex Rcs-regulated phenotypes, but the precise function of this polysaccharide in microbial cell biology is not fully understood. E. coli isolates produce two additional secreted polysaccharides, bacterial cellulose and poly-N-acetylglucosamine, which play important roles in biofilm formation. Cellulose is also produced by Salmonella isolates, but the genes for poly-N-acetylglucosamine synthesis appear to have been lost during its evolution toward enhanced virulence. Here, we discuss the structures, functions, relationships, and sophisticated assembly mechanisms for these important biopolymers.
Collapse
Affiliation(s)
- Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
Mahmoud YAG, El-Naggar ME, Abdel-Megeed A, El-Newehy M. Recent Advancements in Microbial Polysaccharides: Synthesis and Applications. Polymers (Basel) 2021; 13:polym13234136. [PMID: 34883639 PMCID: PMC8659985 DOI: 10.3390/polym13234136] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Polysaccharide materials are widely applied in different applications including food, food packaging, drug delivery, tissue engineering, wound dressing, wastewater treatment, and bioremediation sectors. They were used in these domains due to their efficient, cost-effective, non-toxicity, biocompatibility, and biodegradability. As is known, polysaccharides can be synthesized by different simple, facile, and effective methods. Of these polysaccharides are cellulose, Arabic gum, sodium alginate, chitosan, chitin, curdlan, dextran, pectin, xanthan, pullulan, and so on. In this current article review, we focused on discussing the synthesis and potential applications of microbial polysaccharides. The biosynthesis of polysaccharides from microbial sources has been considered. Moreover, the utilization of molecular biology tools to modify the structure of polysaccharides has been covered. Such polysaccharides provide potential characteristics to transfer toxic compounds and decrease their resilience to the soil. Genetically modified microorganisms not only improve yield of polysaccharides, but also allow economically efficient production. With the rapid advancement of science and medicine, biosynthesis of polysaccharides research has become increasingly important. Synthetic biology approaches can play a critical role in developing polysaccharides in simple and facile ways. In addition, potential applications of microbial polysaccharides in different fields with a particular focus on food applications have been assessed.
Collapse
Affiliation(s)
- Yehia A.-G. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Mehrez E. El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Cairo 12622, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt;
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| |
Collapse
|
16
|
The bacterial tyrosine kinase system CpsBCD governs the length of capsule polymers. Proc Natl Acad Sci U S A 2021; 118:2103377118. [PMID: 34732571 DOI: 10.1073/pnas.2103377118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria are encased in a layer of capsular polysaccharide (CPS). This layer is important for virulence by masking surface antigens, preventing opsonophagocytosis, and avoiding mucus entrapment. The bacterial tyrosine kinase (BY-kinase) regulates capsule synthesis and helps bacterial pathogens to survive different host niches. BY-kinases autophosphorylate at the C-terminal tyrosine residues upon external stimuli, but the role of phosphorylation is still unclear. Here, we report that the BY-kinase CpsCD is required for growth in Streptococcus pneumoniae Cells lacking a functional cpsC or cpsD accumulated low molecular weight CPS and lysed because of the lethal sequestration of the lipid carrier undecaprenyl phosphate, resulting in inhibition of peptidoglycan (PG) synthesis. CpsC interacts with CpsD and the polymerase CpsH. CpsD phosphorylation reduces the length of CPS polymers presumably by controlling the activity of CpsC. Finally, pulse-chase experiments reveal the spatiotemporal coordination between CPS and PG synthesis. This coordination is dependent on CpsC and CpsD. Together, our study provides evidence that BY-kinases regulate capsule polymer length by fine-tuning CpsC activity through autophosphorylation.
Collapse
|
17
|
Identification of a Region in Shigella flexneri WzyB Disrupting the Interaction with Wzz pHS2. J Bacteriol 2021; 203:e0041321. [PMID: 34491798 DOI: 10.1128/jb.00413-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Shigella flexneri can synthesize polysaccharide chains having complex sugars and a regulated number of repeating units. S. flexneri lipopolysaccharide O antigen (Oag) is synthesized by the Wzy-dependent pathway, which is the most common pathway used in bacteria for polysaccharide synthesis. The inner membrane protein WzyB polymerizes the Oag repeat units into chains, while the polysaccharide copolymerases WzzB and WzzpHS2 determine the average number of repeat units or "the modal length," termed short type and very long type. Our data show for the first time a direct interaction between WzyB and WzzpHS2, with and without the use of the chemical cross-linker dithiobis (succinimidyl propionate) (DSP). Additionally, mutations generated via random and site-directed mutagenesis identify a region of WzyB that caused diminished function and significantly decreased very long Oag chain polymerization, and that affected the aforementioned interaction. These results provide insight into the mechanisms underlying the regulation of Oag biosynthesis. IMPORTANCE Complex polysaccharide chains are synthesized by bacteria, usually at a regulated number of repeating units, which has broad implications for bacterial pathogenesis. One example is the O antigen (Oag) component of lipopolysaccharide that is predominantly synthesized by the Wzy-dependent pathway. Our findings show for the first time a direct physical interaction between WzyB and WzzpHS2. Additionally, a set of Wzy mutant constructs were generated, revealing a proposed active site/switch region involved in the activity of WzyB and the physical interaction with WzzpHS2. Combined, these findings further understanding of the Wzy-dependent pathway. The identification of a novel interaction with the polysaccharide copolymerase WzzpHS2 and the region of WzyB that is involved in this aforementioned interaction and its impact on WzyB Oag synthesis activity have significant implication for the prevention/treatment of bacterial diseases and discovery of novel biotechnologies.
Collapse
|
18
|
Plazinski W, Roslund MU, Säwén E, Engström O, Tähtinen P, Widmalm G. Tautomers of N-acetyl-d-allosamine: an NMR and computational chemistry study. Org Biomol Chem 2021; 19:7190-7201. [PMID: 34382051 DOI: 10.1039/d1ob01139a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
d-Allosamine is a rare sugar in Nature but its pyranoid form has been found α-linked in the core region of the lipopolysaccharide from the Gram-negative bacterium Porphyromonas gingivalis and in the chitanase inhibitor allosamidin, then β-linked and N-acetylated. In water solution the monosaccharide N-acetyl-d-allosamine (d-AllNAc) shows a significant presence of four tautomers arising from pyranoid and furanoid ring forms and anomeric configurations. The furanoid ring forms both showed 3JH1,H2≈ 4.85 Hz and to differentiate the anomeric configurations a series of chemical shift anisotropy/dipole-dipole cross-correlated relaxation NMR experiments was performed in which the α-anomeric form showed notable different relaxation rates for its components of the H1 doublet, thereby making it possible to elucidate the anomeric configuration of each of the furanoses. The conformational preferences of the different forms of d-AllNAc were investigated by 3JHH, 2JCH and 3JCH coupling constants from NMR experiments, molecular dynamics simulations and density functional theory calculations. The pyranose form resides in the 4C1 conformation and the furanose ring form has the majority of its conformers located on the South-East region of the pseudorotation wheel, with a small population in the Northern hemisphere. The tautomeric equilibrium was quite sensitive to changes in temperature, where the β-anomer of the pyranoid ring form decreased upon a temperature increase while the other forms increased.
Collapse
Affiliation(s)
- Wojciech Plazinski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Kaplan M, Chreifi G, Metskas LA, Liedtke J, Wood CR, Oikonomou CM, Nicolas WJ, Subramanian P, Zacharoff LA, Wang Y, Chang YW, Beeby M, Dobro MJ, Zhu Y, McBride MJ, Briegel A, Shaffer CL, Jensen GJ. In situ imaging of bacterial outer membrane projections and associated protein complexes using electron cryo-tomography. eLife 2021; 10:73099. [PMID: 34468314 PMCID: PMC8455137 DOI: 10.7554/elife.73099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to produce outer membrane projections in the form of tubular membrane extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among diderm bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms of ~90 bacterial species that we have collected for various projects over the past 15 years (Jensen lab database), in addition to data generated in the Briegel lab. We identified outer MEs and MVs in 13 diderm bacterial species and classified several major ultrastructures: (1) tubes with a uniform diameter (with or without an internal scaffold), (2) tubes with irregular diameter, (3) tubes with a vesicular dilation at their tip, (4) pearling tubes, (5) connected chains of vesicles (with or without neck-like connectors), (6) budding vesicles and nanopods. We also identified several protein complexes associated with these MEs and MVs which were distributed either randomly or exclusively at the tip. These complexes include a secretin-like structure and a novel crown-shaped structure observed primarily in vesicles from lysed cells. In total, this work helps to characterize the diversity of bacterial membrane projections and lays the groundwork for future research in this field.
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Georges Chreifi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Lauren Ann Metskas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Janine Liedtke
- Leiden University, Sylvius Laboratories, Leiden, Netherlands
| | - Cecily R Wood
- Department of Veterinary Science, University of Kentucky, Lexington, United States
| | - Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Poorna Subramanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Yuhang Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Yongtao Zhu
- Department of Biological Sciences, Minnesota State University, Mankato, United States
| | - Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Ariane Briegel
- Leiden University, Sylvius Laboratories, Leiden, Netherlands
| | - Carrie L Shaffer
- Department of Veterinary Science, University of Kentucky, Lexington, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, United States.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, United States
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
| |
Collapse
|
20
|
Yang Y, Liu J, Clarke BR, Seidel L, Bolla JR, Ward PN, Zhang P, Robinson CV, Whitfield C, Naismith JH. The molecular basis of regulation of bacterial capsule assembly by Wzc. Nat Commun 2021; 12:4349. [PMID: 34272394 PMCID: PMC8285477 DOI: 10.1038/s41467-021-24652-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
Bacterial extracellular polysaccharides (EPSs) play critical roles in virulence. Many bacteria assemble EPSs via a multi-protein "Wzx-Wzy" system, involving glycan polymerization at the outer face of the cytoplasmic/inner membrane. Gram-negative species couple polymerization with translocation across the periplasm and outer membrane and the master regulator of the system is the tyrosine autokinase, Wzc. This near atomic cryo-EM structure of dephosphorylated Wzc from E. coli shows an octameric assembly with a large central cavity formed by transmembrane helices. The tyrosine autokinase domain forms the cytoplasm region, while the periplasmic region contains small folded motifs and helical bundles. The helical bundles are essential for function, most likely through interaction with the outer membrane translocon, Wza. Autophosphorylation of the tyrosine-rich C-terminus of Wzc results in disassembly of the octamer into multiply phosphorylated monomers. We propose that the cycling between phosphorylated monomer and dephosphorylated octamer regulates glycan polymerization and translocation.
Collapse
Affiliation(s)
- Yun Yang
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK.,Division of Structural Biology, The University of Oxford, Oxford, UK.,The Research Complex at Harwell, Harwell Campus, Harwell, UK
| | - Jiwei Liu
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK.,Division of Structural Biology, The University of Oxford, Oxford, UK
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Laura Seidel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, The University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Philip N Ward
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK.,Division of Structural Biology, The University of Oxford, Oxford, UK.,The Research Complex at Harwell, Harwell Campus, Harwell, UK
| | - Peijun Zhang
- Division of Structural Biology, The University of Oxford, Oxford, UK.,Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Harwell, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, The University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada.
| | - James H Naismith
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK. .,Division of Structural Biology, The University of Oxford, Oxford, UK. .,The Research Complex at Harwell, Harwell Campus, Harwell, UK.
| |
Collapse
|