1
|
McGuire JV, Horowitz S. Cleavage sequence specificity of Nsp15. RNA Biol 2025. [PMID: 40326411 DOI: 10.1080/15476286.2025.2501714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
Nsp15 is an EndoU nuclease that is partially responsible for SARS-CoV-2's ability to evade the immune system response. Despite its importance, the sequence specificity of Nsp15 remains difficult to fully determine. In this work, we use a systematic approach to measure Nsp15's sequence specificity by testing all 16 dinucleotides for cleavage activity. The results show a preference for uridine in the first dinucleotide position, but with varying specificity in the second position. Using Alphafold3 predictions to examine the structural basis of this specificity suggests important contacts 3' of the dinucleotide sequence as well as contacts to the dinucleotides that agree with the cleavage specificity.
Collapse
Affiliation(s)
- John V McGuire
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO
| |
Collapse
|
2
|
Malard F, Dias K, Baudy M, Thore S, Vialet B, Barthélémy P, Fribourg S, Karginov FV, Campagne S. Molecular basis for the calcium-dependent activation of the ribonuclease EndoU. Nat Commun 2025; 16:3110. [PMID: 40169637 PMCID: PMC11961692 DOI: 10.1038/s41467-025-58462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Ribonucleases (RNases) are ubiquitous enzymes that process or degrade RNA, essential for cellular functions and immune responses. The EndoU-like superfamily includes endoribonucleases conserved across bacteria, eukaryotes, and certain viruses, with an ancient evolutionary link to the ribonuclease A-like superfamily. Both bacterial EndoU and animal RNase A share a similar fold and function independently of cofactors. In contrast, the eukaryotic EndoU catalytic domain requires divalent metal ions for catalysis, possibly due to an N-terminal extension near the catalytic core. In this study, we use biophysical and computational techniques along with in vitro assays to investigate the calcium-dependent activation of human EndoU. We determine the crystal structure of EndoU bound to calcium and find that calcium binding remote from the catalytic triad triggers water-mediated intramolecular signaling and structural changes, activating the enzyme through allostery. Calcium binding involves residues from both the catalytic core and the N-terminal extension, indicating that the N-terminal extension interacts with the catalytic core to modulate activity in response to calcium. Our findings suggest that similar mechanisms may be present across all eukaryotic EndoUs, highlighting a unique evolutionary adaptation that connects endoribonuclease activity to cellular signaling in eukaryotes.
Collapse
Affiliation(s)
- Florian Malard
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, Pessac, France
| | - Kristen Dias
- Department of Molecular, Cell and Systems Biology, Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, USA
| | - Margaux Baudy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, Pessac, France
| | - Stéphane Thore
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France
| | - Brune Vialet
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France
| | | | | | - Fedor V Karginov
- Department of Molecular, Cell and Systems Biology, Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, USA.
| | - Sébastien Campagne
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France.
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, Pessac, France.
| |
Collapse
|
3
|
Bajaj T, Mosavati B, Zhang LH, Parsa MS, Wang H, Kerek EM, Liang X, Tabatabaei Dakhili SA, Wehri E, Guo S, Desai RN, Orr LM, Mofrad MRK, Schaletzky J, Ussher JR, Deng X, Stanley R, Hubbard BP, Nomura DK, Murthy N. Identification of acrylamide-based covalent inhibitors of SARS-CoV-2 (SCoV-2) Nsp15 using high-throughput screening and machine learning. RSC Adv 2025; 15:10243-10256. [PMID: 40182494 PMCID: PMC11966100 DOI: 10.1039/d4ra06955b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Non-structural protein 15 (Nsp15) is a SARS-CoV-2 (SCoV-2) endoribonuclease and is a promising target for drug development because of its essential role in evading the host immune system. However, developing inhibitors against Nsp15 has been challenging due to its structural complexity and large RNA binding surface. In this report, we screened a 2640 acrylamide-based compound library against Nsp15 and identified 10 fragments that reacted with cysteine residues on Nsp15 and inhibited its endoribonuclease activity with IC50s less than 5 μM. These compounds had several attractive properties, such as low molecular weight (180-300 g mol-1), log P <3, zero violations to Lipinski's rules, and no apparent pan-assay interference (PAINs) properties. In addition, based on this data as a training set, we developed an artificial intelligence (AI) model that accelerated the hit to lead process and had a 73% accuracy for predicting new acrylamide-based Nsp15 inhibitors. Collectively, these results demonstrate that acrylamide fragments have great potential for developing Nsp15 inhibitors.
Collapse
Affiliation(s)
- Teena Bajaj
- Graduate Program of Comparative Biochemistry, University of California, Berkeley Berkeley CA USA
| | - Babak Mosavati
- Innovative Genomics Institute, University of California, Berkeley Berkeley CA USA
- Department of Bioengineering, University of California, Berkeley Berkeley CA USA
| | - Lydia H Zhang
- Graduate Program of Molecular Toxicology, University of California, Berkeley Berkeley CA USA
| | - Mohammad S Parsa
- Department of Applied Science and Technology, University of California, Berkeley CA USA
| | - Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services North Carolina USA
| | - Evan M Kerek
- Department of Pharmacology, Li Ka Shing Institute of Virology, University of Alberta Edmonton Alberta Canada
| | - Xueying Liang
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma Center for Respiratory and Infectious Disease, Oklahoma State University Oklahoma USA
| | | | - Eddie Wehri
- The Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley Berkeley CA USA
| | - Silin Guo
- Department of Chemistry, University of California, Berkeley Berkeley CA USA
| | - Rushil N Desai
- Department of Bioengineering, University of California, Berkeley Berkeley CA USA
| | - Lauren M Orr
- Department of Chemistry, University of California, Berkeley Berkeley CA USA
| | - Mohammad R K Mofrad
- Department of Mechanical Engineering, University of California Berkeley CA USA
| | - Julia Schaletzky
- The Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley Berkeley CA USA
- The Molecular Therapeutics Initiative, University of California, Berkeley 344 Li Ka Shing Berkeley CA USA
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta Edmonton Alberta Canada
| | - Xufang Deng
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma Center for Respiratory and Infectious Disease, Oklahoma State University Oklahoma USA
| | - Robin Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services North Carolina USA
| | - Basil P Hubbard
- Department of Pharmacology, Li Ka Shing Institute of Virology, University of Alberta Edmonton Alberta Canada
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley Berkeley CA USA
| | - Niren Murthy
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma Center for Respiratory and Infectious Disease, Oklahoma State University Oklahoma USA
| |
Collapse
|
4
|
Owolabi IJ, Karim SU, Khanal S, Valdivia S, Frenzel C, Bai F, Flynt AS. Processing of genomic RNAs by Dicer in bat cells limits SARS-CoV-2 replication. Virol J 2025; 22:86. [PMID: 40133950 PMCID: PMC11934715 DOI: 10.1186/s12985-025-02693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Bats are reservoirs for numerous viruses that cause serious diseases in other animals and humans. Several mechanisms are proposed to contribute to the tolerance of bats to these pathogens. This study investigates the response of bat cells to double-stranded RNA generated by SARS-CoV-2 replication. Here, we found the involvement of Dicer in the processing of viral genomic RNAs during SARS-CoV-2 infection. Examining RNA sequencing of infected cells, small-interfering RNA (siRNA)-like fragments were found derived from viral RNAs. Depletion of Dicer showed a reduction in these RNAs and an increase in viral loads suggesting unlike other mammals, bats may use Dicer to limit viral replication. This prompted the exploration of key dsRNA sensors in bat cells. Our analysis showed significant upregulation of OAS1 and MX1 in response to dsRNA, while PKR levels remained low, suggesting alternative dsRNA-response mechanisms are present that eschew the common PKR-based system. These results further show how bats employ distinct strategies for antiviral defense that may contribute to tolerating viral infections. They suggest the involvement of Dicer in antiviral mechanisms in bats, a function not observed in other mammals. This highlights a mechanism for bat originating viruses to evolve features that in other animals could cause extreme antiviral responses such as is seen with SARS-CoV-2.
Collapse
Affiliation(s)
- Iyanuoluwani J Owolabi
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Shazeed-Ul Karim
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Sweta Khanal
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Sergio Valdivia
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Christopher Frenzel
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Fengwei Bai
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Alex S Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
5
|
Van Loy B, Pujol E, Kamata K, Lee XY, Bakirtzoglou N, Van Berwaer R, Vandeput J, Mestdagh C, Persoons L, De Wijngaert B, Goovaerts Q, Noppen S, Jacquemyn M, Ahmadzadeh K, Bernaerts E, Martín-López J, Escriche C, Vanmechelen B, Krasniqi B, Singh AK, Daelemans D, Maes P, Matthys P, Dehaen W, Rozenski J, Das K, Voet A, Vázquez S, Naesens L, Stevaert A. A guanidine-based coronavirus replication inhibitor which targets the nsp15 endoribonuclease and selects for interferon-susceptible mutant viruses. PLoS Pathog 2025; 21:e1012571. [PMID: 39932973 PMCID: PMC11856660 DOI: 10.1371/journal.ppat.1012571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/25/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
The approval of COVID-19 vaccines and antiviral drugs has been crucial to end the global health crisis caused by SARS-CoV-2. However, to prepare for future outbreaks from drug-resistant variants and novel zoonotic coronaviruses (CoVs), additional therapeutics with a distinct antiviral mechanism are needed. Here, we report a novel guanidine-substituted diphenylurea compound that suppresses CoV replication by interfering with the uridine-specific endoribonuclease (EndoU) activity of the viral non-structural protein-15 (nsp15). This compound, designated EPB-113, exhibits strong and selective cell culture activity against human coronavirus 229E (HCoV-229E) and also suppresses the replication of SARS-CoV-2. Viruses, selected under EPB-113 pressure, carried resistance sites at or near the catalytic His250 residue of the nsp15-EndoU domain. Although the best-known function of EndoU is to avoid induction of type I interferon (IFN-I) by lowering the levels of viral dsRNA, EPB-113 was found to mainly act via an IFN-independent mechanism, situated during viral RNA synthesis. Using a combination of biophysical and enzymatic assays with the recombinant nsp15 proteins from HCoV-229E and SARS-CoV-2, we discovered that EPB-113 enhances the EndoU cleavage activity of hexameric nsp15, while reducing its thermal stability. This mechanism explains why the virus escapes EPB-113 by acquiring catalytic site mutations which impair compound binding to nsp15 and abolish the EndoU activity. Since the EPB-113-resistant mutant viruses induce high levels of IFN-I and its effectors, they proved unable to replicate in human macrophages and were readily outcompeted by the wild-type virus upon co-infection of human fibroblast cells. Our findings suggest that antiviral targeting of nsp15 can be achieved with a molecule that induces a conformational change in this protein, resulting in higher EndoU activity and impairment of viral RNA synthesis. Based on the appealing mechanism and resistance profile of EPB-113, we conclude that nsp15 is a challenging but highly relevant drug target.
Collapse
Affiliation(s)
- Benjamin Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eugènia Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Kenichi Kamata
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Xiao Yin Lee
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Nikolai Bakirtzoglou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Ria Van Berwaer
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Julie Vandeput
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Cato Mestdagh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Leentje Persoons
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Brent De Wijngaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Quinten Goovaerts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maarten Jacquemyn
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eline Bernaerts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Juan Martín-López
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Celia Escriche
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Besir Krasniqi
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Abhimanyu K. Singh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jef Rozenski
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kalyan Das
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Wright ZM, Butay KJ, Krahn JM, Wilson IM, Gabel SA, DeRose EF, Hissein IS, Williams JG, Borgnia MJ, Frazier MN, Mueller GA, Stanley RE. Spontaneous base flipping helps drive Nsp15's preferences in double stranded RNA substrates. Nat Commun 2025; 16:391. [PMID: 39755678 DOI: 10.1038/s41467-024-55682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15. Through a combination of nuclease assays, 19F NMR spectroscopy, mass spectrometry, and single particle cryo-EM, we determine that Nsp15 acts most efficiently on unpaired Us, particularly those that are already flipped. Across sequence contexts, we find Nsp15's cleavage efficiency to be directly related to that U's tendency to spontaneously flip. Overall, our findings unify previous characterizations of Nsp15's cleavage preferences, and suggest that activity of Nsp15 during infection is partially driven by bulged or otherwise relatively accessible Us that appear at strategic positions in the viral RNA.
Collapse
Affiliation(s)
- Zoe M Wright
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Kevin John Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Isha M Wilson
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- Howard University College of Medicine, Washington, DC, 20059, USA
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Israa S Hissein
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Jason G Williams
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Meredith N Frazier
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- Department of Chemistry and Biochemistry, College of Charleston, 66 George St, Charleston, SC, 29424, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Robin E Stanley
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
7
|
Rampias T, Antoniou T, Stevaert A, Kravariti L, Van Loy B, Vandeput J, Sgrignani J, Filippidou N, Locatelli P, Samiotaki M, Tzakos EP, Cavalli A, Naesens L, Sideris DC, Tzakos AG. Exploration of isatin-based inhibitors of SARS-CoV-2 Nsp15 endoribonuclease. Eur J Med Chem 2024; 279:116886. [PMID: 39312834 DOI: 10.1016/j.ejmech.2024.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
The global health crisis caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) urges the development of new antiviral agents with broad coronavirus coverage. Due to its key role in viral evasion from the host innate immune response, the coronavirus Nsp15 uridine-specific endoribonuclease (EndoU) is of high interest as a drug target. Considering that the isatin scaffold is well-known for its versatile pharmacological properties, we synthesized and evaluated a series of compounds carrying an isatin core. The initial compounds were selected on the basis of in silico predictions. After biochemical assays showed moderate inhibition of SARS-CoV-2 EndoU-mediated RNA cleavage, structural analogues were rationally designed to enhance the interaction with the target. This included the incorporation of a nitrile group since this dipole can improve ADME and facilitate polar interactions with proteins and can operate as hydroxy or carboxy surrogate. A straightforward solvent free and green, microwave-assisted synthetic process was established to achieve the development of the different target compounds. The best compound exhibited inhibitory activity in enzymatic EndoU assays, and reduced the SARS-CoV-2 viral RNA load by almost 68,000-fold in the low micromolar range similarly to the established antiviral agent GS-441524.
Collapse
Affiliation(s)
- Theodoros Rampias
- Biomedical Research Foundation Academy of Athens, 4 Soranou Efesiou, 115 27, Athens, Greece
| | - Thomas Antoniou
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Lara Kravariti
- National and Kapodistrian University of Athens, Section of Biochemistry and Molecular Biology, Department of Biology, Panepistimiopolis, 15701, Athens, Greece
| | - Benjamin Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Julie Vandeput
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Jacopo Sgrignani
- Institute for Research In Biochemistry (IRB), Universita' della Svizzera Italiana, Via Chiesa 5, Bellinzona, 6500, Switzerland
| | - Natalia Filippidou
- Biomedical Research Foundation Academy of Athens, 4 Soranou Efesiou, 115 27, Athens, Greece
| | - Patrizia Locatelli
- Institute for Research In Biochemistry (IRB), Universita' della Svizzera Italiana, Via Chiesa 5, Bellinzona, 6500, Switzerland
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming, 16672, Vari, Greece
| | - Eleftherios Paraskevas Tzakos
- National and Kapodistrian University of Athens, Section of Biochemistry and Molecular Biology, Department of Biology, Panepistimiopolis, 15701, Athens, Greece
| | - Andrea Cavalli
- Institute for Research In Biochemistry (IRB), Universita' della Svizzera Italiana, Via Chiesa 5, Bellinzona, 6500, Switzerland
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Diamantis C Sideris
- National and Kapodistrian University of Athens, Section of Biochemistry and Molecular Biology, Department of Biology, Panepistimiopolis, 15701, Athens, Greece.
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece.
| |
Collapse
|
8
|
Maiti AK. MDA5 Is a Major Determinant of Developing Symptoms in Critically Ill COVID-19 Patients. Clin Rev Allergy Immunol 2024; 67:58-72. [PMID: 39460899 DOI: 10.1007/s12016-024-09008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Apart from the skin and mucosal immune barrier, the first line of defense of the human immune system includes MDA5 (ifih1 gene) which acts as a cellular sensor protein for certain viruses including SARS-CoV-2. Upon binding with viral RNA, MDA5 activates cell-intrinsic innate immunity, humoral responses, and MAVS (mitochondrial antiviral signaling). MAVS signaling induces type I and III interferon (IFN) expressions that further induce ISGs (interferon stimulatory genes) expressions to initiate human cell-mediated immune responses and attenuate viral replication. SARS-CoV-2 counteracts by producing NSP1, NSP2, NSP3, NSP5, NSP7, NSP12, ORF3A, ORF9, N, and M protein and directs anti-MDA5 antibody production presumably to antagonize IFN signaling. Furthermore, COVID-19 resembles several diseases that carry anti-MDA5 antibodies and the current COVID-19 vaccines induced anti-MDA5 phenotypes in healthy individuals. GWAS (genome-wide association studies) identified several polymorphisms (SNPs) in the ifih1-ifn pathway genes including rs1990760 in ifih1 that are strongly associated with COVID-19, and the associated risk allele is correlated with reduced IFN production. The genetic association of SNPs in ifih1 and ifih1-ifn pathway genes reinforces the molecular findings of the critical roles of MDA5 in sensing SARS-CoV-2 and subsequently the IFN responses to inhibit viral replication and host immune evasion. Thus, MDA5 or its pathway genes could be targeted for therapeutic development of COVID-19.
Collapse
Affiliation(s)
- Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, 28475 Greenfield Rd, Southfield, MI, USA.
| |
Collapse
|
9
|
Kalia N, Snell K, Harris M. Alternative substrate kinetics of SARS-CoV-2 Nsp15 endonuclease reveals a specificity landscape dominated by RNA structure. Nucleic Acids Res 2024; 52:13419-13433. [PMID: 39475186 PMCID: PMC11602132 DOI: 10.1093/nar/gkae939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Coronavirus endoribonuclease Nsp15 contributes to the evasion of host innate immunity by suppressing levels of viral dsRNA. Nsp15 cleaves both ssRNA and dsRNA in vitro with a strong preference for unpaired or bulged U residues, and its activity is stimulated by divalent ions. Here, we systematically quantified effects of RNA sequence and structure context that define its specificity. The results show that sequence preference for U↓A/G, observed previously, contributes only ca. 2-fold to kcat/Km. In contrast, dsRNA structure flanking a bulged U residue increases kcat/Km by an order of magnitude compared to ssRNA while base pairing in dsRNA essentially blocks cleavage. Despite enormous differences in multiple turnover kinetics, the effect of RNA structure on the cleavage step is minimal. Surprisingly, although divalent ion activation of Nsp15 is widely considered to be important for its biological function, the effect on kcat/Km is only ∼2-fold and independent of RNA structure. These results reveal a specificity landscape dominated by RNA structure and provide a quantitative framework for identifying interactions that underlie specificity, determining mechanisms of inhibition and resistance and defining targets important for coronavirus biology.
Collapse
Affiliation(s)
- Nidhi Kalia
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Kimberly C Snell
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
10
|
Zhou Y, Ahearn YP, Lokugamage KG, Alvarado RE, Estes LK, Meyers WM, McLeland AM, Morgan AL, Murray JT, Walker DH, Johnson BA, Routh AL, Menachery VD. SARS-CoV-2 EndoU-ribonuclease regulates RNA recombination and impacts viral fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622995. [PMID: 39605585 PMCID: PMC11601229 DOI: 10.1101/2024.11.11.622995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Coronaviruses (CoVs) maintain large RNA genomes that frequently undergoes mutations and recombination, contributing to their evolution and emergence. In this study, we find that SARS-CoV-2 has greater RNA recombination frequency than other human CoVs. In addition, coronavirus RNA recombination primarily occurs at uridine (U)-enriched RNA sequences. Therefore, we next evaluated the role of SARS-CoV-2 NSP15, a viral endonuclease that targets uridines (EndoU), in RNA recombination and virus infection. Using a catalytically inactivated EndoU mutant (NSP15H234A), we observed attenuated viral replication in vitro and in vivo. However, the loss of EndoU activity also dysregulated inflammation resulting in similar disease in vivo despite reduced viral loads. Next-generation sequencing (NGS) demonstrated that loss of EndoU activity disrupts SARS-CoV-2 RNA recombination by reducing viral sub-genomic message but increasing recombination events that contribute to defective viral genomes (DVGs). Overall, the study demonstrates that NSP15 plays a critical role in regulating RNA recombination and SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Yani P. Ahearn
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Kumari G. Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - R. Elias Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Leah K. Estes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - William M. Meyers
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Alyssa M. McLeland
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Angelica L. Morgan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Jordan T. Murray
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch
- Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| | - Bryan A. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Andrew L. Routh
- Department of Microbiology and Immunology, Scripps Research, La Jolla, CA
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory University, Atlanta, GA
| |
Collapse
|
11
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
12
|
Ibrahim IM, Elfiky AA, Mahmoud SH, ElHefnawi M. A structural-based virtual screening and in vitro validation reveals novel effective inhibitors for SARS-CoV-2 helicase and endoribonuclease. J Biomol Struct Dyn 2024; 42:9145-9158. [PMID: 37615430 DOI: 10.1080/07391102.2023.2250479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Researchers worldwide are looking for molecules that might disrupt the COVID-19 life cycle. Endoribonuclease, which is responsible for processing viral RNA to avoid detection by the host defense system, and helicase, which is responsible for unwinding the RNA helices for replication, are two key non-structural proteins. This study performs a hierarchical structure-based virtual screening approach for NSP15 and helicase to reach compounds with high binding probabilities. In this investigation, we incorporated a variety of filtering strategies for predicting compound interactions. First, we evaluated 756,275 chemicals from four databases using a deep learning method (NCI, Drug Bank, Maybridge, and COCONUT). Following that, two docking techniques (extra precision and induced fit) were utilized to evaluate the compounds' binding affinity, followed by molecular dynamic simulation supported by the MM-GBSA free binding energy calculation. Remarkably, two compounds (90616 and CNP0111740) exhibited high binding affinity values of -66.03 and -12.34 kcal/mol for helicase and NSP15, respectively. The VERO-E6 cell line was employed to test their in vitro therapeutic impact. The CC50 for CNP0111740 and 90616 were determined to be 102.767 μg/ml and 379.526 μg/ml, while the IC50 values were 140.176 μg/ml and 5.147 μg/ml, respectively. As a result, the selectivity index for CNP0111740 and 90616 is 0.73 and 73.73, respectively. Finally, these compounds were found to be novel, effective inhibitors for the virus; however, further in vivo validation is needed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdo A Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sara H Mahmoud
- Centre of Scientific Excellence for Influenza Viruses (CSEIV), National Research Centre, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group (BICG), Informatics and Systems Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
13
|
Chiu HP, Yeo YY, Lai TY, Hung CT, Kowdle S, Haas GD, Jiang S, Sun W, Lee B. SARS-CoV-2 Nsp15 antagonizes the cGAS-STING-mediated antiviral innate immune responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611469. [PMID: 39282446 PMCID: PMC11398466 DOI: 10.1101/2024.09.05.611469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Coronavirus (CoV) Nsp15 is a viral endoribonuclease (EndoU) with a preference for uridine residues. CoV Nsp15 is an innate immune antagonist which prevents dsRNA sensor recognition and stress granule formation by targeting viral and host RNAs. SARS-CoV-2 restricts and delays the host antiviral innate immune responses through multiple viral proteins, but the role of SARS-CoV-2 Nsp15 in innate immune evasion is not completely understood. Here, we generate an EndoU activity knockout rSARS-CoV-2Nsp15-H234A to elucidate the biological functions of Nsp15. Relative to wild-type rSARS-CoV-2, replication of rSARS-CoV-2Nsp15-H234A was significantly decreased in IFN-responsive A549-ACE2 cells but not in its STAT1 knockout counterpart. Transcriptomic analysis revealed upregulation of innate immune response genes in cells infected with rSARS-CoV-2Nsp15-H234A relative to wild-type virus, including cGAS-STING, cytosolic DNA sensors activated by both DNA and RNA viruses. Treatment with STING inhibitors H-151 and SN-011 rescued the attenuated phenotype of rSARS-CoV-2Nsp15-H234A. SARS-CoV-2 Nsp15 inhibited cGAS-STING-mediated IFN-β promoter and NF-κB reporter activity, as well as facilitated the replication of EV-D68 and NDV by diminishing cGAS and STING expression and downstream innate immune responses. Notably, the decline in cGAS and STING was also apparent during SARS-CoV-2 infection. The EndoU activity was essential for SARS-CoV-2 Nsp15-mediated cGAS and STING downregulation, but not all HCoV Nsp15 share the consistent substrate selectivity. In the hamster model, rSARS-CoV-2Nsp15-H234A replicated to lower titers in the nasal turbinates and lungs and induced higher innate immune responses. Collectively, our findings exhibit that SARS-CoV-2 Nsp15 serves as a host innate immune antagonist by targeting host cGAS and STING.
Collapse
Affiliation(s)
- Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
| | - Tsoi Ying Lai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chuan-Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Dana Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
14
|
Van Loy B, Stevaert A, Naesens L. The coronavirus nsp15 endoribonuclease: A puzzling protein and pertinent antiviral drug target. Antiviral Res 2024; 228:105921. [PMID: 38825019 DOI: 10.1016/j.antiviral.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The SARS-CoV-2 pandemic has bolstered unprecedented research efforts to better understand the pathogenesis of coronavirus (CoV) infections and develop effective therapeutics. We here focus on non-structural protein nsp15, a hexameric component of the viral replication-transcription complex (RTC). Nsp15 possesses uridine-specific endoribonuclease (EndoU) activity for which some specific cleavage sites were recently identified in viral RNA. By preventing accumulation of viral dsRNA, EndoU helps the virus to evade RNA sensors of the innate immune response. The immune-evading property of nsp15 was firmly established in several CoV animal models and makes it a pertinent target for antiviral therapy. The search for nsp15 inhibitors typically proceeds via compound screenings and is aided by the rapidly evolving insight in the protein structure of nsp15. In this overview, we broadly cover this fascinating protein, starting with its structure, biochemical properties and functions in CoV immune evasion. Next, we summarize the reported studies in which compound screening or a more rational method was used to identify suitable leads for nsp15 inhibitor development. In this way, we hope to raise awareness on the relevance and druggability of this unique CoV protein.
Collapse
Affiliation(s)
- Benjamin Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium.
| |
Collapse
|
15
|
Malard F, Dias K, Baudy M, Thore S, Vialet B, Barthélémy P, Fribourg S, Karginov FV, Campagne S. Molecular Basis for the Calcium-Dependent Activation of the Ribonuclease EndoU. RESEARCH SQUARE 2024:rs.3.rs-4654759. [PMID: 39070628 PMCID: PMC11275989 DOI: 10.21203/rs.3.rs-4654759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Ribonucleases (RNases) are ubiquitous enzymes that process or degrade RNA, essential for cellular functions and immune responses. The EndoU-like superfamily includes endoribonucleases conserved across bacteria, eukaryotes, and certain viruses, with an ancient evolutionary link to the ribonuclease A-like superfamily. Both bacterial EndoU and animal RNase A share a similar fold and function independently of cofactors. In contrast, the eukaryotic EndoU catalytic domain requires divalent metal ions for catalysis, possibly due to an N-terminal extension near the catalytic core. In this study, we used biophysical and computational techniques along with in vitro assays to investigate the calcium-dependent activation of human EndoU. We determined the crystal structure of EndoU bound to calcium and found that calcium binding remote from the catalytic triad triggers water-mediated intramolecular signaling and structural changes, activating the enzyme through allostery. Calcium-binding involves residues from both the catalytic core and the N-terminal extension, indicating that the N-terminal extension interacts with the catalytic core to modulate activity in response to calcium. Our findings suggest that similar mechanisms may be present across all eukaryotic EndoUs, highlighting a unique evolutionary adaptation that connects endoribonuclease activity to cellular signaling in eukaryotes.
Collapse
Affiliation(s)
- Florian Malard
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600 Pessac, France
| | - Kristen Dias
- Department of Molecular, Cell and Systems Biology, Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Margaux Baudy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600 Pessac, France
| | - Stéphane Thore
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Brune Vialet
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Philippe Barthélémy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Sébastien Fribourg
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Fedor V Karginov
- Department of Molecular, Cell and Systems Biology, Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Sébastien Campagne
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600 Pessac, France
| |
Collapse
|
16
|
Avila Y, Rebolledo LP, Skelly E, de Freitas Saito R, Wei H, Lilley D, Stanley RE, Hou YM, Yang H, Sztuba-Solinska J, Chen SJ, Dokholyan NV, Tan C, Li SK, He X, Zhang X, Miles W, Franco E, Binzel DW, Guo P, Afonin KA. Cracking the Code: Enhancing Molecular Tools for Progress in Nanobiotechnology. ACS APPLIED BIO MATERIALS 2024; 7:3587-3604. [PMID: 38833534 PMCID: PMC11190997 DOI: 10.1021/acsabm.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.
Collapse
Affiliation(s)
- Yelixza
I. Avila
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Laura P. Rebolledo
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Renata de Freitas Saito
- Comprehensive
Center for Precision Oncology, Centro de Investigação
Translacional em Oncologia (LIM24), Departamento
de Radiologia e Oncologia, Faculdade de Medicina da Universidade de
São Paulo and Instituto do Câncer do Estado de São
Paulo, São Paulo, São Paulo 01246-903, Brazil
| | - Hui Wei
- College
of Engineering and Applied Sciences, Nanjing
University, Nanjing, Jiangsu 210023, P. R. China
| | - David Lilley
- School
of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Robin E. Stanley
- Signal
Transduction Laboratory, National Institute of Environmental Health
Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Ya-Ming Hou
- Thomas
Jefferson
University, Department of Biochemistry
and Molecular Biology, 233 South 10th Street, BLSB 220 Philadelphia, Pennsylvania 19107, United States
| | - Haoyun Yang
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Joanna Sztuba-Solinska
- Vaccine
Research and Development, Early Bioprocess Development, Pfizer Inc., 401 N Middletown Road, Pearl
River, New York 10965, United States
| | - Shi-Jie Chen
- Department
of Physics and Astronomy, Department of Biochemistry, Institute of
Data Sciences and Informatics, University
of Missouri at Columbia, Columbia, Missouri 65211, United States
| | - Nikolay V. Dokholyan
- Departments
of Pharmacology and Biochemistry & Molecular Biology Penn State College of Medicine; Hershey, Pennsylvania 17033, United States
- Departments
of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cheemeng Tan
- University of California, Davis, California 95616, United States
| | - S. Kevin Li
- Division
of Pharmaceutical Sciences, James L Winkle
College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Xiaoming He
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| | - Xiaoting Zhang
- Department
of Cancer Biology, Breast Cancer Research Program, and University
of Cincinnati Cancer Center, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Wayne Miles
- Department
of Cancer Biology and Genetics, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Elisa Franco
- Department
of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Daniel W. Binzel
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
- Dorothy
M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
17
|
Wang X, Zhu B. SARS-CoV-2 nsp15 preferentially degrades AU-rich dsRNA via its dsRNA nickase activity. Nucleic Acids Res 2024; 52:5257-5272. [PMID: 38634805 PMCID: PMC11109939 DOI: 10.1093/nar/gkae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
It has been proposed that coronavirus nsp15 mediates evasion of host cell double-stranded (ds) RNA sensors via its uracil-specific endoribonuclease activity. However, how nsp15 processes viral dsRNA, commonly considered as a genome replication intermediate, remains elusive. Previous research has mainly focused on short single-stranded RNA as substrates, and whether nsp15 prefers single-stranded or double-stranded RNA for cleavage is controversial. In the present work, we prepared numerous RNA substrates, including both long substrates mimicking the viral genome and short defined RNA, to clarify the substrate preference and cleavage pattern of SARS-CoV-2 nsp15. We demonstrated that SARS-CoV-2 nsp15 preferentially cleaved pyrimidine nucleotides located in less thermodynamically stable areas in dsRNA, such as AU-rich areas and mismatch-containing areas, in a nicking manner. Because coronavirus genomes generally have a high AU content, our work supported the mechanism that coronaviruses evade the antiviral response mediated by host cell dsRNA sensors by using nsp15 dsRNA nickase to directly cleave dsRNA intermediates formed during genome replication and transcription.
Collapse
Affiliation(s)
- Xionglue Wang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China
| |
Collapse
|
18
|
Khan S, Rathod P, Gupta VK, Khedekar PB, Chikhale RV. Evolution and Impact of Nucleic Acid Amplification Test (NAAT) for Diagnosis of Coronavirus Disease. Anal Chem 2024; 96:8124-8146. [PMID: 38687959 PMCID: PMC11112543 DOI: 10.1021/acs.analchem.3c05225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Sumbul
Fatma Khan
- Department
of Pharmaceutical Sciences, Rashtrasant
Tukadoji Maharaj Nagpur University, Nagpur 440033, MS India
| | - Priyanka Rathod
- Department
of Pharmaceutical Sciences, Rashtrasant
Tukadoji Maharaj Nagpur University, Nagpur 440033, MS India
| | - Vivek K. Gupta
- Department
of Biochemistry, National JALMA Institute
for Leprosy & Other Mycobacterial Diseases (ICMR), Agra -282004, India
| | - Pramod B. Khedekar
- Department
of Pharmaceutical Sciences, Rashtrasant
Tukadoji Maharaj Nagpur University, Nagpur 440033, MS India
| | - Rupesh V. Chikhale
- UCL
School of Pharmacy, Department of Pharmaceutical and Biological Chemistry, University College London, London WC1N 1AX, United Kingdom
| |
Collapse
|
19
|
Quddusi DM, Hiremath SA, Bajcinca N. Mutation prediction in the SARS-CoV-2 genome using attention-based neural machine translation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5996-6018. [PMID: 38872567 DOI: 10.3934/mbe.2024264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) has been evolving rapidly after causing havoc worldwide in 2020. Since then, it has been very hard to contain the virus owing to its frequently mutating nature. Changes in its genome lead to viral evolution, rendering it more resistant to existing vaccines and drugs. Predicting viral mutations beforehand will help in gearing up against more infectious and virulent versions of the virus in turn decreasing the damage caused by them. In this paper, we have proposed different NMT (neural machine translation) architectures based on RNNs (recurrent neural networks) to predict mutations in the SARS-CoV-2-selected non-structural proteins (NSP), i.e., NSP1, NSP3, NSP5, NSP8, NSP9, NSP13, and NSP15. First, we created and pre-processed the pairs of sequences from two languages using k-means clustering and nearest neighbors for training a neural translation machine. We also provided insights for training NMTs on long biological sequences. In addition, we evaluated and benchmarked our models to demonstrate their efficiency and reliability.
Collapse
Affiliation(s)
- Darrak Moin Quddusi
- Chair of Mechatronics in the Faculty of Mechanical and Process Engineering, Rheinland-Pfalz Technical University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Sandesh Athni Hiremath
- Chair of Mechatronics in the Faculty of Mechanical and Process Engineering, Rheinland-Pfalz Technical University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Naim Bajcinca
- Chair of Mechatronics in the Faculty of Mechanical and Process Engineering, Rheinland-Pfalz Technical University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| |
Collapse
|
20
|
Ho WY, Shen ZH, Chen Y, Chen TH, Lu X, Fu YS. Therapeutic implications of quercetin and its derived-products in COVID-19 protection and prophylactic. Heliyon 2024; 10:e30080. [PMID: 38765079 PMCID: PMC11098804 DOI: 10.1016/j.heliyon.2024.e30080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel human coronavirus, which has triggered a global pandemic of the coronavirus infectious disease 2019 (COVID-19). Outbreaks of emerging infectious diseases continue to challenge human health worldwide. The virus conquers human cells through the angiotensin-converting enzyme 2 receptor-driven pathway by mostly targeting the human respiratory tract. Quercetin is a natural flavonoid widely represented in the plant kingdom. Cumulative evidence has demonstrated that quercetin and its derivatives have various pharmacological properties including anti-cancer, anti-hypertension, anti-hyperlipidemia, anti-hyperglycemia, anti-microbial, antiviral, neuroprotective, and cardio-protective effects, because it is a potential treatment for severe inflammation and acute respiratory distress syndrome. Furthermore, it is the main life-threatening condition in patients with COVID-19. This article provides a comprehensive review of the primary literature on the predictable effectiveness of quercetin and its derivatives docked to multi-target of SARS-CoV-2 and host cells via in silico and some of validation through in vitro, in vivo, and clinically to fight SARS-CoV-2 infections, contribute to the reduction of inflammation, which suggests the preventive and therapeutic latency of quercetin and its derived-products against COVID-19 pandemic, multisystem inflammatory syndromes (MIS), and long-COVID.
Collapse
Affiliation(s)
- Wan-Yi Ho
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Han Shen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yijing Chen
- Department of Dentisty, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Ting-Hsu Chen
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - XiaoLin Lu
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yaw-Syan Fu
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
| |
Collapse
|
21
|
Alkhalil SS, Alosaimi SE, Alosaimi ME, Mohammedsaleh ZM, Al Abdulmonem W, Alkhamiss AS, Alghsham RS, Aljohani ASM, Shater AF, Saleh FM, Almohaimeed HM, Soliman MH. Enumeration of olive derived lignan, pinoresinol for activity against recent Omicron variant spike protein for structure-based drug design, DFT, molecular dynamics simulations, and MMGBSA studies. J Appl Genet 2024; 65:341-354. [PMID: 38030871 DOI: 10.1007/s13353-023-00802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The coronavirus disease 2019 (COVID-19) was first found in Wuhan, China, in December 2019. Because the virus spreads quickly, it quickly became a global worry. Coronaviridae is the family that contains both SARS-CoV-2 and the viruses that came before (i.e., MERS-CoV and SARS-CoV). Recent sources portray that the COVID-19 virus has affected 344,710,576 people worldwide and killed about 5,598,511 people in the last 2 years. The B.1.1.529 strain, later called "Omicron," was named a Variant of Concern on November 24, 2021. The SARS-CoV-2 virus has gone through a never-ending chain of changes that have never happened before. As a result, it has many different traits. Most of these changes have occurred in the spike protein, where antibodies bind. Because of these changes, the Omicron type is very contagious and easy to pass on. There have been a lot of studies done to try to figure out this new challenge in the COVID-19 strains race, but there is still a lot that needs to be explained. This study focuses on virtual screening, docking, and molecular dynamic analysis; we aimed to identify therapeutic candidates for the SARS-CoV-2 variant Omicron based on their ability to inhibit non-structural proteins. We investigate the prediction of the properties of a substantial database of drug molecules obtained from the OliveNet™ database. Compounds that did not exhibit adequate gastrointestinal absorption and failed the Lipinski test are not considered for further research. The filtered compounds were coupled with our primary target, SARS-CoV-2 Omicron spike protein. We focused on SARS-CoV-2 Omicron spike protein and filtering potent olive compounds. Pinoresinol, the most likely candidate, is bound best (- 8.5 kcal/mol). Pinoresinol's strong interaction with the active site made the complex's dynamic structure more resilient. MD simulations explain the protein-ligand complex's stability and function. Pinoresinol may be a promising SARS-CoV-2 Omicron spike protein receptor lead drug, and additional research may assist the scientific community.
Collapse
Affiliation(s)
- Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia.
| | - Shoruq E Alosaimi
- Respiratory Services Department, King Abdullah Specialized Children's Hospital (KASCH), P.O. Box 14611,, Riyadh, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Abdullah Saleh Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Ruqaih S Alghsham
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman, University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, 46429, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Otter CJ, Bracci N, Parenti NA, Ye C, Asthana A, Blomqvist EK, Tan LH, Pfannenstiel JJ, Jackson N, Fehr AR, Silverman RH, Burke JM, Cohen NA, Martinez-Sobrido L, Weiss SR. SARS-CoV-2 nsp15 endoribonuclease antagonizes dsRNA-induced antiviral signaling. Proc Natl Acad Sci U S A 2024; 121:e2320194121. [PMID: 38568967 PMCID: PMC11009620 DOI: 10.1073/pnas.2320194121] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.
Collapse
Affiliation(s)
- Clayton J. Otter
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nicole Bracci
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nicholas A. Parenti
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Chengjin Ye
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX78227
| | - Abhishek Asthana
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Ebba K. Blomqvist
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| | - Li Hui Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Surgery, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA19104
| | | | - Nathaniel Jackson
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX78227
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66045
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - James M. Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| | - Noam A. Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA19104
- Department of Surgery, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA19104
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX78227
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
23
|
Clark BS, Silvernail I, Gordon K, Castaneda JF, Morgan AN, Rolband LA, LeBlanc SJ. A practical guide to time-resolved fluorescence microscopy and spectroscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577300. [PMID: 38586000 PMCID: PMC10996486 DOI: 10.1101/2024.01.25.577300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Time-correlated single photon counting (TCSPC) coupled with confocal microscopy is a versatile biophysical tool that enables real-time monitoring of biomolecular dynamics across many timescales. With TCSPC, Fluorescence correlation spectroscopy (FCS) and pulsed interleaved excitation-Förster resonance energy transfer (PIE-FRET) are collected simultaneously on diffusing molecules to extract diffusion characteristics and proximity information. This article is a guide to calibrating FCS and PIE-FRET measurements with several biological samples including liposomes, streptavidin-coated quantum dots, proteins, and nucleic acids for reliable determination of diffusion coefficients and FRET efficiency. The FRET efficiency results are also compared to surface-attached single molecules using fluorescence lifetime imaging microscopy (FLIM-FRET). Combining the methods is a powerful approach to revealing mechanistic details of biological processes and pathways.
Collapse
|
24
|
Ferreira P, Soares R, López-Fernández H, Vazquez N, Reboiro-Jato M, Vieira CP, Vieira J. Multiple Lines of Evidence Support 199 SARS-CoV-2 Positively Selected Amino Acid Sites. Int J Mol Sci 2024; 25:2428. [PMID: 38397104 PMCID: PMC10889775 DOI: 10.3390/ijms25042428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
SARS-CoV-2 amino acid variants that contribute to an increased transmissibility or to host immune system escape are likely to increase in frequency due to positive selection and may be identified using different methods, such as codeML, FEL, FUBAR, and MEME. Nevertheless, when using different methods, the results do not always agree. The sampling scheme used in different studies may partially explain the differences that are found, but there is also the possibility that some of the identified positively selected amino acid sites are false positives. This is especially important in the context of very large-scale projects where hundreds of analyses have been performed for the same protein-coding gene. To account for these issues, in this work, we have identified positively selected amino acid sites in SARS-CoV-2 and 15 other coronavirus species, using both codeML and FUBAR, and compared the location of such sites in the different species. Moreover, we also compared our results to those that are available in the COV2Var database and the frequency of the 10 most frequent variants and predicted protein location to identify those sites that are supported by multiple lines of evidence. Amino acid changes observed at these sites should always be of concern. The information reported for SARS-CoV-2 can also be used to identify variants of concern in other coronaviruses.
Collapse
Affiliation(s)
- Pedro Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ricardo Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Noé Vazquez
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Miguel Reboiro-Jato
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
25
|
Wang R, Stevaert A, Truong TN, Li Q, Krasniqi B, Van Loy B, Voet A, Naesens L, Dehaen W. Exploration of 1,2,3-triazolo fused triterpenoids as inhibitors of human coronavirus 229E targeting the viral nsp15 protein. Arch Pharm (Weinheim) 2024; 357:e2300442. [PMID: 37840345 DOI: 10.1002/ardp.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
The coronavirus disease-19 (COVID-19) pandemic has raised major interest in innovative drug concepts to suppress human coronavirus (HCoV) infections. We previously reported on a class of 1,2,3-triazolo fused betulonic acid derivatives causing strong inhibition of HCoV-229E replication via the viral nsp15 protein, which is proposedly related to compound binding at an intermonomer interface in hexameric nsp15. In the present study, we further explored the structure-activity relationship (SAR), by varying the substituent at the 1,2,3-triazolo ring as well as the triterpenoid skeleton. The 1,2,3-triazolo fused triterpenoids were synthesized by a multicomponent triazolization reaction, which has been developed in-house. Several analogs possessing a betulin, oleanolic acid, or ursolic acid core displayed favorable activity and selectivity (EC50 values for HCoV-229E: 1.6-3.5 μM), but neither of them proved as effective as the lead compound containing betulonic acid. The 18β-glycyrrhetinic acid-containing analogs had low selectivity. The antiviral findings were rationalized by in silico docking in the available structure of the HCoV-229E nsp15 protein. The new SAR insights will aid the further development of these 1,2,3-triazolo fused triterpenoid compounds as a unique type of coronavirus inhibitors.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tien Nguyen Truong
- Department of Chemistry, Biochemistry, Molecular and Structural Biology, KU Leuven, Leuven, Belgium
| | - Qifei Li
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| | - Besir Krasniqi
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| | - Benjamin Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Department of Chemistry, Biochemistry, Molecular and Structural Biology, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Wim Dehaen
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Alshahrani MM. Inhibition of SARS-CoV-2 NSP-15 by Uridine-5'-Monophosphate Analogues Using QSAR Modelling, Molecular Dynamics Simulations, and Free Energy Landscape. Saudi Pharm J 2024; 32:101914. [PMID: 38111672 PMCID: PMC10727945 DOI: 10.1016/j.jsps.2023.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023] Open
Abstract
SARS-CoV-2 is accountable for severe social and economic disruption around the world causing COVID-19. Non-structural protein-15 (NSP15) possesses a domain that is vital to the viral life cycle and is known as uridylate-specific endoribonuclease (EndoU). This domain binds to the uridine 5'-monophosphate (U5P) so that the protein may carry out its native activity. It is considered a vital drug target to inhibit the growth of the virus. Thus, in this current study, ML-based QSAR and virtual screening of U5P analogues targeting Nsp15 were performed to identify potential molecules against SARS-CoV-2. Screening of 816 unique U5P analogues using ML-based QSAR identified 397 compounds ranked on their predicted bioactivity (pIC50). Further, molecular docking and hydrogen bond interaction analysis resulted in the selection of the top three compounds (53309102, 57398422, and 76314921). Molecular dynamics simulation of the most promising compounds showed that two molecules 53309102 and 57398422 acted as potential binders of Nsp15. The compound was able to inhibit nsp15 activity as it was successfully bound to the active site of the nsp15 protein. This was achieved by the formation of relevant contacts with enzymatically critical amino acid residues (His235, His250, and Lys290). Principal component analysis and free energy landscape studies showed stable complex formation while MM/GBSA calculation showed lower binding energies for 53309102 (ΔGTOTAL = -29.4 kcal/mol) and 57398422 (ΔGTOTAL = -39.4 kcal/mol) compared to the control U5P (ΔGTOTAL = -18.8 kcal/mol). This study aimed to identify analogues of U5P inhibiting the NSP15 function that potentially could be used for treating COVID-19.
Collapse
Affiliation(s)
- Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| |
Collapse
|
27
|
Xie Y, Chen C, Zhang D, Jiao Z, Chen Y, Wang G, Tan Y, Zhang W, Xiao S, Peng G, Shi Y. Diversity for endoribonuclease nsp15-mediated regulation of alpha-coronavirus propagation and virulence. Microbiol Spectr 2023; 11:e0220923. [PMID: 37938022 PMCID: PMC10715224 DOI: 10.1128/spectrum.02209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE Understanding the role of the endoribonuclease non-structural protein 15 (nsp15) (EndoU) in coronavirus (CoV) infection and pathogenesis is essential for vaccine target discovery. Whether the EndoU activity of CoV nsp15, as a virulence-related protein, has a diverse effect on viral virulence needs to be further explored. Here, we found that the transmissible gastroenteritis virus (TGEV) and feline infectious peritonitis virus (FIPV) nsp15 proteins antagonize SeV-induced interferon-β (IFN-β) production in human embryonic kidney 293 cells. Interestingly, compared with wild-type infection, infection with EnUmt-TGEV or EnUmt-FIPV did not change the IFN-β response or reduce viral propagation in immunocompetent cells. The results of animal experiments showed that EnUmt viruses did not reduce the clinical presentation and mortality caused by TGEV and FIPV. Our findings enrich the understanding of nsp15-mediated regulation of alpha-CoV propagation and virulence and reveal that the conserved functions of nonstructural proteins have diverse effects on the pathogenicity of CoVs.
Collapse
Affiliation(s)
- Yunfei Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chener Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Zhe Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yixi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wanpo Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
28
|
Ito F, Yang H, Zhou ZH, Chen XS. Structural basis for polyuridine tract recognition by SARS-CoV-2 Nsp15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567629. [PMID: 38045375 PMCID: PMC10690159 DOI: 10.1101/2023.11.17.567629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
SARS-CoV-2 non-structural protein 15 (Nsp15) is critical for productive viral replication and evasion of host immunity. The uridine-specific endoribonuclease activity of Nsp15 mediates the cleavage of the polyuridine [poly(U)] tract of the negative-strand coronavirus genome to minimize the formation of dsRNA that activates the host antiviral interferon signaling. However, the molecular basis for the recognition and cleavage of the poly(U) tract by Nsp15 is incompletely understood. Here, we present cryogenic electron microscopy (cryoEM) structures of SARS-CoV-2 Nsp15 bound to viral replication intermediate dsRNA containing poly(U) tract at 2.7-3.3 Å resolution. The structures reveal one copy of dsRNA binds to the sidewall of an Nsp15 homohexamer, spanning three subunits in two distinct binding states. The target uracil is dislodged from the base-pairing of the dsRNA by amino acid residues W332 and M330 of Nsp15, and the dislodged base is entrapped at the endonuclease active site center. Up to 20 A/U base pairs are anchored on the Nsp15 hexamer, which explains the basis for a substantially shortened poly(U) sequence in the negative strand coronavirus genome compared to the long poly(A) tail in its positive strand. Our results provide mechanistic insights into the unique immune evasion strategy employed by coronavirus Nsp15.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Hanjing Yang
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90089, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA90089, USA
| |
Collapse
|
29
|
Otter CJ, Bracci N, Parenti NA, Ye C, Tan LH, Asthana A, Pfannenstiel JJ, Jackson N, Fehr AR, Silverman RH, Cohen NA, Martinez-Sobrido L, Weiss SR. SARS-CoV-2 nsp15 endoribonuclease antagonizes dsRNA-induced antiviral signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.566945. [PMID: 38014074 PMCID: PMC10680701 DOI: 10.1101/2023.11.15.566945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since emerging in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a mutant recombinant SARS-CoV-2 (nsp15mut) expressing a catalytically inactive nsp15. Infection with SARS-CoV-2 nsp15 mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type (WT) virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI culture.
Collapse
Affiliation(s)
- Clayton J Otter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Bracci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas A Parenti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Li Hui Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | | | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Chen J, Farraj RA, Limonta D, Tabatabaei Dakhili SA, Kerek EM, Bhattacharya A, Reformat FM, Mabrouk OM, Brigant B, Pfeifer TA, McDermott MT, Ussher JR, Hobman TC, Glover JNM, Hubbard BP. Reversible and irreversible inhibitors of coronavirus Nsp15 endoribonuclease. J Biol Chem 2023; 299:105341. [PMID: 37832873 PMCID: PMC10656235 DOI: 10.1016/j.jbc.2023.105341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2, the causative agent of coronavirus disease 2019, has resulted in the largest pandemic in recent history. Current therapeutic strategies to mitigate this disease have focused on the development of vaccines and on drugs that inhibit the viral 3CL protease or RNA-dependent RNA polymerase enzymes. A less-explored and potentially complementary drug target is Nsp15, a uracil-specific RNA endonuclease that shields coronaviruses and other nidoviruses from mammalian innate immune defenses. Here, we perform a high-throughput screen of over 100,000 small molecules to identify Nsp15 inhibitors. We characterize the potency, mechanism, selectivity, and predicted binding mode of five lead compounds. We show that one of these, IPA-3, is an irreversible inhibitor that might act via covalent modification of Cys residues within Nsp15. Moreover, we demonstrate that three of these inhibitors (hexachlorophene, IPA-3, and CID5675221) block severe acute respiratory syndrome coronavirus 2 replication in cells at subtoxic doses. This study provides a pipeline for the identification of Nsp15 inhibitors and pinpoints lead compounds for further development against coronavirus disease 2019 and related coronavirus infections.
Collapse
Affiliation(s)
- Jerry Chen
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Limonta
- Department of Cell Biology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | | | - Evan M Kerek
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Ashim Bhattacharya
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Filip M Reformat
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Ola M Mabrouk
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin Brigant
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom A Pfeifer
- High Throughput Biology Facility, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark T McDermott
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tom C Hobman
- Department of Cell Biology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Zhang D, Ji L, Chen X, He Y, Sun Y, Ji L, Zhang T, Shen Q, Wang X, Wang Y, Yang S, Zhang W, Zhou C. SARS-CoV-2 Nsp15 suppresses type I interferon production by inhibiting IRF3 phosphorylation and nuclear translocation. iScience 2023; 26:107705. [PMID: 37680466 PMCID: PMC10480782 DOI: 10.1016/j.isci.2023.107705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes 2019 coronavirus disease (COVID-19), poses a significant threat to global public health security. Like other coronaviruses, SARS-CoV-2 has developed various strategies to inhibit the production of interferon (IFN). Here, we have discovered that SARS-CoV-2 Nsp15 obviously reduces the expression of IFN-β and IFN-stimulated genes (ISG56, CXCL10), and also inhibits IRF3 phosphorylation and nuclear translocation by antagonizing the RLR-mediated antiviral signaling pathway. Mechanically, we found that the poly-U-specific endonuclease domain (EndoU) of Nsp15 directly associates with the kinase domain (KD) of TBK1 to interfere TBK1 interacting with IRF3 and the flowing TBK1-mediated IRF3 phosphorylation. Furthermore, Nsp15 also prevented nuclear translocation of phosphorylated IRF3 via binding to the nuclear import adaptor karyopherin α1 (KPNA1) and promoting it autophagy-dependent degradation. These findings collectively reveal a novel mechanism by which Nsp15 antagonizes host's innate immune response.
Collapse
Affiliation(s)
- Dianqi Zhang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214221, China
| | - Likai Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xu Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Laboratory Medicine and Pathology, Jiangsu Provincial Corps Hospital of Chinese People’s Armed Police Force, Yangzhou, Jiangsu 225003, China
| | - Yumin He
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Medical Research Center, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu 225001, China
| | - Yijie Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tiancheng Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Quan Shen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaochun Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shixing Yang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| |
Collapse
|
32
|
Salukhe I, Choi R, Van Voorhis W, Barrett L, Hyde J. Regulation of coronavirus nsp15 cleavage specificity by RNA structure. PLoS One 2023; 18:e0290675. [PMID: 37616296 PMCID: PMC10449227 DOI: 10.1371/journal.pone.0290675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, has had an enduring impact on global public health. However, SARS-CoV-2 is only one of multiple pathogenic human coronaviruses (CoVs) to have emerged since the turn of the century. CoVs encode for several nonstructural proteins (nsps) that are essential for viral replication and pathogenesis. Among them is nsp15, a uridine-specific viral endonuclease that is important in evading the host immune response and promoting viral replication. Despite the established endonuclease function of nsp15, little is known about other determinants of its cleavage specificity. In this study we investigate the role of RNA secondary structure in SARS-CoV-2 nsp15 endonuclease activity. Using a series of in vitro endonuclease assays, we observed that thermodynamically stable RNA structures were protected from nsp15 cleavage relative to RNAs lacking stable structure. We leveraged the s2m RNA from the SARS-CoV-1 3'UTR as a model for our structural studies as it adopts a well-defined structure with several uridines, two of which are unpaired and thus highly probable targets for nsp15 cleavage. We found that SARS-CoV-2 nsp15 specifically cleaves s2m at the unpaired uridine within the GNRNA pentaloop of the RNA. Further investigation revealed that the position of uridine within the pentaloop also impacted nsp15 cleavage efficiency suggesting that positioning within the pentaloop is necessary for optimal presentation of the scissile uridine and alignment within the nsp15 catalytic pocket. Our findings indicate that RNA secondary structure is an important determinant of nsp15 cleavage and provides insight into the molecular mechanisms of RNA recognition by nsp15.
Collapse
Affiliation(s)
- Indraneel Salukhe
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Ryan Choi
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Wesley Van Voorhis
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Lynn Barrett
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Jennifer Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
33
|
Wang Z, Yang L. The Therapeutic Potential of Natural Dietary Flavonoids against SARS-CoV-2 Infection. Nutrients 2023; 15:3443. [PMID: 37571380 PMCID: PMC10421531 DOI: 10.3390/nu15153443] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The exploration of non-toxic and cost-effective dietary components, such as epigallocatechin 3-gallate and myricetin, for health improvement and disease treatment has recently attracted substantial research attention. The recent COVID-19 pandemic has provided a unique opportunity for the investigation and identification of dietary components capable of treating viral infections, as well as gathering the evidence needed to address the major challenges presented by public health emergencies. Dietary components hold great potential as a starting point for further drug development for the treatment and prevention of SARS-CoV-2 infection owing to their good safety, broad-spectrum antiviral activities, and multi-organ protective capacity. Here, we review current knowledge of the characteristics-chemical composition, bioactive properties, and putative mechanisms of action-of natural bioactive dietary flavonoids with the potential for targeting SARS-CoV-2 and its variants. Notably, we present promising strategies (combination therapy, lead optimization, and drug delivery) to overcome the inherent deficiencies of natural dietary flavonoids, such as limited bioavailability and poor stability.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
34
|
Senthilazhagan K, Sakthimani S, Kallanja D, Venkataraman S. SARS-CoV-2: analysis of the effects of mutations in non-structural proteins. Arch Virol 2023; 168:186. [PMID: 37344726 DOI: 10.1007/s00705-023-05818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
A worldwide pandemic that started in China in late 2019 was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded RNA virus belonging to the family Coronaviridae. Due to its structural variability and mutability, this virus continues to evolve and pose a major health threat around the world. Its characteristics, such as transmissibility, antigenicity, and resistance to drugs and vaccines, are continually altered through mutations. Examining mutational hotspots and their structural repercussions can thus aid in the development of more-effective vaccinations and treatment plans. In this study, we used full genome sequences of SARS-CoV-2 variants to predict structural changes in viral proteins. These sequences were obtained from the Global Initiative on Sharing Avian Influenza Data (GISAID), and a set of significant mutations were identified in each of the non-structural proteins (NSP1-16) and structural proteins, including the envelope, nucleocapsid, membrane, and spike proteins. The mutations were characterized as stabilizing or destabilizing based on their effect on protein dynamics and stability, and their impact on structure and function was evaluated. Among all of the proteins, NSP6 stands out as especially variable. The results of this study augment our understanding of how mutational events influence virus pathogenicity and evolution.
Collapse
Affiliation(s)
- Kavya Senthilazhagan
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India
| | - Seshagiri Sakthimani
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India
| | - Deepthi Kallanja
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India.
| |
Collapse
|
35
|
Godoy AS, Nakamura AM, Douangamath A, Song Y, Noske GD, Gawriljuk VO, Fernandes RS, Pereira H, Oliveira K, Fearon D, Dias A, Krojer T, Fairhead M, Powell A, Dunnet L, Brandao-Neto J, Skyner R, Chalk R, Bajusz D, Bege M, Borbás A, Keserű GM, von Delft F, Oliva G. Allosteric regulation and crystallographic fragment screening of SARS-CoV-2 NSP15 endoribonuclease. Nucleic Acids Res 2023; 51:5255-5270. [PMID: 37115000 PMCID: PMC10250223 DOI: 10.1093/nar/gkad314] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs. However, the complexity of the enzyme's structure and kinetics, along with the broad range of recognition sequences and lack of structural complexes, hampers the development of inhibitors. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index, and with no influence of manganese on enzymatic activity. Through combining cryo-electron microscopy at different pHs, X-ray crystallography and biochemical and structural analysis, we showed that NendoU can shift between open and closed forms, which probably correspond to active and inactive states, respectively. We also explored the possibility of NendoU assembling into larger supramolecular structures and proposed a mechanism for allosteric regulation. In addition, we conducted a large fragment screening campaign against NendoU and identified several new allosteric sites that could be targeted for the development of new inhibitors. Overall, our findings provide insights into the complex structure and function of NendoU and offer new opportunities for the development of inhibitors.
Collapse
Affiliation(s)
- Andre Schutzer Godoy
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Aline Minalli Nakamura
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Alice Douangamath
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Yun Song
- Electron Bio-imaging Centre, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Gabriela Dias Noske
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Victor Oliveira Gawriljuk
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Rafaela Sachetto Fernandes
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Humberto D Muniz Pereira
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Ketllyn Irene Zagato Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Daren Fearon
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Alexandre Dias
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Tobias Krojer
- BioMAX, MAX IV Laboratory, Fotongatan 2, Lund 224 84, Sweden
| | - Michael Fairhead
- Centre for Medicines Discovery, Oxford University, Oxford OX1 3QU, UK
| | - Alisa Powell
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Louise Dunnet
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Jose Brandao-Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Rachael Skyner
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Rod Chalk
- Centre for Medicines Discovery, Oxford University, Oxford OX1 3QU, UK
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - György Miklós Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- Centre for Medicines Discovery, Oxford University, Oxford OX1 3QU, UK
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| |
Collapse
|
36
|
Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov 2023; 22:449-475. [PMID: 37076602 PMCID: PMC10113999 DOI: 10.1038/s41573-023-00672-y] [Citation(s) in RCA: 318] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/21/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic strategies that target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or human proteins to control viral infection, encompassing hundreds of potential drugs and thousands of patients in clinical trials. So far, a few small-molecule antiviral drugs (nirmatrelvir-ritonavir, remdesivir and molnupiravir) and 11 monoclonal antibodies have been marketed for the treatment of COVID-19, mostly requiring administration within 10 days of symptom onset. In addition, hospitalized patients with severe or critical COVID-19 may benefit from treatment with previously approved immunomodulatory drugs, including glucocorticoids such as dexamethasone, cytokine antagonists such as tocilizumab and Janus kinase inhibitors such as baricitinib. Here, we summarize progress with COVID-19 drug discovery, based on accumulated findings since the pandemic began and a comprehensive list of clinical and preclinical inhibitors with anti-coronavirus activities. We also discuss the lessons learned from COVID-19 and other infectious diseases with regard to drug repurposing strategies, pan-coronavirus drug targets, in vitro assays and animal models, and platform trial design for the development of therapeutics to tackle COVID-19, long COVID and pathogenic coronaviruses in future outbreaks.
Collapse
Affiliation(s)
- Guangdi Li
- Xiangya School of Public Health, Central South University; Hunan Children's Hospital, Changsha, China.
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine & German Center for Infection Research (DZIF), University of Lübeck, Lübeck, Germany.
| | - Richard Whitley
- Department of Paediatrics, Microbiology, Medicine and Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
37
|
Huang T, Snell KC, Kalia N, Gardezi S, Guo L, Harris ME. Kinetic analysis of RNA cleavage by coronavirus Nsp15 endonuclease: Evidence for acid base catalysis and substrate dependent metal ion activation. J Biol Chem 2023:104787. [PMID: 37149147 PMCID: PMC10158045 DOI: 10.1016/j.jbc.2023.104787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023] Open
Abstract
Understanding the functional properties of SARS-CoV-2 nonstructural proteins is essential for defining their roles in the viral life cycle, developing improved therapeutics and diagnostics, and countering future variants. Coronavirus nonstructural protein Nsp15 is a hexameric U-specific endonuclease whose functions, substrate specificity, mechanism, and dynamics have not been fully defined. Previous studies report SARS-CoV-2 Nsp15 requires Mn2+ ions for optimal activity; however, the effects of divalent ions on Nsp15 reaction kinetics have not been investigated in detail. Here, we analyzed the single and multiple turnover kinetics for model single-stranded RNA substrates. Our data confirm that divalent ions are dispensable for catalysis and show that Mn2+ activates Nsp15 cleavage of two different ssRNA oligonucleotide substrates, but not a dinucleotide. Furthermore, biphasic kinetics of ssRNA substrates demonstrates that Mn2+ stabilizes alternative enzyme states that have faster substrate cleavage on the enzyme. However, we did not detect Mn2+-induced conformational changes using CD and fluorescence spectroscopy. The pH-rate profiles in the presence and absence of Mn2+ are consistent with active site ionizable groups with similar pKas of ca. 4.8-5.2. We found the Rp stereoisomer phosphorothioate modification at the scissile phosphate had minimal effect on catalysis, which supports a mechanism involving an anionic transition state. In contrast, the Sp stereoisomer is inactive due to weak binding, consistent with models that position the non-bridging phosphoryl oxygen deep in the active site. Together, these kinetic data demonstrate that Nsp15 employs a conventional acid-base catalytic mechanism passing through an anionic transition state, and that divalent ion activation is substrate-dependent.
Collapse
Affiliation(s)
- Tong Huang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Kimberly C Snell
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Nidhi Kalia
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Shahbaz Gardezi
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Lily Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
38
|
Ramli S, Wu YS, Batumalaie K, Guad RM, Choy KW, Kumar A, Gopinath SCB, Rahman Sarker MM, Subramaniyan V, Sekar M, Fuloria NK, Fuloria S, Chinni SV, Ramachawolran G. Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery. Microorganisms 2023; 11:1000. [PMID: 37110423 PMCID: PMC10142625 DOI: 10.3390/microorganisms11041000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmacy, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Malaysia;
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, Johor Bahru 81750, Malaysia;
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia;
| | - Ashok Kumar
- Department of Internal Medicine, Division of Pulmonary, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA;
| | - Subash C. B. Gopinath
- Centre of Excellence (CoE), Faculty of Chemical Engineering & Technology & Micro System Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia;
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
- Health Med Science Research Network, 3/1, Block F, Lalmatia, Dhaka 1207, Bangladesh
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia;
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Subang Jaya 42610, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering & Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia;
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Malaysia;
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai 600077, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No 4, Jalan Sepoy Lines, Georgetown 10450, Malaysia
| |
Collapse
|
39
|
Lee JH, Koepke L, Kirchhoff F, Sparrer KMJ. Interferon antagonists encoded by SARS-CoV-2 at a glance. Med Microbiol Immunol 2023; 212:125-131. [PMID: 35366686 PMCID: PMC8976456 DOI: 10.1007/s00430-022-00734-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
The innate immune system is a powerful barrier against invading pathogens. Interferons (IFNs) are a major part of the cytokine-mediated anti-viral innate immune response. After recognition of a pathogen by immune sensors, signaling cascades are activated that culminate in the release of IFNs. These activate cells in an autocrine or paracrine fashion eventually setting cells in an anti-viral state via upregulation of hundreds of interferon-stimulated genes (ISGs). To evade the anti-viral effect of the IFN system, successful viruses like the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolved strategies to counteract both IFN induction and signaling. In fact, more than half of the about 30 proteins encoded by SARS-CoV-2 target the IFN system at multiple levels to escape IFN-mediated restriction. Here, we review recent insights into the molecular mechanisms used by SARS-CoV-2 proteins to suppress IFN production and the establishment of an anti-viral state.
Collapse
Affiliation(s)
- Jung-Hyun Lee
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081, Ulm, Germany
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081, Ulm, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081, Ulm, Germany.
| |
Collapse
|
40
|
Yang JY, Ma YX, Liu Y, Peng XJ, Chen XZ. A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity. Molecules 2023; 28:molecules28062735. [PMID: 36985705 PMCID: PMC10054335 DOI: 10.3390/molecules28062735] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has majorly impacted public health and economies worldwide. Although several effective vaccines and drugs are now used to prevent and treat COVID-19, natural products, especially flavonoids, showed great therapeutic potential early in the pandemic and thus attracted particular attention. Quercetin, baicalein, baicalin, EGCG (epigallocatechin gallate), and luteolin are among the most studied flavonoids in this field. Flavonoids can directly or indirectly exert antiviral activities, such as the inhibition of virus invasion and the replication and inhibition of viral proteases. In addition, flavonoids can modulate the levels of interferon and proinflammatory factors. We have reviewed the previously reported relevant literature researching the pharmacological anti-SARS-CoV-2 activity of flavonoids where structures, classifications, synthetic pathways, and pharmacological effects are summarized. There is no doubt that flavonoids have great potential in the treatment of COVID-19. However, most of the current research is still in the theoretical stage. More studies are recommended to evaluate the efficacy and safety of flavonoids against SARS-CoV-2.
Collapse
Affiliation(s)
- Jun-Yu Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yi-Xuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiang-Jun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Xiang-Zhao Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
41
|
Yang T, Wang SC, Ye L, Maimaitiyiming Y, Naranmandura H. Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Expert Opin Drug Discov 2023; 18:247-268. [PMID: 36723288 DOI: 10.1080/17460441.2023.2175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.
Collapse
Affiliation(s)
- Tao Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si Chun Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linyan Ye
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Cable J, Denison MR, Kielian M, Jackson WT, Bartenschlager R, Ahola T, Mukhopadhyay S, Fremont DH, Kuhn RJ, Shannon A, Frazier MN, Yuen KY, Coyne CB, Wolthers KC, Ming GL, Guenther CS, Moshiri J, Best SM, Schoggins JW, Jurado KA, Ebel GD, Schäfer A, Ng LFP, Kikkert M, Sette A, Harris E, Wing PAC, Eggenberger J, Krishnamurthy SR, Mah MG, Meganck RM, Chung D, Maurer-Stroh S, Andino R, Korber B, Perlman S, Shi PY, Bárcena M, Aicher SM, Vu MN, Kenney DJ, Lindenbach BD, Nishida Y, Rénia L, Williams EP. Positive-strand RNA viruses-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1521:46-66. [PMID: 36697369 PMCID: PMC10347887 DOI: 10.1111/nyas.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.
Collapse
Affiliation(s)
| | - Mark R Denison
- Department of Pediatrics and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; and Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University and German Cancer Research Center (DKFZ), Research Division Virus-associated Carcinogenesis, Heidelberg, Germany
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | - Daved H Fremont
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ashleigh Shannon
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix Marseille Université, Marseille, France
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, People's Republic of China
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Katja C Wolthers
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam and Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jasmine Moshiri
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lisa F P Ng
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Peter A C Wing
- Nuffield Department of Medicine and Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Julie Eggenberger
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology and NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcus G Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore City, Singapore
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Donghoon Chung
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sebastian Maurer-Stroh
- Yong Loo Lin School of Medicine and Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie-Marie Aicher
- Institut Pasteurgrid, Université de Paris Cité, Virus Sensing and Signaling Unit, Paris, France
| | - Michelle N Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Devin J Kenney
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yukiko Nishida
- Chugai Pharmaceutical, Co., Tokyo, Japan
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Laurent Rénia
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
| | - Evan P Williams
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
43
|
Mironov AA, Savin MA, Beznoussenko GV. COVID-19 Biogenesis and Intracellular Transport. Int J Mol Sci 2023; 24:ijms24054523. [PMID: 36901955 PMCID: PMC10002980 DOI: 10.3390/ijms24054523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
SARS-CoV-2 is responsible for the COVID-19 pandemic. The structure of SARS-CoV-2 and most of its proteins of have been deciphered. SARS-CoV-2 enters cells through the endocytic pathway and perforates the endosomes' membranes, and its (+) RNA appears in the cytosol. Then, SARS-CoV-2 starts to use the protein machines of host cells and their membranes for its biogenesis. SARS-CoV-2 generates a replication organelle in the reticulo-vesicular network of the zippered endoplasmic reticulum and double membrane vesicles. Then, viral proteins start to oligomerize and are subjected to budding within the ER exit sites, and its virions are passed through the Golgi complex, where the proteins are subjected to glycosylation and appear in post-Golgi carriers. After their fusion with the plasma membrane, glycosylated virions are secreted into the lumen of airways or (seemingly rarely) into the space between epithelial cells. This review focuses on the biology of SARS-CoV-2's interactions with cells and its transport within cells. Our analysis revealed a significant number of unclear points related to intracellular transport in SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Correspondence:
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| | - Galina V. Beznoussenko
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
44
|
Lessons Learnt from COVID-19: Computational Strategies for Facing Present and Future Pandemics. Int J Mol Sci 2023; 24:ijms24054401. [PMID: 36901832 PMCID: PMC10003049 DOI: 10.3390/ijms24054401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Since its outbreak in December 2019, the COVID-19 pandemic has caused the death of more than 6.5 million people around the world. The high transmissibility of its causative agent, the SARS-CoV-2 virus, coupled with its potentially lethal outcome, provoked a profound global economic and social crisis. The urgency of finding suitable pharmacological tools to tame the pandemic shed light on the ever-increasing importance of computer simulations in rationalizing and speeding up the design of new drugs, further stressing the need for developing quick and reliable methods to identify novel active molecules and characterize their mechanism of action. In the present work, we aim at providing the reader with a general overview of the COVID-19 pandemic, discussing the hallmarks in its management, from the initial attempts at drug repurposing to the commercialization of Paxlovid, the first orally available COVID-19 drug. Furthermore, we analyze and discuss the role of computer-aided drug discovery (CADD) techniques, especially those that fall in the structure-based drug design (SBDD) category, in facing present and future pandemics, by showcasing several successful examples of drug discovery campaigns where commonly used methods such as docking and molecular dynamics have been employed in the rational design of effective therapeutic entities against COVID-19.
Collapse
|
45
|
Jernigan RJ, Logeswaran D, Doppler D, Nagaratnam N, Sonker M, Yang JH, Ketawala G, Martin-Garcia JM, Shelby ML, Grant TD, Mariani V, Tolstikova A, Sheikh MZ, Yung MC, Coleman MA, Zaare S, Kaschner EK, Rabbani MT, Nazari R, Zacks MA, Hayes B, Sierra RG, Hunter MS, Lisova S, Batyuk A, Kupitz C, Boutet S, Hansen DT, Kirian RA, Schmidt M, Fromme R, Frank M, Ros A, Chen JJL, Botha S, Fromme P. Room-temperature structural studies of SARS-CoV-2 protein NendoU with an X-ray free-electron laser. Structure 2023; 31:138-151.e5. [PMID: 36630960 PMCID: PMC9830665 DOI: 10.1016/j.str.2022.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/08/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
NendoU from SARS-CoV-2 is responsible for the virus's ability to evade the innate immune system by cleaving the polyuridine leader sequence of antisense viral RNA. Here we report the room-temperature structure of NendoU, solved by serial femtosecond crystallography at an X-ray free-electron laser to 2.6 Å resolution. The room-temperature structure provides insight into the flexibility, dynamics, and other intrinsic properties of NendoU, with indications that the enzyme functions as an allosteric switch. Functional studies examining cleavage specificity in solution and in crystals support the uridine-purine cleavage preference, and we demonstrate that enzyme activity is fully maintained in crystal form. Optimizing the purification of NendoU and identifying suitable crystallization conditions set the benchmark for future time-resolved serial femtosecond crystallography studies. This could advance the design of antivirals with higher efficacy in treating coronaviral infections, since drugs that block allosteric conformational changes are less prone to drug resistance.
Collapse
Affiliation(s)
- Rebecca J Jernigan
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Dhenugen Logeswaran
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Diandra Doppler
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Nirupa Nagaratnam
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Mukul Sonker
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Jay-How Yang
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Gihan Ketawala
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Jose M Martin-Garcia
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Megan L Shelby
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Michelle Z Sheikh
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Mimi Cho Yung
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Sahba Zaare
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Fulton School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Emily K Kaschner
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Mohammad Towshif Rabbani
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Reza Nazari
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Michele A Zacks
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sebastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Debra T Hansen
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Richard A Kirian
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, WI 53211, USA
| | - Raimund Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Alexandra Ros
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
46
|
Dinda B, Dinda S, Dinda M. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3- O-gallate (EGCG) in SARS-CoV-2 infection: Major interactions with host/virus proteases. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 3:100402. [PMID: 36597465 PMCID: PMC9800022 DOI: 10.1016/j.phyplu.2022.100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The current COVID-19 pandemic from the human pathogenic virus SARS-CoV-2 has resulted in a major health hazard globally. The morbidity and transmission modality of this disease are severe and uncontrollable. As no effective clinical drugs are available for treatment of COVID-19 infection till to date and only vaccination is used as prophylaxis and its efficacy is restricted due to emergent of new variants of SARS-CoV-2, there is an urgent need for effective drugs for its treatment. PURPOSE The aim of this review was to provide a detailed analysis of anti-SARS-CoV-2 efficacy of (-)-epigallocatechin-3-O-gallate (EGCG), a major catechin constituent of green tea (Camellia sinensis (L.) Kuntze) beverage to highlight the scope of EGCG in clinical medicine as both prophylaxis and treatment of present COVID-19 infection. In addition, the factors related to poor oral bioavailabilty of EGCG was also analysed for a suggestion for future research in this direction. STUDY DESIGN We collected the published articles related to anti-SARS-CoV-2 activity of EGCG against the original strain (Wuhan type) and its newly emerged variants of SARS-CoV-2 virus. METHODS A systematic search on the published literature was conducted in various databases including Google Scholar, PubMed, Science Direct and Scopus to collect the relevant literature. RESULTS The findings of this search demonstrate that EGCG shows potent antiviral activity against SARS-CoV-2 virus by preventing viral entry and replication in host cells in vitro models. The studies on the molecular mechanisms of EGCG in inhibition of SARS-CoV-2 infection in host cells reveal that EGCG blocks the entry of the virus particles by interaction with the receptor binding domain (RBD) of viral spike (S) protein to host cell surface receptor protease angiotensin-converting enzyme 2 (ACE2) as well as suppression of the expressions of host proteases, ACE2, TMPRSS2 and GRP78, required for viral entry, by Nrf2 activation in host cells. Moreover, EGCG inhibits the activities of SARS-CoV-2 main protease (Mpro), papain-like protease (PLpro), endoribonuclease Nsp15 in vitro models and of RNA-dependent RNA polymerase (RdRp) in molecular docking model for suppression of viral replication. In addition, EGCG significantly inhibits viral inflammatory cytokine production by stimulating Nrf2- dependent host immune response in virus-infected cells. EGCG significantly reduces the elevated levels of HMGB1, a biomarker of sepsis, lung fibrosis and thrombotic complications in viral infections. EGCG potentially inhibits the infection of original (Wuhan type) strain of SARS-CoV-2 and other newly emerged variants as well as the infections of SARS-CoV-2 virus spike-protein of WT and its mutants-mediated pseudotyped viruses . EGCG shows maximum inhibitory effect against SARS-CoV-2 infection when the host cells are pre-incubated with the drug prior to viral infection. A sorbitol/lecithin-based throat spray containing concentrated green tea extract rich in EGCG content significantly reduces SARS-CoV-2 infectivity in oral mucosa. Several factors including degradation in gastrointestinal environment, low absorption in small intestine and extensive metabolism of EGCG are responsible for its poor bioavailability in humans. Pharmacokinetic and metabolism studies of EGCG in humans reveal poor bioavailability of EGCG in human plasma and EGCG-4"-sulfate is its major metabolite. The concentration of EGCG-4"-sulfate in human plasma is almost equivalent to that of free EGCG (Cmax 177.9 vs 233.5 nmol/L). These findings suggest that inhibition of sulfation of EGCG is a crucial factor for improvement of its bioavailability. In vitro study on the mechanism of EGCG sulfonation indicates that sulfotransferases, SULT1A1 and SULT1A3 are responsible for sulfonation in human liver and small intestine, respectively. Some attempts including structural modifications, and nanoformulations of EGCG and addition of nutrients with EGCG have been made to improve the bioavailability of EGCG. CONCLUSIONS The findings of this study suggest that EGCG has strong antiviral activity against SARS-CoV-2 infection independent of viral strains (Wuhan type (WT), other variants) by inhibition of viral entry and replication in host cells in vitro models. EGCG may be useful in reduction of this viral load in salivary glands of COVID-19 patients, if it is applied in mouth and throat wash formulations in optimal concentrations. EGCG could be a promising candidate in the development of effective vaccine for prevention of the infections of newly emergent strains of SARS-CoV-2 virus. EGCG might be useful also as a clinical medicine for treatment of COVID-19 patients if its bioavailability in human plasma is enhanced.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, 799 022, India
| | - Subhajit Dinda
- Department of Chemistry, Kamalpur Govt Degree College, Dhalai,Tripura, 799 285, India
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, 1300 Jefferson Park Ave, VA, 22908, United States of America
| |
Collapse
|
47
|
Chen TH, Tsai MJ, Chang CS, Xu L, Fu YS, Weng CF. The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion. J Infect Public Health 2023; 16:42-54. [PMID: 36470006 PMCID: PMC9675089 DOI: 10.1016/j.jiph.2022.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The novel coronavirus disease-2019 (COVID-19) that emerged in China, is an extremely contagious and pathogenic viral infection caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) that has sparked a global pandemic. The few and limited availability of approved therapeutic agents or vaccines is of great concern. Urgently, Remdesivir, Nirmatrelvir, Molnupiravir, and some phytochemicals including polyphenol, flavonoid, alkaloid, and triterpenoid are applied to develop as repurposing drugs against the SARS-CoV-2 invasion. METHODS This study was conducted to perform molecular docking and absorption, distribution, metabolism, excretion and toxicity (ADMET) analysis of the potential phytocompounds and repurposing drugs against three targets of SARS-CoV-2 proteins (RNA dependent RNA polymerase, RdRp, Endoribonclease, S-protein of ACE2-RBD). RESULTS The docking data illustrated Arachidonic acid, Rutin, Quercetin, and Curcumin were highly bound with coronavirus polyprotein replicase and Ebolavirus envelope protein. Furthermore, anti- Ebolavirus molecule Remedesivir, anti-HIV molecule Chloroquine, and Darunavir were repurposed with coronavirus polyprotein replicase as well as Ebolavirus envelope protein. The strongest binding interaction of each targets are Rutin with RdRp, Endoribonclease with Amentoflavone, and ACE2-RBD with Epigallocatechin gallate. CONCLUSIONS Taken altogether, these results shed a light on that phytocompounds have a therapeutic potential for the treatment of anti-SARS-CoV-2 may base on multi-target effects or cocktail formulation for blocking viral infection through invasion/activation, transcription/reproduction, and posttranslational cleavage to battle COVID-19 pandemic.
Collapse
Affiliation(s)
- Ting-Hsu Chen
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Neurological Institute, Taipei 11217, Taiwan
| | - Chun-Sheng Chang
- Department of biotechnology and food technology, Southern Taiwan University of Science and Technology, Yungkang City 701, Taiwan
| | - Linxi Xu
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Yaw-Syan Fu
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China,Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China,Corresponding author
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China,Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China,Corresponding author
| |
Collapse
|
48
|
Abdelmalick A, Sehli S, Idrissi Azami A, Habib N, Al Idrissi N, Belyamani L, Houmeida A, Ghazal H. Genomic Evidence of Multiple Introductions of SARS-CoV-2 in Mauritania. Bioinform Biol Insights 2023; 17:11779322231167927. [PMID: 37124130 PMCID: PMC10130938 DOI: 10.1177/11779322231167927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/05/2023] [Indexed: 05/02/2023] Open
Abstract
The rapid and global spread of the novel coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has raised serious public health concerns, including in Mauritania. We sequenced and analyzed the entire genome of 13 SARS-CoV-2 virus strains isolated from polymerase chain reaction (PCR)-positive symptomatic patients sampled from March 3 to May 31, 2021 to better understand SARS-CoV-2 introduction, propagation, and evolution in Mauritania. A phylogenetic tree using available data from the EpiCoV GISAID database and a variant network with non-Mauritanian sequences were constructed. Variant analysis of the 13 Mauritanian SARS-CoV-2 genome sequences indicated an average mutational percentage of 0.39, which is similar to that in other countries. Phylogenetic analysis revealed multiple spatiotemporal introductions, mainly from Europe (France, Belgium) and Africa (Senegal, Côte d'Ivoire), which also provided evidence of early community transmission. A total of 2 unique mutations, namely, NSP6_Q208K and NSP15_S273T, were detected in the NSP6 and NSP15 genes, respectively, confirming the aforementioned introduction of SARS-CoV-2 in Mauritania. These findings highlight the relevance of continuous genomic monitoring strategies for understanding virus transmission dynamics and acquiring knowledge to address forthcoming sources of infection in Africa.
Collapse
Affiliation(s)
| | - Sofia Sehli
- Laboratory of Genomics, Bioinformatics and Digital Health, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
| | - Abdellah Idrissi Azami
- Laboratory of Genomics, Bioinformatics and Digital Health, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
| | - Nihal Habib
- Laboratory of Genomics, Bioinformatics and Digital Health, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
| | - Najib Al Idrissi
- Laboratory of Genomics, Bioinformatics and Digital Health, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Cheikh Khalifa International University Hospital, Casablanca, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Ahmed Houmeida
- Faculty of Science and Technology, University of Nouakchott, Nouakchott, Mauritania
| | - Hassan Ghazal
- Laboratory of Genomics, Bioinformatics and Digital Health, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- National Center for Scientific and Technical Research (CNRST), Scientific Departement, Rabat, Morocco
- Hassan Ghazal, National Center for Scientific and Technical Research (CNRST), Angle avenues des FAR et Allal El Fassi, Hay Ryad, B.P. 8027 N.U, Rabat 10102, Morocco.
| |
Collapse
|
49
|
Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Immunobiology 2023; 228:152302. [PMID: 36434912 PMCID: PMC9663145 DOI: 10.1016/j.imbio.2022.152302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a highly transmittable and pathogenic human coronavirus that first emerged in China in December 2019. The unprecedented outbreak of SARS-CoV-2 devastated human health within a short time leading to a global public health emergency. A detailed understanding of the viral proteins including their structural characteristics and virulence mechanism on human health is very crucial for developing vaccines and therapeutics. To date, over 1800 structures of non-structural, structural, and accessory proteins of SARS-CoV-2 are determined by cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy. Designing therapeutics to target the viral proteins has several benefits since they could be highly specific against the virus while maintaining minimal detrimental effects on humans. However, for ongoing and future research on SARS-CoV-2, summarizing all the viral proteins and their detailed structural information is crucial. In this review, we compile comprehensive information on viral structural, non-structural, and accessory proteins structures with their binding and catalytic sites, different domain and motifs, and potential drug target sites to assist chemists, biologists, and clinicians finding necessary details for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmuda Kabir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue NW, Kennesaw, GA 30144, USA
| |
Collapse
|
50
|
DiIorio MC, Kulczyk AW. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. MICROMACHINES 2022; 14:118. [PMID: 36677177 PMCID: PMC9866264 DOI: 10.3390/mi14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Biological macromolecules and assemblies precisely rearrange their atomic 3D structures to execute cellular functions. Understanding the mechanisms by which these molecular machines operate requires insight into the ensemble of structural states they occupy during the functional cycle. Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide near-atomic resolution, structural information about dynamic biological macromolecules elusive to other structure determination methods. Recent advances in cryo-EM methodology have allowed structural biologists not only to probe the structural intermediates of biochemical reactions, but also to resolve different compositional and conformational states present within the same dataset. This article reviews newly developed sample preparation and single-particle analysis (SPA) techniques for high-resolution structure determination of intrinsically dynamic and heterogeneous samples, shedding light upon the intricate mechanisms employed by molecular machines and helping to guide drug discovery efforts.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry and Microbiology, Rutgers University, 75 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|