1
|
Wang D, Zuo S, Zhang Y, Zhao P, Tuoheti G, Zhao B, Wan P, Chu L, Yang K. Transcriptome analyses reveal key genes related to pod dehiscence of adzuki bean ( Vigna angularis L.). 3 Biotech 2025; 15:80. [PMID: 40071127 PMCID: PMC11891120 DOI: 10.1007/s13205-025-04255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
To investigate the mechanism of pod dehiscence in adzuki bean, RNA sequencing was utilized to analyze transcriptomes in the ventral and dorsal sutures of pods from two dehiscence-resistant accessions and two dehiscence-susceptible accessions. A total of 943 differentially expressed genes (DEGs) were identified. Through the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic enrichment pathways, 34 genes related to pod dehiscence were identified. The genes associated with pod dehiscence primarily encode enzymes involved in cell wall modification, including pectin esterase, cellulose synthase, glucosyltransferase, glycoside hydrolase, D-galactosidase, peroxidases, and transcription factors from the MADS-box gene family. The genes exhibit significant enrichment in pathways such as "Pentose and glucuronate interconversions," "Galactose metabolism," "Fructose and mannose metabolism," "Starch and sucrose metabolism," and "Biosynthesis of secondary metabolites." These components primarily play a role in modifying the cell wall, regulating the biochemistry of cells in the dehiscence zone of the pod, and influencing the physiological and metabolic processes of the ventral and dorsal sutures of the pod. This study examined transcript level variations between adzuki bean varieties resistant and susceptible to pod dehiscence, specifically focusing on the ventral and dorsal sutures. The findings offer novel perspectives for elucidating the pod dehiscence regulatory network in adzuki bean and provide valuable genetic resources to guide pod dehiscence-resistant breeding in adzuki bean. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04255-z.
Collapse
Affiliation(s)
- Donghao Wang
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Siyu Zuo
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian, 116622 Liaoning China
| | - Ying Zhang
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian, 116622 Liaoning China
| | - Pu Zhao
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Gulinuer Tuoheti
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian, 116622 Liaoning China
| | - Bo Zhao
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Ping Wan
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Liwei Chu
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian, 116622 Liaoning China
| | - Kai Yang
- Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| |
Collapse
|
2
|
Li F, Liu J, Dewer Y, Ahsan MH, Wu C. The Genome of the Lima Bean Variety Baiyu Bean Highlights Its Evolutionary Characteristics. Ecol Evol 2025; 15:e71027. [PMID: 40027412 PMCID: PMC11868737 DOI: 10.1002/ece3.71027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
The baiyu bean (Phaseolus lunatus), also known as the lima bean, is a plant belonging to the Fabaceae family, has a long and distinguished history of cultivation in China and is a highly regarded local variety of lima bean. In the current study, we present the reference genome of the baiyu bean variety, which has a scaffold N50 length of 47.545 Mb. A comparative genomic analysis was conducted using genomes of seven legume species, and the results demonstrated that 1564 and 1275 genes of baiyu bean exhibited expansion and contraction, respectively. Moreover, 543 genes were identified as exclusive to the baiyu bean. The analysis of adaptive evolution genes revealed the presence of 61 genes under adaptive evolution between P. lunatus and the common bean P. vulgaris. An examination of the branch model revealed the presence of five genes undergoing adaptive evolution in the P. lunatus branch. Additionally, the evolutionary selective pressure acting on other branches of legume plants was analyzed. A comprehensive analysis of structural variations (SVs) between the baiyu bean and G27455 genome was conducted, resulting in the identification of 5549 SVs. Among these, 333 genes were identified as high-impact SV genes. The acquisition of the genome sequence of this excellent variety will facilitate the exploration and utilization of its characteristics, providing a foundation for the genetic improvement of the lima bean.
Collapse
Affiliation(s)
- Fengqi Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
| | | | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide LaboratoryAgricultural Research CenterGizaEgypt
| | | | - Chunyan Wu
- College of Plant ProtectionYangzhou UniversityYangzhouChina
| |
Collapse
|
3
|
Oraon PK, Ambreen H, Yadav P, Ramarao S, Goel S. A chromosome-scale reference assembly of Vigna radiata enables delineation of centromeres and telomeres. Sci Data 2025; 12:305. [PMID: 39979386 PMCID: PMC11842788 DOI: 10.1038/s41597-025-04436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Vigna radiata (L.) R. Wilczek var. radiata (mungbean) is a pulse crop important for both the global protein security and sustainable crop production. Here, to facilitate genomics-assisted breeding programs in mungbean, we present a high-quality reference genome originating from the crop's centre of origin, India. In this study, we present a significantly continuous genome assembly of V. radiata Indian cultivar, achieved through a combination of long-read PacBio HiFi sequencing and Hi-C sequencing. The total assembled genome size is ~596 Mb equating to ~98% of the predicted genome size complemented by a contig N50 value of 10.35 Mb and a BUSCO score of 98.5%. Around 502 Mb of the assembled genome is anchored on 11 pseudochromosomes conforming to the chromosome count in the crop with distinctly identified telomeres and centromeres. We predicted a total of 43,147 gene models of which 39,144 protein coding genes were functionally annotated. The present assembly was able to resolve several gaps in the genome and provides a high-quality genomic resource for accelerating mungbean breeding programs.
Collapse
Affiliation(s)
| | - Heena Ambreen
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Priyanka Yadav
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Satyawada Ramarao
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
Traverso ER, Ernest EG, Emanuel IB, Betts AK. Building Accelerated Plant Breeding Pipelines: Screening to Evaluate Lima Bean Resistance to Root-Knot Nematode in Diverse Inbred Lines and Segregating Breeding Populations. PHYTOPATHOLOGY 2024; 114:2421-2430. [PMID: 39078260 DOI: 10.1094/phyto-11-23-0441-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Lima beans (Phaseolus lunatus) are a cornerstone crop of Delaware's processing vegetable industry. Root-knot nematodes (RKNs; Meloidogyne spp.) cause galling of root systems, which severely reduces yield. Durable host resistance is an effective management strategy for RKNs, but availability of resistant lima bean cultivars is limited. To overcome these challenges, breeding pipelines must simultaneously advance precommercial lines and identify new resistance sources with potential for incorporation into the breeding program. Inoculated field trials were conducted in 2021 and 2022 to evaluate three M. incognita-resistant, precommercial experimental lines for resistance traits and yield potential in comparison with commercial standards 'Cypress' and 'C-Elite Select'. DE1306635 had the highest yield and reduced galling and reproduction compared with 'Cypress' and is a candidate for commercial release. To continue the breeding pipeline, 256 lima bean inbred accessions from around the world were assessed from 2022 to 2023 in greenhouse and field screenings to identify novel sources of resistance in the lima bean gene pool. This method allows for evaluation and/or advancement of three generations per year. The full panel was initially evaluated for root galling, and 60 accessions were selected for additional field and greenhouse screening: 25 large- and 25 small-seeded with the lowest gall ratings, 5 high-gall controls, and 5 commercial standards. Seven accessions with reduced M. incognita galling and reproduction were identified, including two known resistant lines and five newly identified genotypes. The resistance carried by these genotypes will be further characterized to assess their potential use in lima bean RKN-resistance breeding.
Collapse
Affiliation(s)
- Eboni R Traverso
- Department of Plant and Soil Sciences, University of Delaware, Georgetown, DE 19947
| | - Emmalea G Ernest
- Department of Plant and Soil Sciences, University of Delaware, Georgetown, DE 19947
| | - Isabel B Emanuel
- Department of Plant and Soil Sciences, University of Delaware, Georgetown, DE 19947
| | - Alyssa K Betts
- Department of Plant and Soil Sciences, University of Delaware, Georgetown, DE 19947
| |
Collapse
|
5
|
Canales Holzeis C, Gepts P, Koebner R, Mathur PN, Morgan S, Muñoz-Amatriaín M, Parker TA, Southern EM, Timko MP. The Kirkhouse Trust: Successes and Challenges in Twenty Years of Supporting Independent, Contemporary Grain Legume Breeding Projects in India and African Countries. PLANTS (BASEL, SWITZERLAND) 2024; 13:1818. [PMID: 38999658 PMCID: PMC11243813 DOI: 10.3390/plants13131818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
This manuscript reviews two decades of projects funded by the Kirkhouse Trust (KT), a charity registered in the UK. KT was established to improve the productivity of legume crops important in African countries and in India. KT's requirements for support are: (1) the research must be conducted by national scientists in their home institution, either a publicly funded agricultural research institute or a university; (2) the projects need to include a molecular biology component, which to date has mostly comprised the use of molecular markers for the selection of one or more target traits in a crop improvement programme; (3) the projects funded are included in consortia, to foster the creation of scientific communities and the sharing of knowledge and breeding resources. This account relates to the key achievements and challenges, reflects on the lessons learned and outlines future research priorities.
Collapse
Affiliation(s)
| | - Paul Gepts
- Section of Crop & Ecosystem Sciences, Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Robert Koebner
- The Kirkhouse Trust, Unit 6 Fenlock Court, Long Hanborough OX29 8LN, UK
| | | | - Sonia Morgan
- The Kirkhouse Trust, Unit 6 Fenlock Court, Long Hanborough OX29 8LN, UK
| | - María Muñoz-Amatriaín
- Departamento de Biología Molecular (Área Genética), Universidad de León, 24071 León, Spain
| | - Travis A Parker
- Section of Crop & Ecosystem Sciences, Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Edwin M Southern
- The Kirkhouse Trust, Unit 6 Fenlock Court, Long Hanborough OX29 8LN, UK
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
6
|
Fuzetti CG, Nicoletti VR. Stability of Buriti Oil Microencapsulated in Mixtures of Azuki and Lima Bean Flours with Maltodextrin. Foods 2024; 13:1968. [PMID: 38998474 PMCID: PMC11241754 DOI: 10.3390/foods13131968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Buriti oil (Mauritia flexuosa L.) is rich in carotenoids, mainly β-carotene, and has great value for application as a food, pharmaceutical, or cosmetic ingredient, as well as a natural pigment. Microencapsulation is a promising technique to protect compounds sensitive to degradation such as β-carotene. Materials composed of carbohydrates and proteins, such as azuki bean (Vigna angularis L.) and lima bean (Phaseolus lunatus L.) flours, are alternative matrices for microencapsulation, which additionally provide good amounts of nutrients. In combination with maltodextrin, the flours represent a protective barrier in stabilizing lipophilic compounds such as buriti oil for subsequent spray drying. In this work, the performance of mixtures of maltodextrin with whole azuki and lima bean flours was evaluated in the microencapsulation of buriti oil. The microcapsules showed good results for solubility (>80%), hygroscopicity (~7%), encapsulation efficiency (43.52 to 51.94%), and carotenoid retention (64.13 to 77.49%.) After 77 days of storage, the microcapsules produced maintained 87.79% and 90.16% of carotenoids, indicating that the powders have high potential for application as encapsulants in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Caroline Gregoli Fuzetti
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), UNESP-São Paulo State University, Cristóvão Colombo Street, 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Vânia Regina Nicoletti
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), UNESP-São Paulo State University, Cristóvão Colombo Street, 2265, São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|
7
|
Li S, Li Y, Zhu H, Chen L, Zhang H, Lian L, Xu M, Feng X, Hou R, Yao X, Lin Y, Wang H, Wang X. Deciphering PDH1's role in mung bean domestication: a genomic perspective on pod dehiscence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1413-1422. [PMID: 38341804 DOI: 10.1111/tpj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
Mung bean (Vigna radiata) stands as a crucial legume crop in Asia, contributing to food security. However, our understanding of the underlying genetic foundation governing domesticated agronomic traits, especially those linked to pod architecture, remains largely unexplored. In this study, we delved into the genomic divergence between wild and domesticated mung bean varieties, leveraging germplasm obtained from diverse sources. Our findings unveiled pronounced variation in promoter regions (35%) between the two mung bean subpopulations, suggesting substantial changes in gene expression patterns during domestication. Leveraging transcriptome analysis using distinct reproductive stage pods and subpopulations, we identified candidate genes responsible for pod and seed architecture development, along with Genome-Wide Association Studies (GWAS) and Quantitative Trait Locus (QTL) analysis. Notably, our research conclusively confirmed PDH1 as a parallel domesticated gene governing pod dehiscence in legumes. This study imparts valuable insights into the genetic underpinnings of domesticated agronomic traits in mung bean, and simultaneously highlighting the parallel domestication of pivotal traits within the realm of legume crops.
Collapse
Affiliation(s)
- Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yaling Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Huiying Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lijie Lian
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Miaomiao Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xilong Feng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Rui Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaolin Yao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yifan Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| | - Huaying Wang
- Northeast Normal University, Changchun, 130024, China
| | - Xutong Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei, 430070, China
| |
Collapse
|
8
|
Wu X, Hu Z, Zhang Y, Li M, Liao N, Dong J, Wang B, Wu J, Wu X, Wang Y, Wang J, Lu Z, Yang Y, Sun Y, Dong W, Zhang M, Li G. Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement. Nat Genet 2024; 56:992-1005. [PMID: 38649710 DOI: 10.1038/s41588-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Cowpeas (tropical legumes) are important in ensuring food and nutritional security in developing countries, especially in sub-Saharan Africa. Herein, we report two high-quality genome assemblies of grain and vegetable cowpeas and we re-sequenced 344 accessions to characterize the genomic variations landscape. We identified 39 loci for ten important agronomic traits and more than 541 potential loci that underwent selection during cowpea domestication and improvement. In particular, the synchronous selections of the pod-shattering loci and their neighboring stress-relevant loci probably led to the enhancement of pod-shattering resistance and the compromise of stress resistance during the domestication from grain to vegetable cowpeas. Moreover, differential selections on multiple loci associated with pod length, grain number per pod, seed weight, pod and seed soluble sugars, and seed crude proteins shaped the yield and quality diversity in cowpeas. Our findings provide genomic insights into cowpea domestication and improvement footprints, enabling further genome-informed cultivar improvement of cowpeas.
Collapse
Affiliation(s)
- Xinyi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Zhongyuan Hu
- Laboratory of Vegetable Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Yan Zhang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Mao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Nanqiao Liao
- Laboratory of Vegetable Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Junyang Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Baogen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Xiaohua Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Ying Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Zhongfu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Yi Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Yuyan Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Wenqi Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Mingfang Zhang
- Laboratory of Vegetable Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China.
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, P. R. China.
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China.
| | - Guojing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.
| |
Collapse
|
9
|
Ho WK, Tanzi AS, Sang F, Tsoutsoura N, Shah N, Moore C, Bhosale R, Wright V, Massawe F, Mayes S. A genomic toolkit for winged bean Psophocarpus tetragonolobus. Nat Commun 2024; 15:1901. [PMID: 38429275 PMCID: PMC10907731 DOI: 10.1038/s41467-024-45048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/12/2024] [Indexed: 03/03/2024] Open
Abstract
A sustainable supply of plant protein is critical for future generations and needs to be achieved while reducing green house gas emissions from agriculture and increasing agricultural resilience in the face of climate volatility. Agricultural diversification with more nutrient-rich and stress tolerant crops could provide the solution. However, this is often hampered by the limited availability of genomic resources and the lack of understanding of the genetic structure of breeding germplasm and the inheritance of important traits. One such crop with potential is winged bean (Psophocarpus tetragonolobus), a high seed protein tropical legume which has been termed 'the soybean for the tropics'. Here, we present a chromosome level winged bean genome assembly, an investigation of the genetic diversity of 130 worldwide accessions, together with two linked genetic maps and a trait QTL analysis (and expression studies) for regions of the genome with desirable ideotype traits for breeding, namely architecture, protein content and phytonutrients.
Collapse
Affiliation(s)
- Wai Kuan Ho
- Future Food Beacon, School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
- Crops for the Future (UK) CIC, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Alberto Stefano Tanzi
- Future Food Beacon, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Fei Sang
- Deep Seq, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Niki Tsoutsoura
- Future Food Beacon, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Niraj Shah
- Digital and Technology Services, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Christopher Moore
- Deep Seq, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Rahul Bhosale
- Future Food Beacon, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Victoria Wright
- Deep Seq, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Festo Massawe
- Future Food Beacon, School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Sean Mayes
- Crops for the Future (UK) CIC, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
- Future Food Beacon, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
- International Centre for Research in the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, India.
| |
Collapse
|
10
|
Soldan R, Fusi M, Cardinale M, Homma F, Santos LG, Wenzl P, Bach-Pages M, Bitocchi E, Chacon Sanchez MI, Daffonchio D, Preston GM. Consistent effects of independent domestication events on the plant microbiota. Curr Biol 2024; 34:557-567.e4. [PMID: 38232731 DOI: 10.1016/j.cub.2023.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we provide evidence of a domestication effect on the composition and abundance of the plant microbiota. We focused on the genus Phaseolus, which underwent four independent domestication events within two species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community composition as Phaseolus seeds have been subject to large and consistent phenotypic changes during these independent domestication events. The seed bacterial communities of representative plant accessions from subpopulations descended from each domestication event were analyzed under controlled and field conditions. The results showed that independent domestication events led to similar seed bacterial community signatures in independently domesticated plant populations, which could be partially explained by selection for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of plant domestication on seed microbial community composition and abundance and offer avenues for applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial applications in agriculture.
Collapse
Affiliation(s)
| | - Marco Fusi
- Center for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - Massimiliano Cardinale
- University of Salento, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy
| | - Felix Homma
- University of Oxford, Department of Biology, Oxford, UK
| | - Luis Guillermo Santos
- The Alliance Biodiversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Peter Wenzl
- The Alliance Biodiversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | | | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Isabel Chacon Sanchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gail M Preston
- University of Oxford, Department of Biology, Oxford, UK.
| |
Collapse
|
11
|
Shorinola O, Marks R, Emmrich P, Jones C, Odeny D, Chapman MA. Integrative and inclusive genomics to promote the use of underutilised crops. Nat Commun 2024; 15:320. [PMID: 38191605 PMCID: PMC10774273 DOI: 10.1038/s41467-023-44535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Underutilised crops or orphan crops are important for diversifying our food systems towards food and nutrition security. Here, the authors discuss how the development of underutilised crop genomic resource should align with their breeding and capacity building strategies, and leverage advances made in major crops.
Collapse
Affiliation(s)
- Oluwaseyi Shorinola
- International Livestock Research Institute, Naivasha Road, Nairobi, Kenya.
- School of Bioscience, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Rose Marks
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Peter Emmrich
- Norwich Institute for Sustainable Development, School of Global Development, University of East Anglia, England, NR4 7TJ, UK
| | - Chris Jones
- International Livestock Research Institute, Naivasha Road, Nairobi, Kenya
| | - Damaris Odeny
- Center of Excellence in Genomics and Systems Biology, ICRISAT, Patancheru, 502324, Telangana, India
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
12
|
Efficient genetic improvement of orphan crops cannot follow the old path. Nat Commun 2024; 15:321. [PMID: 38191480 PMCID: PMC10774366 DOI: 10.1038/s41467-023-44458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
|
13
|
Gepts P. Biocultural diversity and crop improvement. Emerg Top Life Sci 2023; 7:151-196. [PMID: 38084755 PMCID: PMC10754339 DOI: 10.1042/etls20230067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Biocultural diversity is the ever-evolving and irreplaceable sum total of all living organisms inhabiting the Earth. It plays a significant role in sustainable productivity and ecosystem services that benefit humanity and is closely allied with human cultural diversity. Despite its essentiality, biodiversity is seriously threatened by the insatiable and inequitable human exploitation of the Earth's resources. One of the benefits of biodiversity is its utilization in crop improvement, including cropping improvement (agronomic cultivation practices) and genetic improvement (plant breeding). Crop improvement has tended to decrease agricultural biodiversity since the origins of agriculture, but awareness of this situation can reverse this negative trend. Cropping improvement can strive to use more diverse cultivars and a broader complement of crops on farms and in landscapes. It can also focus on underutilized crops, including legumes. Genetic improvement can access a broader range of biodiversity sources and, with the assistance of modern breeding tools like genomics, can facilitate the introduction of additional characteristics that improve yield, mitigate environmental stresses, and restore, at least partially, lost crop biodiversity. The current legal framework covering biodiversity includes national intellectual property and international treaty instruments, which have tended to limit access and innovation to biodiversity. A global system of access and benefit sharing, encompassing digital sequence information, would benefit humanity but remains an elusive goal. The Kunming-Montréal Global Biodiversity Framework sets forth an ambitious set of targets and goals to be accomplished by 2030 and 2050, respectively, to protect and restore biocultural diversity, including agrobiodiversity.
Collapse
Affiliation(s)
- Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA 95616-8780, U.S.A
| |
Collapse
|
14
|
Meziadi C, Alvarez-Diaz JC, Thareau V, Gratias A, Marande W, Soler-Garzon A, Miklas PN, Pflieger S, Geffroy V. Fine-mapping and evolutionary history of R-BPMV, a dominant resistance gene to Bean pod mottle virus in Phaseolus vulgaris L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:8. [PMID: 38092992 DOI: 10.1007/s00122-023-04513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE R-BPMV is located within a recently expanded TNL cluster in the Phaseolus genus with suppressed recombination and known for resistance to multiple pathogens including potyviruses controlled by the I gene. Bean pod mottle virus (BPMV) is a comovirus that infects common bean and legumes in general. BPMV is distributed throughout the world and is a major threat on soybean, a closely related species of common bean. In common bean, BAT93 was reported to carry the R-BPMV resistance gene conferring resistance to BPMV and linked with the I resistance gene. To fine map R-BPMV, 182 recombinant inbred lines (RILs) derived from the cross BAT93 × JaloEEP558 were genotyped with polymerase chain reaction (PCR)-based markers developed using genome assemblies from G19833 and BAT93, as well as BAT93 BAC clone sequences. Analysis of RILs carrying key recombination events positioned R-BPMV to a target region containing at least 16 TIR-NB-LRR (TNL) sequences in BAT93. Because the I cluster presents a suppression of recombination and a large number of repeated sequences, none of the 16 TNLs could be excluded as R-BPMV candidate gene. The evolutionary history of the TNLs for the I cluster were reconstructed using microsynteny and phylogenetic analyses within the legume family. A single I TNL was present in Medicago truncatula and lost in soybean, mirroring the absence of complete BPMV resistance in soybean. Amplification of TNLs in the I cluster predates the divergence of the Phaseolus species, in agreement with the emergence of R-BPMV before the separation of the common bean wild centers of diversity. This analysis provides PCR-based markers useful in marker-assisted selection (MAS) and laid the foundation for cloning of R-BPMV resistance gene in order to transfer the resistance into soybean.
Collapse
Affiliation(s)
- Chouaïb Meziadi
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Juan-Camilo Alvarez-Diaz
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | | | - Alvaro Soler-Garzon
- Irrigated Agriculture Research and Extension Center, Washington State Univ, Prosser, WA, USA
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA ARS, Prosser, WA, USA
| | - Stéphanie Pflieger
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France.
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France.
| |
Collapse
|
15
|
Gao D. Introduction of Plant Transposon Annotation for Beginners. BIOLOGY 2023; 12:1468. [PMID: 38132293 PMCID: PMC10741241 DOI: 10.3390/biology12121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Transposons are mobile DNA sequences that contribute large fractions of many plant genomes. They provide exclusive resources for tracking gene and genome evolution and for developing molecular tools for basic and applied research. Despite extensive efforts, it is still challenging to accurately annotate transposons, especially for beginners, as transposon prediction requires necessary expertise in both transposon biology and bioinformatics. Moreover, the complexity of plant genomes and the dynamic evolution of transposons also bring difficulties for genome-wide transposon discovery. This review summarizes the three major strategies for transposon detection including repeat-based, structure-based, and homology-based annotation, and introduces the transposon superfamilies identified in plants thus far, and some related bioinformatics resources for detecting plant transposons. Furthermore, it describes transposon classification and explains why the terms 'autonomous' and 'non-autonomous' cannot be used to classify the superfamilies of transposons. Lastly, this review also discusses how to identify misannotated transposons and improve the quality of the transposon database. This review provides helpful information about plant transposons and a beginner's guide on annotating these repetitive sequences.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID 83210, USA
| |
Collapse
|
16
|
Yong B, Zhu W, Wei S, Li B, Wang Y, Xu N, Lu J, Chen Q, He C. Parallel selection of loss-of-function alleles of Pdh1 orthologous genes in warm-season legumes for pod indehiscence and plasticity is related to precipitation. THE NEW PHYTOLOGIST 2023; 240:863-879. [PMID: 37501344 DOI: 10.1111/nph.19150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Pod dehiscence facilitates seed dispersal in wild legumes but results in yield loss in cultivated legumes. The evolutionary genetics of the legume pod dehiscence trait remain largely elusive. We characterized the pod dehiscence of chromosome segment substitution lines of Glycine max crossed with Glycine soja and found that the gene underlying the predominant quantitative trait locus (QTL) of soybean pod-shattering trait was Pod dehiscence 1 (Pdh1). A few rare loss-of-function (LoF) Pdh1 alleles were identified in G. soja, while only an allele featuring a premature stop codon was selected for pod indehiscence in cultivated soybean and spread to low-precipitation regions with increased frequency. Moreover, correlated interactions among Pdh1's haplotype, gene expression, and environmental changes for the developmental plasticity of the pod dehiscence trait were revealed in G. max. We found that orthologous Pdh1 genes specifically originated in warm-season legumes and their LoF alleles were then parallel-selected during the domestication of legume crops. Our results provide insights into the convergent evolution of pod dehiscence in warm-season legumes, facilitate an understanding of the intricate interactions between genetic robustness and environmental adaptation for developmental plasticity, and guide the breeding of new legume varieties with pod indehiscence.
Collapse
Affiliation(s)
- Bin Yong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Weiwei Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Siming Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Bingbing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Nan Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Nascimento T, Pedrosa-Harand A. High rates of structural rearrangements have shaped the chromosome evolution in dysploid Phaseolus beans. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:215. [PMID: 37751069 DOI: 10.1007/s00122-023-04462-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
KEY MESSAGE Karyotypes evolve through numerical and structural chromosome rearrangements. We show that Phaseolus leptostachyus, a wild bean, underwent a rapid genome reshuffling associated with the reduction from 11 to 10 chromosome pairs, but without whole genome duplication, the highest chromosome evolution rate known for plants. Plant karyotypes evolve through structural rearrangements often associated with polyploidy or dysploidy. The genus Phaseolus comprises ~ 90 species, five of them domesticated due to their nutritional relevance. Most of the species have 2n = 22 karyotypes and are highly syntenic, except for three dysploid karyotypes of species from the Leptostachyus group (2n = 20) that have accumulated several rearrangements. Here, we investigated the degrees of structural rearrangements among Leptostachyus and other Phaseolus groups by estimating their chromosomal evolution rates (CER). For this, we combined our oligo-FISH barcode system for beans and chromosome-specific painting probes for chromosomes 2 and 3, with rDNA and a centromeric probe to establish chromosome orthologies and identify structural rearrangements across nine Phaseolus species. We also integrated the detected rearrangements with a phylogenomic approach to estimate the CERs for each Phaseolus lineage. Our data allowed us to identify translocations, inversions, duplications and deletions, mostly in species belonging to the Leptostachyus group. Phaseolus leptostachyus showed the highest CER (12.31 rearrangements/My), a tenfold increase in contrast to the 2n = 22 species analysed. This is the highest rate known yet for plants, making it a model species for investigating the mechanisms behind rapid genome reshuffling in early species diversification.
Collapse
Affiliation(s)
- Thiago Nascimento
- Laboratory of Plants Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plants Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
18
|
Song B, Ning W, Wei D, Jiang M, Zhu K, Wang X, Edwards D, Odeny DA, Cheng S. Plant genome resequencing and population genomics: Current status and future prospects. MOLECULAR PLANT 2023; 16:1252-1268. [PMID: 37501370 DOI: 10.1016/j.molp.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Advances in DNA sequencing technology have sparked a genomics revolution, driving breakthroughs in plant genetics and crop breeding. Recently, the focus has shifted from cataloging genetic diversity in plants to exploring their functional significance and delivering beneficial alleles for crop improvement. This transformation has been facilitated by the increasing adoption of whole-genome resequencing. In this review, we summarize the current progress of population-based genome resequencing studies and how these studies affect crop breeding. A total of 187 land plants from 163 countries have been resequenced, comprising 54 413 accessions. As part of resequencing efforts 367 traits have been surveyed and 86 genome-wide association studies have been conducted. Economically important crops, particularly cereals, vegetables, and legumes, have dominated the resequencing efforts, leaving a gap in 49 orders, including Lycopodiales, Liliales, Acorales, Austrobaileyales, and Commelinales. The resequenced germplasm is distributed across diverse geographic locations, providing a global perspective on plant genomics. We highlight genes that have been selected during domestication, or associated with agronomic traits, and form a repository of candidate genes for future research and application. Despite the opportunities for cross-species comparative genomics, many population genomic datasets are not accessible, impeding secondary analyses. We call for a more open and collaborative approach to population genomics that promotes data sharing and encourages contribution-based credit policy. The number of plant genome resequencing studies will continue to rise with the decreasing DNA sequencing costs, coupled with advances in analysis and computational technologies. This expansion, in terms of both scale and quality, holds promise for deeper insights into plant trait genetics and breeding design.
Collapse
Affiliation(s)
- Bo Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Huazhong Agricultural University, College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, China
| | - Di Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 53007, China
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Kun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Xingwei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, Nairobi, Kenya
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
19
|
Lozano-Arce D, García T, Gonzalez-Garcia LN, Guyot R, Chacón-Sánchez MI, Duitama J. Selection signatures and population dynamics of transposable elements in lima bean. Commun Biol 2023; 6:803. [PMID: 37532823 PMCID: PMC10397206 DOI: 10.1038/s42003-023-05144-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
The domestication process in lima bean (Phaseolus lunatus L.) involves two independent events, within the Mesoamerican and Andean gene pools. This makes lima bean an excellent model to understand convergent evolution. The mechanisms of adaptation followed by Mesoamerican and Andean landraces are largely unknown. Genes related to these adaptations can be selected by identification of selective sweeps within gene pools. Previous genetic analyses in lima bean have relied on Single Nucleotide Polymorphism (SNP) loci, and have ignored transposable elements (TEs). Here we show the analysis of whole-genome sequencing data from 61 lima bean accessions to characterize a genomic variation database including TEs and SNPs, to associate selective sweeps with variable TEs and to predict candidate domestication genes. A small percentage of genes under selection are shared among gene pools, suggesting that domestication followed different genetic avenues in both gene pools. About 75% of TEs are located close to genes, which shows their potential to affect gene functions. The genetic structure inferred from variable TEs is consistent with that obtained from SNP markers, suggesting that TE dynamics can be related to the demographic history of wild and domesticated lima bean and its adaptive processes, in particular selection processes during domestication.
Collapse
Affiliation(s)
- Daniela Lozano-Arce
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Tatiana García
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Laura Natalia Gonzalez-Garcia
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, CIRAD, 34394, Montpellier, France
| | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, CIRAD, 34394, Montpellier, France
| | - Maria Isabel Chacón-Sánchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
20
|
Dwivedi SL, Chapman MA, Abberton MT, Akpojotor UL, Ortiz R. Exploiting genetic and genomic resources to enhance productivity and abiotic stress adaptation of underutilized pulses. Front Genet 2023; 14:1193780. [PMID: 37396035 PMCID: PMC10311922 DOI: 10.3389/fgene.2023.1193780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Underutilized pulses and their wild relatives are typically stress tolerant and their seeds are packed with protein, fibers, minerals, vitamins, and phytochemicals. The consumption of such nutritionally dense legumes together with cereal-based food may promote global food and nutritional security. However, such species are deficient in a few or several desirable domestication traits thereby reducing their agronomic value, requiring further genetic enhancement for developing productive, nutritionally dense, and climate resilient cultivars. This review article considers 13 underutilized pulses and focuses on their germplasm holdings, diversity, crop-wild-crop gene flow, genome sequencing, syntenic relationships, the potential for breeding and transgenic manipulation, and the genetics of agronomic and stress tolerance traits. Recent progress has shown the potential for crop improvement and food security, for example, the genetic basis of stem determinacy and fragrance in moth bean and rice bean, multiple abiotic stress tolerant traits in horse gram and tepary bean, bruchid resistance in lima bean, low neurotoxin in grass pea, and photoperiod induced flowering and anthocyanin accumulation in adzuki bean have been investigated. Advances in introgression breeding to develop elite genetic stocks of grass pea with low β-ODAP (neurotoxin compound), resistance to Mungbean yellow mosaic India virus in black gram using rice bean, and abiotic stress adaptation in common bean, using genes from tepary bean have been carried out. This highlights their potential in wider breeding programs to introduce such traits in locally adapted cultivars. The potential of de-domestication or feralization in the evolution of new variants in these crops are also highlighted.
Collapse
Affiliation(s)
| | - Mark A. Chapman
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | | | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
21
|
Marsh JI, Nestor BJ, Petereit J, Tay Fernandez CG, Bayer PE, Batley J, Edwards D. Legume-wide comparative analysis of pod shatter locus PDH1 reveals phaseoloid specificity, high cowpea expression, and stress responsive genomic context. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36970933 DOI: 10.1111/tpj.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Pod dehiscence is a major source of yield loss in legumes, which is exacerbated by aridity. Disruptive mutations in "Pod indehiscent 1" (PDH1), a pod sclerenchyma-specific lignin biosynthesis gene, has been linked to significant reductions in dehiscence in several legume species. We compared syntenic PDH1 regions across 12 legumes and two outgroups to uncover key historical evolutionary trends at this important locus. Our results clarified the extent to which PDH1 orthologs are present in legumes, showing the typical genomic context surrounding PDH1 has only arisen relatively recently in certain phaseoloid species (Vigna, Phaseolus, Glycine). The notable absence of PDH1 in Cajanus cajan may be a major contributor to its indehiscent phenotype compared with other phaseoloids. In addition, we identified a novel PDH1 ortholog in Vigna angularis and detected remarkable increases in PDH1 transcript abundance during Vigna unguiculata pod development. Investigation of the shared genomic context of PDH1 revealed it lies in a hotspot of transcription factors and signaling gene families that respond to abscisic acid and drought stress, which we hypothesize may be an additional factor influencing expression of PDH1 under specific environmental conditions. Our findings provide key insights into the evolutionary history of PDH1 and lay the foundation for optimizing the pod dehiscence role of PDH1 in major and understudied legume species.
Collapse
Affiliation(s)
- Jacob I Marsh
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Benjamin J Nestor
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Jakob Petereit
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Cassandria G Tay Fernandez
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
22
|
Pan L, Liu M, Kang Y, Mei X, Hu G, Bao C, Zheng Y, Zhao H, Chen C, Wang N. Comprehensive genomic analyses of Vigna unguiculata provide insights into population differentiation and the genetic basis of key agricultural traits. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 36965079 DOI: 10.1111/pbi.14047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/09/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Vigna unguiculata is an important legume crop worldwide. The subsp. sesquipedalis and unguiculata are the two major types grown; the former is mainly grown in Asia to produce fresh pods, while the latter is mainly grown in Africa to produce seeds. Here, a chromosome-scale genome for subsp. sesquipedalis was generated by combining high-fidelity (HiFi) long-read sequencing with high-throughput chromosome conformation capture (Hi-C) technology. The genome size for all contigs and N50 were 594 and 18.5 Mb, respectively. The Hi-C interaction map helped cluster 91% of the contigs into 11 chromosomes. Genome comparisons between subsp. sesquipedalis and unguiculata revealed extensive genomic variations, and some variations resulted in gene loss. A germplasm panel with 315 accessions of V. unguiculata was resequenced, and a genomic variation map was constructed. Population structure and phylogenetic analyses suggested that subsp. sesquipedalis originated from subsp. unguiculata. Highly differentiated genomic regions were also identified, and a number of genes functionally enriched in adaptations were located in these regions. Two traits, pod length (PL) and pod width (PW), were observed for this germplasm, and genome-wide association analysis of these traits was performed. The quantitative trait loci (QTLs) for these two traits were identified, and their candidate genes were uncovered. Interestingly, genomic regions of PL QTLs also showed strong signals of artificial selection. Taken together, the results of this study provide novel insights into the population differentiation and genetic basis of key agricultural traits in V. unguiculata.
Collapse
Affiliation(s)
- Lei Pan
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Minghui Liu
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Yan Kang
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Xiang Mei
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Gege Hu
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Chun Bao
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Yu Zheng
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Huixia Zhao
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Chanyou Chen
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Gayacharan, Parida SK, Mondal N, Yadav R, Vishwakarma H, Rana JC. Mining legume germplasm for genetic gains: An Indian perspective. Front Genet 2023; 14:996828. [PMID: 36816034 PMCID: PMC9933516 DOI: 10.3389/fgene.2023.996828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Legumes play a significant role in food and nutritional security and contribute to environmental sustainability. Although legumes are highly beneficial crops, it has not yet been possible to enhance their yield and production to a satisfactory level. Amid a rising population and low yield levels, per capita average legume consumption in India has fallen by 71% over the last 50 years, and this has led to protein-related malnutrition in a large segment of the Indian population, especially women and children. Several factors have hindered attempts to achieve yield enhancement in grain legumes, including biotic and abiotic pressures, a lack of good ideotypes, less amenability to mechanization, poorer responsiveness to fertilizer input, and a poor genetic base. Therefore, there is a need to mine the approximately 0.4 million ex situ collections of legumes that are being conserved in gene banks globally for identification of ideal donors for various traits. The Indian National Gene Bank conserves over 63,000 accessions of legumes belonging to 61 species. Recent initiatives have been undertaken in consortia mode with the aim of unlocking the genetic potential of ex situ collections and conducting large-scale germplasm characterization and evaluation analyses. We assume that large-scale phenotyping integrated with omics-based science will aid the identification of target traits and their use to enhance genetic gains. Additionally, in cases where the genetic base of major legumes is narrow, wild relatives have been evaluated, and these are being exploited through pre-breeding. Thus far, >200 accessions of various legumes have been registered as unique donors for various traits of interest.
Collapse
Affiliation(s)
- Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Swarup K. Parida
- DBT-National Institute of Plant Genome Research, New Delhi, India
| | - Nupur Mondal
- Shivaji College, University of Delhi, New Delhi, India
| | - Rashmi Yadav
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Jai C. Rana
- Alliance of Bioversity International and CIAT, India Office, National Agricultural Science Complex, New Delhi, India
| |
Collapse
|
24
|
Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae. Chromosome Res 2022; 30:477-492. [PMID: 35715657 DOI: 10.1007/s10577-022-09702-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 01/25/2023]
Abstract
The tribe Phaseoleae includes several legume crops with assembled genomes. Comparative genomic studies have evidenced the preservation of large genomic blocks among legumes, although chromosome dynamics during Phaseoleae evolution has not been investigated. We conducted a comparative genomic analysis to define an informative genomic block (GB) system and to reconstruct the ancestral Phaseoleae karyotype (APK). We identified GBs based on the orthologous genes between Phaseolus vulgaris and Vigna unguiculata and searched for GBs in different genomes of the Phaseolinae (P. lunatus) and Glycininae (Amphicarpaea edgeworthii) subtribes and Spatholobus suberectus (sister to Phaseolinae and Glycininae), using Medicago truncatula as the outgroup. We also used oligo-FISH probes of two P. vulgaris chromosomes to paint the orthologous chromosomes of two non-sequenced Phaseolinae species. We inferred the APK as having n = 11 and 19 GBs (A to S), hypothesizing five chromosome fusions that reduced the ancestral legume karyotype to n = 11. We identified the rearrangements among the APK and the subtribes and species, with extensive centromere repositioning in Phaseolus. We also reconstructed the chromosome number reduction in S. suberectus. The development of the GB system and the proposed APK provide useful approaches for future comparative genomic analyses of legume species.
Collapse
|
25
|
Zhang H, Mascher M, Abbo S, Jayakodi M. Advancing Grain Legumes Domestication and Evolution Studies with Genomics. PLANT & CELL PHYSIOLOGY 2022; 63:1540-1553. [PMID: 35534441 PMCID: PMC9680859 DOI: 10.1093/pcp/pcac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Grain legumes were domesticated in parallel with cereals in several regions of the world and formed the economic basis of early farming cultures. Since then, legumes have played a vital role in human and animal diets and in fostering agrobiodiversity. Increasing grain legume cultivation will be crucial to safeguard nutritional security and the resilience of agricultural ecosystems across the globe. A better understanding of the molecular underpinnings of domestication and crop evolution of grain legumes may be translated into practical approaches in modern breeding programs to stabilize yield, which is threatened by evolving pathogens and changing climates. During recent decades, domestication research in all crops has greatly benefited from the fast progress in genomic technologies. Yet still, many questions surrounding the domestication and diversification of legumes remain unanswered. In this review, we assess the potential of genomic approaches in grain legume research. We describe the centers of origin and the crucial domestication traits of grain legumes. In addition, we survey the effect of domestication on both above-ground and below-ground traits that have economic importance. Finally, we discuss open questions in grain legume domestication and diversification and outline how to bridge the gap between the preservation of historic crop diversity and their utilization in modern plant breeding.
Collapse
Affiliation(s)
- Hailin Zhang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
| | - Shahal Abbo
- The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| |
Collapse
|
26
|
Liu C, Wang Y, Peng J, Fan B, Xu D, Wu J, Cao Z, Gao Y, Wang X, Li S, Su Q, Zhang Z, Wang S, Wu X, Shang Q, Shi H, Shen Y, Wang B, Tian J. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement. PLANT COMMUNICATIONS 2022; 3:100352. [PMID: 35752938 PMCID: PMC9700124 DOI: 10.1016/j.xplc.2022.100352] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 05/29/2023]
Abstract
Mung bean is an economically important legume crop species that is used as a food, consumed as a vegetable, and used as an ingredient and even as a medicine. To explore the genomic diversity of mung bean, we assembled a high-quality reference genome (Vrad_JL7) that was ∼479.35 Mb in size, with a contig N50 length of 10.34 Mb. A total of 40,125 protein-coding genes were annotated, representing ∼96.9% of the genetic region. We also sequenced 217 accessions, mainly landraces and cultivars from China, and identified 2,229,343 high-quality single-nucleotide polymorphisms (SNPs). Population structure revealed that the Chinese accessions diverged into two groups and were distinct from non-Chinese lines. Genetic diversity analysis based on genomic data from 750 accessions in 23 countries supported the hypothesis that mung bean was first domesticated in south Asia and introduced to east Asia probably through the Silk Road. We constructed the first pan-genome of mung bean germplasm and assembled 287.73 Mb of non-reference sequences. Among the genes, 83.1% were core genes and 16.9% were variable. Presence/absence variation (PAV) events of nine genes involved in the regulation of the photoperiodic flowering pathway were identified as being under selection during the adaptation process to promote early flowering in the spring. Genome-wide association studies (GWASs) revealed 2,912 SNPs and 259 gene PAV events associated with 33 agronomic traits, including a SNP in the coding region of the SWEET10 homolog (jg24043) involved in crude starch content and a PAV event in a large fragment containing 11 genes for color-related traits. This high-quality reference genome and pan-genome will provide insights into mung bean breeding.
Collapse
Affiliation(s)
- Changyou Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Yan Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | | | - Baojie Fan
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Dongxu Xu
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075300, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhimin Cao
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Yunqing Gao
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075300, China
| | - Xueqing Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Shutong Li
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075300, China
| | - Qiuzhu Su
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Zhixiao Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Shen Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Xingbo Wu
- Tropical Research and Education Center, Department of Environmental Horticulture, University of Florida, 18905 SW 280th St, Homestead, FL 33031, USA
| | - Qibing Shang
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075300, China
| | - Huiying Shi
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Yingchao Shen
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | | | - Jing Tian
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China.
| |
Collapse
|
27
|
Ahmad N, Ibrahim S, Tian Z, Kuang L, Wang X, Wang H, Dun X. Quantitative trait loci mapping reveals important genomic regions controlling root architecture and shoot biomass under nitrogen, phosphorus, and potassium stress in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:994666. [PMID: 36172562 PMCID: PMC9511887 DOI: 10.3389/fpls.2022.994666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Plants rely on root systems for nutrient uptake from soils. Marker-assisted selection helps breeders to select desirable root traits for effective nutrient uptake. Here, 12 root and biomass traits were investigated at the seedling stage under low nitrogen (LN), low phosphorus (LP), and low potassium (LK) conditions, respectively, in a recombinant inbred line (RIL) population, which was generated from Brassica napus L. Zhongshuang11 and 4D122 with significant differences in root traits and nutrient efficiency. Significant differences for all the investigated traits were observed among RILs, with high heritabilities (0.43-0.74) and high correlations between the different treatments. Quantitative trait loci (QTL) mapping identified 57, 27, and 36 loci, explaining 4.1-10.9, 4.6-10.8, and 4.9-17.4% phenotypic variances under LN, LP, and LK, respectively. Through QTL-meta analysis, these loci were integrated into 18 significant QTL clusters. Four major QTL clusters involved 25 QTLs that could be repeatedly detected and explained more than 10% phenotypic variances, including two NPK-common and two specific QTL clusters (K and NK-specific), indicating their critical role in cooperative nutrients uptake of N, P, and K. Moreover, 264 genes within the four major QTL clusters having high expressions in roots and SNP/InDel variations between two parents were identified as potential candidate genes. Thirty-eight of them have been reported to be associated with root growth and development and/or nutrient stress tolerance. These key loci and candidate genes lay the foundation for deeper dissection of the NPK starvation response mechanisms in B. napus.
Collapse
Affiliation(s)
- Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
28
|
Heredia-Pech M, Chávez-Pesqueira M, Ortiz-García MM, Andueza-Noh RH, Chacón-Sánchez MI, Martínez-Castillo J. Consequences of introgression and gene flow on the genetic structure and diversity of Lima bean ( Phaseolus lunatus L.) in its Mesoamerican diversity area. PeerJ 2022; 10:e13690. [PMID: 35811827 PMCID: PMC9266586 DOI: 10.7717/peerj.13690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
We evaluated the role of gene flow and wild-crop introgression on the structure and genetic diversity of Lima bean (Phaseolus lunatus) in the Yucatan Peninsula, an important Mesoamerican diversity area for this crop, using a genotyping-by-sequencing approach (15,168 SNP markers) and two scales. At the local scale, STRUCTURE and NGSEP analyses showed predominantly crop-to-wild introgression, but also evidence of a bidirectional gene flow in the two wild-weedy-crop complexes studied (Itzinté and Dzitnup). The ABBA-BABA tests showed a higher introgression in Itzinté (the older complex) than in Dzitnup (the younger one); at the allelic level, the wild-crop introgression in Itzinté was similar in both directions, in Dzitnup it was higher from crop-to-wild; and at the chromosomal level, introgression in Itzinté was from wild-to-crop, whereas in Dzitnup it occured in the opposite direction. Also, we found H E values slightly higher in the domesticated accessions than in the wild ones, in both complexes (Itzinté: wild = 0.31, domesticated = 0.34; Dzinup: wild = 0.27, domesticated = 0.36), but %P and π estimators were higher in the wild accessions than in the domesticated ones. At a regional scale, STRUCTURE and MIGRATE showed a low gene flow, predominantly from crop-to-wild; and STRUCTURE, Neighbor-Joining and PCoA analyses indicated the existence of two wild groups and one domesticated group, with a marked genetic structure based in the existence of domesticated MI and wild MII gene pools. Also, at the regional scale, we found a higher genetic diversity in the wild accessions than in the domesticated ones, in all estimators used (e.g., H E = 0.27 and H E = 0.17, respectively). Our results indicate that gene flow and introgression are playing an important role at the local scale, but its consequences on the structure and genetic diversity of the Lima bean are not clearly reflected at the regional scale, where diversity patterns between wild and domesticated populations could be reflecting historical events.
Collapse
Affiliation(s)
- Mauricio Heredia-Pech
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| | - Mariana Chávez-Pesqueira
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| | - Matilde M. Ortiz-García
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| | - Rubén Humberto Andueza-Noh
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Conkal, Conkal, Yucatán, México
| | - María Isabel Chacón-Sánchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Jaime Martínez-Castillo
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| |
Collapse
|
29
|
Chongtham SK, Devi EL, Samantara K, Yasin JK, Wani SH, Mukherjee S, Razzaq A, Bhupenchandra I, Jat AL, Singh LK, Kumar A. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches. PLANTA 2022; 256:24. [PMID: 35767119 DOI: 10.1007/s00425-022-03923-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Legumes, being angiosperm's third-largest family as well as the second major crop family, contributes beyond 33% of human dietary proteins. The advent of the global food crisis owing to major climatic concerns leads to nutritional deprivation, hunger and hidden hunger especially in developing and underdeveloped nations. Hence, in the wake of promoting sustainable agriculture and nutritional security, apart from the popular legumes, the inclusion of lesser-known and understudied local crop legumes called orphan legumes in the farming systems of various tropical and sub-tropical parts of the world is indeed a need of the hour. Despite possessing tremendous potentialities, wide adaptability under diverse environmental conditions, and rich in nutritional and nutraceutical values, these species are still in a neglected and devalued state. Therefore, a major re-focusing of legume genetics, genomics, and biology is much crucial in pursuance of understanding the yield constraints, and endorsing underutilized legume breeding programs. Varying degrees of importance to these crops do exist among researchers of developing countries in establishing the role of orphan legumes as future crops. Under such circumstances, this article assembles a comprehensive note on the necessity of promoting these crops for further investigations and sustainable legume production, the exploitation of various orphan legume species and their potencies. In addition, an attempt has been made to highlight various novel genetic, molecular, and omics approaches for the improvement of such legumes for enhancing yield, minimizing the level of several anti-nutritional factors, and imparting biotic and abiotic stress tolerance. A significant genetic enhancement through extensive research in 'omics' areas is the absolute necessity to transform them into befitting candidates for large-scale popularization around the globe.
Collapse
Affiliation(s)
- Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, CAEPHT, CAU, Ranipool, Gangtok, Sikkim, 737135, India
| | | | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Odisha, 761211, India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, 192101, Jammu and Kashmir, India.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Ingudam Bhupenchandra
- ICAR-KVK Tamenglong, ICAR RC for NEH Region, Manipur Centre, Lamphelpat, Imphal, Manipur, 795 004, India
| | - Aanandi Lal Jat
- Castor-Mustard Research Station, SDAU, S.K. Nagar, Banaskantha, Gujarat, 385 506, India
| | - Laishram Kanta Singh
- ICAR-KVK Imphal West, ICAR RC for NEH region, Manipur Centre, Lamphelpat, Imphal, Manipur, 795 004, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Tadong, Sikkim Centre, 737102, India
| |
Collapse
|
30
|
Acosta-Quezada PG, Valladolid-Salinas EH, Murquincho-Chuncho JM, Jadán-Veriñas E, Ruiz-González MX. Heterogeneous effects of climatic conditions on Andean bean landraces and cowpeas highlight alternatives for crop management and conservation. Sci Rep 2022; 12:6586. [PMID: 35449148 PMCID: PMC9022739 DOI: 10.1038/s41598-022-10277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
The use and conservation of agrobiodiversity have become critical to face the actual and future challenges imposed by climate change. Collecting phytogenetic resources is a first step for their conservation; however, the genetic material must be analysed to understand their potential to improve agricultural resilience and adaptation to the new climatic conditions. We have selected nine Phaseolus vulgaris, one P. lunatus and two Vigna unguiculata landraces from two different climatic backgrounds of the Andean region of South Ecuador and one P. vulgaris commercial cultivar, and we grew them under two different conditions of temperature and humidity (open field and greenhouse). Then, we recorded data for 32 characters of plant architecture, flower and fruit characteristics and yield, and 17 events in the phenology of the plants. We analysed the impact of treatment on species, climatic background, and each of the landraces, and identified both characters and landraces that are mostly affected by changes in their environmental conditions. Overall, higher temperatures were benign for all materials except for two P. vulgaris landraces from cold background, which performed better or developed faster under cold conditions. Finally, we calculated a climate resilience landrace index, which allowed us to classify the landraces by their plasticity to new environmental conditions, and found heterogeneous landrace susceptibility to warmer conditions. Two P. vulgaris landraces were highlighted as critical targets for conservation.
Collapse
Affiliation(s)
- Pablo G Acosta-Quezada
- Departamento de CC. Biológicas y Agropecuarias, Universidad Técnica Particular de Loja-UTPL, San Cayetano Alto, Calle Marcelino Champagnat s/n, Apartado Postal 11-01-608, Loja, Ecuador
| | - Edin H Valladolid-Salinas
- Departamento de CC. Biológicas y Agropecuarias, Universidad Técnica Particular de Loja-UTPL, San Cayetano Alto, Calle Marcelino Champagnat s/n, Apartado Postal 11-01-608, Loja, Ecuador
| | - Janina M Murquincho-Chuncho
- Departamento de CC. Biológicas y Agropecuarias, Universidad Técnica Particular de Loja-UTPL, San Cayetano Alto, Calle Marcelino Champagnat s/n, Apartado Postal 11-01-608, Loja, Ecuador
| | - Eudaldo Jadán-Veriñas
- Facultad de CC. Agropecuarias, Universidad Técnica de Machala-UTMACH, Machala, El Oro, Ecuador
| | - Mario X Ruiz-González
- Departamento de CC. Biológicas y Agropecuarias, Universidad Técnica Particular de Loja-UTPL, San Cayetano Alto, Calle Marcelino Champagnat s/n, Apartado Postal 11-01-608, Loja, Ecuador.
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain.
| |
Collapse
|
31
|
Jha UC, Nayyar H, Parida SK, Bakır M, von Wettberg EJB, Siddique KHM. Progress of Genomics-Driven Approaches for Sustaining Underutilized Legume Crops in the Post-Genomic Era. Front Genet 2022; 13:831656. [PMID: 35464848 PMCID: PMC9021634 DOI: 10.3389/fgene.2022.831656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Legume crops, belonging to the Fabaceae family, are of immense importance for sustaining global food security. Many legumes are profitable crops for smallholder farmers due to their unique ability to fix atmospheric nitrogen and their intrinsic ability to thrive on marginal land with minimum inputs and low cultivation costs. Recent progress in genomics shows promise for future genetic gains in major grain legumes. Still it remains limited in minor legumes/underutilized legumes, including adzuki bean, cluster bean, horse gram, lathyrus, red clover, urd bean, and winged bean. In the last decade, unprecedented progress in completing genome assemblies of various legume crops and resequencing efforts of large germplasm collections has helped to identify the underlying gene(s) for various traits of breeding importance for enhancing genetic gain and contributing to developing climate-resilient cultivars. This review discusses the progress of genomic resource development, including genome-wide molecular markers, key breakthroughs in genome sequencing, genetic linkage maps, and trait mapping for facilitating yield improvement in underutilized legumes. We focus on 1) the progress in genomic-assisted breeding, 2) the role of whole-genome resequencing, pangenomes for underpinning the novel genomic variants underlying trait gene(s), 3) how adaptive traits of wild underutilized legumes could be harnessed to develop climate-resilient cultivars, 4) the progress and status of functional genomics resources, deciphering the underlying trait candidate genes with putative function in underutilized legumes 5) and prospects of novel breeding technologies, such as speed breeding, genomic selection, and genome editing. We conclude the review by discussing the scope for genomic resources developed in underutilized legumes to enhance their production and play a critical role in achieving the "zero hunger" sustainable development goal by 2030 set by the United Nations.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | | | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Melike Bakır
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| | - Eric J. B. von Wettberg
- Plant and Soil Science and Gund Institute for the Environment, The University of Vermont, Burlington, VT, United States
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | | |
Collapse
|
32
|
Li Z, Lathe RS, Li J, He H, Bhalerao RP. Towards understanding the biological foundations of perenniality. TRENDS IN PLANT SCIENCE 2022; 27:56-68. [PMID: 34561180 DOI: 10.1016/j.tplants.2021.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Perennial life cycles enable plants to have remarkably long lifespans, as exemplified by trees that can live for thousands of years. For this, they require sophisticated regulatory networks that sense environmental changes and initiate adaptive responses in their growth patterns. Recent research has gradually elucidated fundamental mechanisms underlying the perennial life cycle. Intriguingly, several conserved components of the floral transition pathway in annuals such as Arabidopsis thaliana also participate in these regulatory mechanisms underpinning perenniality. Here, we provide an overview of perennials' physiological features and summarise their recently discovered molecular foundations. We also highlight the importance of deepening our understanding of perenniality in the development of perennial grain crops, which are promising elements of future sustainable agriculture.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China.
| | - Rahul S Lathe
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Jinping Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Hong He
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.
| |
Collapse
|
33
|
de Oliveira Bustamante F, do Nascimento TH, Montenegro C, Dias S, do Vale Martins L, Braz GT, Benko-Iseppon AM, Jiang J, Pedrosa-Harand A, Brasileiro-Vidal AC. Oligo-FISH barcode in beans: a new chromosome identification system. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3675-3686. [PMID: 34368889 DOI: 10.1007/s00122-021-03921-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
An Oligo-FISH barcode system was developed for two model legumes, allowing the identification of all cowpea and common bean chromosomes in a single FISH experiment, and revealing new chromosome rearrangements. The FISH barcode system emerges as an effective tool to understand the chromosome evolution of economically important legumes and their related species. Current status on plant cytogenetic and cytogenomic research has allowed the selection and design of oligo-specific probes to individually identify each chromosome of the karyotype in a target species. Here, we developed the first chromosome identification system for legumes based on oligo-FISH barcode probes. We selected conserved genomic regions between Vigna unguiculata (Vu, cowpea) and Phaseolus vulgaris (Pv, common bean) (diverged ~ 9.7-15 Mya), using cowpea as a reference, to produce a unique barcode pattern for each species. We combined our oligo-FISH barcode pattern with a set of previously developed FISH probes based on BACs and ribosomal DNA sequences. In addition, we integrated our FISH maps with genome sequence data. Based on this integrated analysis, we confirmed two translocation events (involving chromosomes 1, 5, and 8; and chromosomes 2 and 3) between both species. The application of the oligo-based probes allowed us to demonstrate the participation of chromosome 5 in the translocation complex for the first time. Additionally, we detailed a pericentric inversion on chromosome 4 and identified a new paracentric inversion on chromosome 10. We also detected centromere repositioning associated with chromosomes 2, 3, 5, 7, and 9, confirming previous results for chromosomes 2 and 3. This first barcode system for legumes can be applied for karyotyping other Phaseolinae species, especially non-model, orphan crop species lacking genomic assemblies and cytogenetic maps, expanding our understanding of the chromosome evolution and genome organization of this economically important legume group.
Collapse
Affiliation(s)
- Fernanda de Oliveira Bustamante
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | | | - Claudio Montenegro
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Sibelle Dias
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Lívia do Vale Martins
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Biologia, Universidade Federal do Piauí, Teresina, PI, Brazil
| | | | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
34
|
Delfini J, Moda-Cirino V, Dos Santos Neto J, Zeffa DM, Nogueira AF, Ribeiro LAB, Ruas PM, Gepts P, Gonçalves LSA. Genome-wide association study for grain mineral content in a Brazilian common bean diversity panel. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2795-2811. [PMID: 34027567 DOI: 10.1007/s00122-021-03859-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
QTNs significantly associated to nine mineral content in grains of common bean were identified. The accumulation of favorable alleles was associated with a gradually increasing nutrient content in the grain. Biofortification is one of the strategies developed to address malnutrition in developing countries, the aim of which is to improve the nutritional content of crops. The common bean (Phaseolus vulgaris L.), a staple food in several African and Latin American countries, has excellent nutritional attributes and is considered a strong candidate for biofortification. The objective of this study was to identify genomic regions associated with nutritional content in common bean grains using 178 Mesoamerican accessions belonging to a Brazilian Diversity Panel (BDP) and 25,011 good-quality single nucleotide polymorphisms. The BDP was phenotyped in three environments for nine nutrients (phosphorus, potassium, calcium, magnesium, copper, manganese, sulfur, zinc, and iron) using four genome-wide association multi-locus methods. To obtain more accurate results, only quantitative trait nucleotides (QTNs) that showed repeatability (i.e., those detected at least twice using different methods or environments) were considered. Forty-eight QTNs detected for the nine minerals showed repeatability and were considered reliable. Pleiotropic QTNs and overlapping genomic regions surrounding the QTNs were identified, demonstrating the possible association between the deposition mechanisms of different nutrients in grains. The accumulation of favorable alleles in the same accession was associated with a gradually increasing nutrient content in the grain. The BDP proved to be a valuable source for association studies. The investigation of different methods and environments showed the reliability of markers associated with minerals. The loci identified in this study will potentially contribute to the improvement of Mesoamerican common beans, particularly carioca and black beans, the main groups consumed in Brazil.
Collapse
Affiliation(s)
- Jessica Delfini
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
- Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Vânia Moda-Cirino
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
| | - José Dos Santos Neto
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
- Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Douglas Mariani Zeffa
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
- Agronomy Department, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Alison Fernando Nogueira
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
- Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Luriam Aparecida Brandão Ribeiro
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
- Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Paulo Maurício Ruas
- Biology Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA, USA
| | - Leandro Simões Azeredo Gonçalves
- Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil.
- Agronomy Department, Universidade Estadual de Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
35
|
Chacón-Sánchez MI, Martínez-Castillo J, Duitama J, Debouck DG. Gene Flow in Phaseolus Beans and Its Role as a Plausible Driver of Ecological Fitness and Expansion of Cultigens. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.618709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The genus Phaseolus, native to the Americas, is composed of more than eighty wild species, five of which were domesticated in pre-Columbian times. Since the beginning of domestication events in this genus, ample opportunities for gene flow with wild relatives have existed. The present work reviews the extent of gene flow in the genus Phaseolus in primary and secondary areas of domestication with the aim of illustrating how this evolutionary force may have conditioned ecological fitness and the widespread adoption of cultigens. We focus on the biological bases of gene flow in the genus Phaseolus from a spatial and time perspective, the dynamics of wild-weedy-crop complexes in the common bean and the Lima bean, the two most important domesticated species of the genus, and the usefulness of genomic tools to detect inter and intraspecific introgression events. In this review we discuss the reproductive strategies of several Phaseolus species, the factors that may favor outcrossing rates and evidence suggesting that interspecific gene flow may increase ecological fitness of wild populations. We also show that wild-weedy-crop complexes generate genetic diversity over which farmers are able to select and expand their cultigens outside primary areas of domestication. Ultimately, we argue that more studies are needed on the reproductive biology of the genus Phaseolus since for most species breeding systems are largely unknown. We also argue that there is an urgent need to preserve wild-weedy-crop complexes and characterize the genetic diversity generated by them, in particular the genome-wide effects of introgressions and their value for breeding programs. Recent technological advances in genomics, coupled with agronomic characterizations, may make a large contribution.
Collapse
|
36
|
Parker TA, Lo S, Gepts P. Pod shattering in grain legumes: emerging genetic and environment-related patterns. THE PLANT CELL 2021; 33:179-199. [PMID: 33793864 PMCID: PMC8136915 DOI: 10.1093/plcell/koaa025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/26/2020] [Indexed: 05/25/2023]
Abstract
A reduction in pod shattering is one of the main components of grain legume domestication. Despite this, many domesticated legumes suffer serious yield losses due to shattering, particularly under arid conditions. Mutations related to pod shattering modify the twisting force of pod walls or the structural strength of the dehiscence zone in pod sutures. At a molecular level, a growing body of evidence indicates that these changes are controlled by a relatively small number of key genes that have been selected in parallel across grain legume species, supporting partial molecular convergence. Legume homologs of Arabidopsis thaliana silique shattering genes play only minor roles in legume pod shattering. Most domesticated grain legume species contain multiple shattering-resistance genes, with mutants of each gene typically showing only partial shattering resistance. Hence, crosses between varieties with different genes lead to transgressive segregation of shattering alleles, producing plants with either enhanced shattering resistance or atavistic susceptibility to the trait. The frequency of these resistance pod-shattering alleles is often positively correlated with environmental aridity. The continued development of pod-shattering-related functional information will be vital for breeding crops that are suited to the increasingly arid conditions expected in the coming decades.
Collapse
Affiliation(s)
- Travis A Parker
- Department of Plant Sciences/MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA 95616-8780
| | - Sassoum Lo
- Department of Plant Sciences/MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA 95616-8780
| | - Paul Gepts
- Department of Plant Sciences/MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA 95616-8780
| |
Collapse
|