1
|
Korgan AC, Prendergast K, Rosenhauer AM, Morrison KE, Jovanovic T, Bale TL. Trauma and Sensory Systems: Biological Mechanisms Involving the Skin and the 17q21 Gene Cluster. Biol Psychiatry 2025; 97:854-861. [PMID: 39521032 PMCID: PMC11991886 DOI: 10.1016/j.biopsych.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Childhood trauma experience increases risk for neuropsychiatric and neurodevelopmental disorders, including posttraumatic stress disorder, autism spectrum disorder, and attention-deficit/hyperactivity disorder. While the biological mechanisms connecting adverse experiences with later disease presentation are not clear, the concept of gene × environment × development interactions has significant implications for improving our understanding of these diseases. We recently used this approach in a study where we found that women exposed to interpersonal violence trauma (environment) uniquely during adolescence (development), but not childhood or adulthood, had novel protein biomarkers (gene) associated with a sensory cell system in the skin, Merkel cells. Merkel cell mechanosensory signaling is important in gentle and social touch, inflammation-induced pain, and the neuroendocrine stress response of the skin. Further, keratinocyte-derived Merkel cell final maturation occurs during the identified vulnerable period of adolescence. Interestingly, many of the genes identified in our study belong to a known 17q21 gene cluster, suggesting an identifiable location in the genome permanently altered by adolescent trauma. These results form a potential functional link between mechanosensory Merkel cells and the pathology and sensory symptoms in posttraumatic stress disorder. Future research directions could identify specific mechanisms involved in tactile alterations following trauma in hopes of revealing additional biomarkers and potentially leading to novel tactile-involved therapies (e.g., massage, electroacupuncture, or focused ultrasound).
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathryn Prendergast
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna M Rosenhauer
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Kathleen E Morrison
- Department of Psychology, West Virginia University, Morgantown, West Virginia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Tracy L Bale
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
2
|
Nold JI, Tinnermann A, Fadai T, Mintah M, Morgenroth MS, Büchel C. Comparing neural responses to cutaneous heat and pressure pain in healthy participants. Sci Rep 2025; 15:14387. [PMID: 40274927 PMCID: PMC12022288 DOI: 10.1038/s41598-025-99247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Even though acute pain comes in many different shapes and forms, a lot of experimental pain studies predominantly employ cutaneous heat pain. This makes a comparison between different pain types and the link between findings from these experimental studies to clinical pain difficult. To bridge this gap, we investigated both cuff pressure pain and cutaneous heat pain using a within-subject design in combination with functional magnetic resonance imaging (fMRI). Noxious stimuli were applied with a 17-s duration at three different intensities above the pain threshold using a thermode and a computer-controlled cuff pressure device. Both pain modalities led to contralateral activation in the anterior insula and parietal operculum. Heat pain showed greater activation in the precentral gyrus, pontine reticular nucleus, and dorsal posterior insula, whilst pressure pain showed greater activation in the primary somatosensory cortex and bilateral superior parietal lobules. Most importantly, the time course of the fMRI signal changes differed between modalities, with pressure pain peaking in the first stimulus half, whereas heat pain led to a prolonged and increasing response across the stimulus duration with a peak in the second stimulus half. Our findings suggest that pressure and heat pain lead to common as well as different (temporal) activation patterns in key pain processing regions.
Collapse
Affiliation(s)
- Janne Ina Nold
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Alexandra Tinnermann
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tahmine Fadai
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marilyn Mintah
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Sophie Morgenroth
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Wan Y, Zhou J, Li H. The Role of Mechanosensitive Piezo Channels in Chronic Pain. J Pain Res 2024; 17:4199-4212. [PMID: 39679432 PMCID: PMC11646438 DOI: 10.2147/jpr.s490459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose of Review Mechanosensitive Piezo channels are ion channels activated by mechanical stimuli, playing a crucial role in mechanotransduction processes and mechanical hypersensitivity. When these channels are subjected to mechanical loading, membrane currents rise instantaneously, depolarizing and activating voltage-gated calcium channels. This results in an increase in intracellular Ca2+, which contributes to heightened sensitivity to mechanical stimuli. This review delves into the characteristics and mechanisms of Piezo channels in chronic pain. Recent Findings The findings suggest that Piezo channels are integral to the occurrence and development of chronic pain, including neuropathic pain, visceral pain, musculoskeletal pain, headache or orofacial pain, and inflammatory pain. Piezo channels significantly impact pain perception and transmission. These channels' critical involvement in various pain types highlights their potential as promising targets for chronic pain therapy. Summary This review discusses the role of Piezo channels in chronic pain. By understanding these pain mechanisms, new therapeutic strategies can be developed to alleviate chronic pain, offering hope for patients suffering from these debilitating conditions.
Collapse
Affiliation(s)
- Yantong Wan
- Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, People’s Republic of China
| | - Jieshu Zhou
- Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, People’s Republic of China
| | - Hao Li
- Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
4
|
Xiao B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat Rev Mol Cell Biol 2024; 25:886-903. [PMID: 39251883 DOI: 10.1038/s41580-024-00773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Mechanical force is an essential physical element that contributes to the formation and function of life. The discovery of the evolutionarily conserved PIEZO family, including PIEZO1 and PIEZO2 in mammals, as bona fide mechanically activated cation channels has transformed our understanding of how mechanical forces are sensed and transduced into biological activities. In this Review, I discuss recent structure-function studies that have illustrated how PIEZO1 and PIEZO2 adopt their unique structural design and curvature-based gating dynamics, enabling their function as dedicated mechanotransduction channels with high mechanosensitivity and selective cation conductivity. I also discuss our current understanding of the physiological and pathophysiological roles mediated by PIEZO channels, including PIEZO1-dependent regulation of development and functional homeostasis and PIEZO2-dominated mechanosensation of touch, tactile pain, proprioception and interoception of mechanical states of internal organs. Despite the remarkable progress in PIEZO research, this Review also highlights outstanding questions in the field.
Collapse
Affiliation(s)
- Bailong Xiao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Arrillaga B, Konrad A, García I. Pressure, Vibration, and Percussion in Athletic Recovery: With Great Power Comes Great Responsibility. Curr Sports Med Rep 2024; 23:258-261. [PMID: 38941547 DOI: 10.1249/jsr.0000000000001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Affiliation(s)
- Beatriz Arrillaga
- Unit of Human Anatomy and Embryology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Hospitalet de Llobregat, SPAIN
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, AUSTRIA
| | - Iker García
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, SPAIN
| |
Collapse
|
6
|
Yu J, Yang Z, Sun S, Sun K, Chen W, Zhang L, Xu J, Xu Q, Liu Z, Ke J, Zhang L, Zhu Y. The effect of weighted blankets on sleep and related disorders: a brief review. Front Psychiatry 2024; 15:1333015. [PMID: 38686123 PMCID: PMC11056563 DOI: 10.3389/fpsyt.2024.1333015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Background Sleep disorders such as insomnia can lead to a range of health problems. The high risk of side effects and drug abuse of traditional pharmacotherapy calls for a safer non-pharmacotherapy. Aims To examine the use and efficacy of weighted blankets in improving sleep and related disorders in different populations and explore the possible mechanisms. Methods A literature search was conducted using PubMed, Embase, Web of Science, MEDLINE, Cochrane Library and CNKI databases. Eligible studies included an intervention with weighted blankets and outcomes covering sleep and/or related disorders (behavioral disturbance, negative emotions and daytime symptoms). Studies using other deep pressure, compression, or exercise-related interventions were excluded. Conclusions Most of the included studies showed that weighted blankets could effectively improve sleep quality and alleviate negative emotions and daytime symptoms in patients with sleep disorders, attention deficit hyperactivity disorder, autism spectrum disorder, and other related disorders, with a possible mechanism of deep pressure touch. Recommendations Weighted blankets might be a promising tool for sleep interventions among individuals with sleep disorders in clinical settings. More high-quality and large-scale randomized controlled trials are needed to further validate the safety and efficacy of weighted blankets and explore precise mechanisms.
Collapse
Affiliation(s)
- Jie Yu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenqing Yang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Sudan Sun
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaili Sun
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiran Chen
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Liming Zhang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahui Xu
- Department of Neurology/Center for Sleep Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qinglin Xu
- Department of Neurology/Center for Sleep Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Ke
- Department of Internal Medicine of Traditional Chinese Medicine, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Lisan Zhang
- Department of Neurology/Center for Sleep Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yubo Zhu
- Department of Neurology, Affiliated Hospital of Shaoxing University, Shaoxing, China
| |
Collapse
|
7
|
Yu H, Usoskin D, Nagi SS, Hu Y, Kupari J, Bouchatta O, Cranfill SL, Gautam M, Su Y, Lu Y, Wymer J, Glanz M, Albrecht P, Song H, Ming GL, Prouty S, Seykora J, Wu H, Ma M, Rice FL, Olausson H, Ernfors P, Luo W. Single-Soma Deep RNA sequencing of Human DRG Neurons Reveals Novel Molecular and Cellular Mechanisms Underlying Somatosensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533207. [PMID: 36993480 PMCID: PMC10055202 DOI: 10.1101/2023.03.17.533207] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human DRG (hDRG) neurons-critical in-formation to decipher their functions-are lacking due to technical difficulties. Here, we developed a novel approach to isolate individual hDRG neuron somas for deep RNA sequencing (RNA-seq). On average, >9,000 unique genes per neuron were detected, and 16 neuronal types were identified. Cross-species analyses revealed remarkable divergence among pain-sensing neurons and the existence of human-specific nociceptor types. Our deep RNA-seq dataset was especially powerful for providing insight into the molecular mechanisms underlying human somatosensation and identifying high potential novel drug targets. Our dataset also guided the selection of molecular markers to visualize different types of human afferents and the discovery of novel functional properties using single-cell in vivo electrophysiological recordings. In summary, by employing a novel soma sequencing method, we generated an unprecedented hDRG neuron atlas, providing new insights into human somatosensation, establishing a critical foundation for translational work, and clarifying human species-species properties.
Collapse
|
8
|
Yoo JJ, Hayes M, Serafin EK, Baccei ML. Early-Life Iron Deficiency Persistently Alters Nociception in Developing Mice. THE JOURNAL OF PAIN 2023; 24:1321-1336. [PMID: 37019165 PMCID: PMC10523944 DOI: 10.1016/j.jpain.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Clinical association studies have identified early-life iron deficiency (ID) as a risk factor for the development of chronic pain. While preclinical studies have shown that early-life ID persistently alters neuronal function in the central nervous system, a causal relationship between early-life ID and chronic pain has yet to be established. We sought to address this gap in knowledge by characterizing pain sensitivity in developing male and female C57Bl/6 mice that were exposed to dietary ID during early life. Dietary iron was reduced by ∼90% in dams between gestational day 14 and postnatal day (P)10, with dams fed an ingredient-matched, iron-sufficient diet serving as controls. While cutaneous mechanical and thermal withdrawal thresholds were not altered during the acute ID state at P10 and P21, ID mice were more sensitive to mechanical pressure at P21 independent of sex. During adulthood, when signs of ID had resolved, mechanical and thermal thresholds were similar between early-life ID and control groups, although male and female ID mice displayed increased thermal tolerance at an aversive (45 °C) temperature. Interestingly, while adult ID mice showed decreased formalin-induced nocifensive behaviors, they showed exacerbated mechanical hypersensitivity and increased paw guarding in response to hindpaw incision in both sexes. Collectively, these results suggest that early-life ID elicits persistent changes in nociceptive processing and appears capable of priming developing pain pathways. PERSPECTIVE: This study provides novel evidence that early-life ID evokes sex-independent effects on nociception in developing mice, including an exacerbation of postsurgical pain during adulthood. These findings represent a critical first step towards the long-term goal of improving health outcomes for pain patients with a prior history of ID.
Collapse
Affiliation(s)
- Judy J. Yoo
- Medical Scientist Training Program and Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Madailein Hayes
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Elizabeth K. Serafin
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L. Baccei
- Medical Scientist Training Program and Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
9
|
Murthy SE. Deciphering mechanically activated ion channels at the single-channel level in dorsal root ganglion neurons. J Gen Physiol 2023; 155:e202213099. [PMID: 37102984 PMCID: PMC10140383 DOI: 10.1085/jgp.202213099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Mechanically activated (MA) ion channels confer somatosensory neurons with the ability to sense a wide range of mechanical stimuli. MA ion channel activity in somatosensory neurons is best described by the electrophysiological recordings of MA currents in cultured dorsal root ganglion (DRG) neurons. Biophysical and pharmacological characterization of DRG MA currents has guided the field in screening/confirming channel candidates that induce the currents and facilitate the mechanosensory response. But studies on DRG MA currents have relied mostly on whole-cell macroscopic current properties obtained by membrane indentation, and little is known about the underlying MA ion channels at the single-channel level. Here, by acquiring indentation-induced macroscopic currents as well as stretch-activated single-channel currents from the same cell, we associate macroscopic current properties with single-channel conductance. This analysis reveals the nature of the MA channel responsible for the ensemble response. We observe four different conductances in DRG neurons with no association with a specific type of macroscopic current. Applying this methodology to a Piezo2 expressing DRG neuronal subpopulation allows us to identify PIEZO2-dependent stretch-activated currents and conductance. Moreover, we demonstrate that upon Piezo2 deletion, the remaining macroscopic responses are predominantly mediated by three different single-channel conductances. Collectively, our data predict that at least two other MA ion channels exist in DRG neurons that remain to be discovered.
Collapse
Affiliation(s)
- Swetha E. Murthy
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
10
|
Teraoka Y, Hanada K, Iki S, Kawaguchi T, Yokoi K, Fujii H, Inoue K, Hirayama K. Dystonia-like Movement Disorders Ameliorated by Shear Force and Pressure Stimulation after Small Infarction in the Left Posterolateral Thalamus. Intern Med 2023; 62:893-902. [PMID: 35989278 PMCID: PMC10076139 DOI: 10.2169/internalmedicine.9543-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Focal dystonia (FD) can develop after thalamic lesions. Abnormal somatic sensations were argued to be responsible for FD. Our patient experienced FD-like movement disorders, agraphesthesia, and a reduced sense of shear force on the skin and pressure to deep tissues of the right upper limb following a small infarction in the left posterolateral thalamus. FD-like symptoms improved while the skin was being pulled or the deep tissue was being pushed in a manner proportional to the strength of muscle contractions. Therefore, the lack of these sensations was suggested to be related to FD-like symptoms.
Collapse
Affiliation(s)
- Youki Teraoka
- Department of Occupational Therapy, Kawaguchi Neurosurgery Rehabilitation Clinic, Japan
- Department of Occupational Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Japan
| | - Keisuke Hanada
- Department of Rehabilitation, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Japan
| | - Shinya Iki
- Department of Occupational Therapy, Kawaguchi Neurosurgery Rehabilitation Clinic, Japan
| | - Takuya Kawaguchi
- Department of Occupational Therapy, Kawaguchi Neurosurgery Rehabilitation Clinic, Japan
| | - Kayoko Yokoi
- Department of Occupational Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Japan
| | - Hiromi Fujii
- Department of Occupational Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Japan
| | - Kaori Inoue
- Department of Occupational Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Japan
| | - Kazumi Hirayama
- Department of Occupational Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Japan
| |
Collapse
|
11
|
Xie Z, Feng J, Hibberd TJ, Chen BN, Zhao Y, Zang K, Hu X, Yang X, Chen L, Brookes SJ, Spencer NJ, Hu H. Piezo2 channels expressed by colon-innervating TRPV1-lineage neurons mediate visceral mechanical hypersensitivity. Neuron 2023; 111:526-538.e4. [PMID: 36563677 PMCID: PMC9957938 DOI: 10.1016/j.neuron.2022.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Inflammatory and functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and obstructive bowel disorder (OBD) underlie the most prevalent forms of visceral pain. Although visceral pain can be generally provoked by mechanical distension/stretch, the mechanisms that underlie visceral mechanosensitivity in colon-innervating visceral afferents remain elusive. Here, we show that virally mediated ablation of colon-innervating TRPV1-expressing nociceptors markedly reduces colorectal distention (CRD)-evoked visceromotor response (VMR) in mice. Selective ablation of the stretch-activated Piezo2 channels from TRPV1 lineage neurons substantially reduces mechanically evoked visceral afferent action potential firing and CRD-induced VMR under physiological conditions, as well as in mouse models of zymosan-induced IBS and partial colon obstruction (PCO). Collectively, our results demonstrate that mechanosensitive Piezo2 channels expressed by TRPV1-lineage nociceptors powerfully contribute to visceral mechanosensitivity and nociception under physiological conditions and visceral hypersensitivity under pathological conditions in mice, uncovering potential therapeutic targets for the treatment of visceral pain.
Collapse
Affiliation(s)
- Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Bao Nan Chen
- Neurogastroenterology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Yonghui Zhao
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kaikai Zang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Xueming Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Xingliang Yang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Lvyi Chen
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, People's Republic of China
| | - Simon J Brookes
- Neurogastroenterology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Schirmer A, Lai O, Cham C, Lo C. Velocity-tuning of somatosensory EEG predicts the pleasantness of gentle caress. Neuroimage 2023; 265:119811. [PMID: 36526103 DOI: 10.1016/j.neuroimage.2022.119811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have established an inverted u-shaped effect between the velocity of a caress and its pleasantness and linked this effect to the C-tactile (CT) system considered central for physical and mental health. This study probed whether cortical somatosensory representations predict and explain the inverted u-shaped effect and addressed associated individual differences. Study participants (N = 90) rated the pleasantness of stroking at varying velocities while their electroencephalogram was being recorded. An analysis across all participants replicated a preference for intermediate velocities, while a cluster analysis discriminated individuals who preferred slow (N = 43) from those who preferred fast stroking (N = 47). In both groups, intermediate velocities maximized amplitudes of a somatosensory event-related potential referred to as sN400, in line with the average rating effect. By contrast, group differences emerged in how velocity modulated a late positive potential (LPP) and Rolandic power. Notably, both the sN400 and the velocity-tuning of LPP and Rolandic power predicted the participants' pleasantness ratings. Participants were more likely to prefer slow over fast stroking the better their LPP and Rolandic power differentiated between different velocities. Together, these results shed light on the complexity of tactile affect. They corroborate an average preference for intermediate velocities that relates to largely shared effects of CT-targeted touch on the activity of somatosensory cortex. Additionally, they identify individual differences as a function of how accurately somatosensory cortex represents the velocity of peripheral input and suggest these differences are relevant for the extent to which individuals pursue beneficial, CT-targeted touch.
Collapse
Affiliation(s)
- Annett Schirmer
- Institute of Psychology, University of Innsbruck, Austria; Department of Psychology, Friedrich Schiller University Jena, Germany.
| | - Oscar Lai
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Clare Cham
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Clive Lo
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
13
|
Chauhan ISJ, Cole JD, Berthoz A, Sarlegna FR. Dissociation between dreams and wakefulness: Insights from body and action representations of rare individuals with massive somatosensory deafferentation. Conscious Cogn 2022; 106:103415. [PMID: 36252519 DOI: 10.1016/j.concog.2022.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/27/2022] [Accepted: 09/17/2022] [Indexed: 01/27/2023]
Abstract
The realism of body and actions in dreams is thought to be induced by simulations based on internal representations used during wakefulness. As somatosensory signals contribute to the updating of body and action representations, these are impaired when somatosensory signals are lacking. Here, we tested the hypothesis that individuals with somatosensory deafferentation have impaired body and actions in their dreams, as in wakefulness. We questioned three individuals with a severe, acquired sensory neuropathy on their dreams. While deafferented participants were impaired in daily life, they could dream of themselves as able-bodied, with some sensations (touch, proprioception) and actions (such as running or jumping) which had not been experienced in physical life since deafferentation. We speculate that simulation in dreams could be based on former, "healthy" body and action representations. Our findings are consistent with the idea that distinct body and action representations may be used during dreams and wakefulness.
Collapse
Affiliation(s)
- Ishan-Singh J Chauhan
- Aix Marseille Univ, CNRS, ISM, Marseille, France; Université Paris Nanterre, Nanterre, France.
| | - Jonathan D Cole
- Centre of Postgraduate Research and Education, Bournemouth University, Bournemouth, UK
| | | | | |
Collapse
|
14
|
Pouw W, Harrison SJ, Dixon JA. The importance of visual control and biomechanics in the regulation of gesture-speech synchrony for an individual deprived of proprioceptive feedback of body position. Sci Rep 2022; 12:14775. [PMID: 36042321 PMCID: PMC9428168 DOI: 10.1038/s41598-022-18300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Do communicative actions such as gestures fundamentally differ in their control mechanisms from other actions? Evidence for such fundamental differences comes from a classic gesture-speech coordination experiment performed with a person (IW) with deafferentation (McNeill, 2005). Although IW has lost both his primary source of information about body position (i.e., proprioception) and discriminative touch from the neck down, his gesture-speech coordination has been reported to be largely unaffected, even if his vision is blocked. This is surprising because, without vision, his object-directed actions almost completely break down. We examine the hypothesis that IW's gesture-speech coordination is supported by the biomechanical effects of gesturing on head posture and speech. We find that when vision is blocked, there are micro-scale increases in gesture-speech timing variability, consistent with IW's reported experience that gesturing is difficult without vision. Supporting the hypothesis that IW exploits biomechanical consequences of the act of gesturing, we find that: (1) gestures with larger physical impulses co-occur with greater head movement, (2) gesture-speech synchrony relates to larger gesture-concurrent head movements (i.e. for bimanual gestures), (3) when vision is blocked, gestures generate more physical impulse, and (4) moments of acoustic prominence couple more with peaks of physical impulse when vision is blocked. It can be concluded that IW's gesturing ability is not based on a specialized language-based feedforward control as originally concluded from previous research, but is still dependent on a varied means of recurrent feedback from the body.
Collapse
Affiliation(s)
- Wim Pouw
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - Steven J Harrison
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, USA
- Department of Kinesiology, University of Connecticut, Storrs, USA
| | - James A Dixon
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, USA
- Department of Psychological Sciences, University of Connecticut, Storrs, USA
| |
Collapse
|
15
|
Nagel M, Chesler AT. PIEZO2 ion channels in proprioception. Curr Opin Neurobiol 2022; 75:102572. [PMID: 35689908 DOI: 10.1016/j.conb.2022.102572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022]
Abstract
PIEZO2 is a stretch-gated ion channel that is expressed at high levels in somatosensory neurons. Humans with rare mutations in the PIEZO2 gene have profound mechanosensory deficits that include a loss of the sense of proprioception. These striking phenotypes match those seen in conditional knockout mouse models demonstrating the highly conserved function for this gene. Here, we review the ramifications of loss of PIEZO2 function on normal daily activities and what studies like these have revealed about proprioception at the molecular and cellular level. Additionally, we highlight recent work that has uncovered the surprising functional and molecular diversity of proprioceptors. Together, these findings pioneer a path toward determining how the detection of mechanosensory input from muscles and tendons is used to control posture and refine motor performance.
Collapse
Affiliation(s)
- Maximilian Nagel
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Alexander T Chesler
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, 35 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Reeh PW, Fischer MJM. Nobel somatosensations and pain. Pflugers Arch 2022; 474:405-420. [PMID: 35157132 PMCID: PMC8924131 DOI: 10.1007/s00424-022-02667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
The Nobel prices 2021 for Physiology and Medicine have been awarded to David Julius and Ardem Patapoutian "for their discoveries of receptors for temperature and touch", TRPV1 and PIEZO1/2. The present review tells the past history of the capsaicin receptor, covers further selected TRP channels, TRPA1 in particular, and deals with mechanosensitivity in general and mechanical hyperalgesia in particular. Other achievements of the laureates and translational aspects of their work are shortly treated.
Collapse
|
17
|
Parpaite T, Brosse L, Séjourné N, Laur A, Mechioukhi Y, Delmas P, Coste B. Patch-seq of mouse DRG neurons reveals candidate genes for specific mechanosensory functions. Cell Rep 2021; 37:109914. [PMID: 34731626 PMCID: PMC8578708 DOI: 10.1016/j.celrep.2021.109914] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/16/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
A variety of mechanosensory neurons are involved in touch, proprioception, and pain. Many molecular components of the mechanotransduction machinery subserving these sensory modalities remain to be discovered. Here, we combine recordings of mechanosensitive (MS) currents in mechanosensory neurons with single-cell RNA sequencing. Transcriptional profiles are mapped onto previously identified sensory neuron types to identify cell-type correlates between datasets. Correlation of current signatures with single-cell transcriptomes provides a one-to-one correspondence between mechanoelectric properties and transcriptomically defined neuronal populations. Moreover, a gene-expression differential comparison provides a set of candidate genes for mechanotransduction complexes. Piezo2 is expectedly found to be enriched in rapidly adapting MS current-expressing neurons, whereas Tmem120a and Tmem150c, thought to mediate slow-type MS currents, are uniformly expressed in all mechanosensory neuron subtypes. Further knockdown experiments disqualify them as mediating MS currents in sensory neurons. This dataset constitutes an open resource to explore further the cell-type-specific determinants of mechanosensory properties.
Collapse
Affiliation(s)
- Thibaud Parpaite
- Aix Marseille Université, CNRS, LNC-UMR 7291, 13344 Marseille, France
| | - Lucie Brosse
- Aix Marseille Université, CNRS, LNC-UMR 7291, 13344 Marseille, France
| | - Nina Séjourné
- Aix Marseille Université, CNRS, LNC-UMR 7291, 13344 Marseille, France
| | - Amandine Laur
- Aix Marseille Université, CNRS, LNC-UMR 7291, 13344 Marseille, France
| | | | - Patrick Delmas
- Aix Marseille Université, CNRS, LNC-UMR 7291, 13344 Marseille, France
| | - Bertrand Coste
- Aix Marseille Université, CNRS, LNC-UMR 7291, 13344 Marseille, France.
| |
Collapse
|
18
|
Baumgartner JN, Quintana D, Leija L, Schuster NM, Bruno KA, Castellanos JP, Case LK. Widespread Pressure Delivered by a Weighted Blanket Reduces Chronic Pain: A Randomized Controlled Trial. THE JOURNAL OF PAIN 2021; 23:156-174. [PMID: 34425251 DOI: 10.1016/j.jpain.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
Pleasant sensation is an underexplored avenue for modulation of chronic pain. Deeper pressure is perceived as pleasant and calming, and can improve sleep. Although pressure can reduce acute pain, its effect on chronic pain is poorly characterized. The current remote, double-blind, randomized controlled trial tested the hypothesis that wearing a heavy weighted blanket - providing widespread pressure to the body - relative to a light weighted blanket would reduce ratings of chronic pain, mediated by improvements in anxiety and sleep. Ninety-four adults with chronic pain were randomized to wear a 15-lb. (heavy) or 5-lb. (light) weighted blanket during a brief trial and overnight for one week. Measures of anxiety and chronic pain were collected pre- and post-intervention, and ratings of pain intensity, anxiety, and sleep were collected daily. After controlling for expectations and trait anxiety, the heavy weighted blanket produced significantly greater reductions in broad perceptions of chronic pain than the light weighted blanket (Cohen's f = .19, CI [-1.97, -.91]). This effect was stronger in individuals with high trait anxiety (P = .02). However, weighted blankets did not alter pain intensity ratings. Pain reductions were not mediated by anxiety or sleep. Given that the heavy weighted blanket was associated with greater modulation of affective versus sensory aspects of chronic pain, we propose that the observed reductions are due to interoceptive and social/affective effects of deeper pressure. Overall, we demonstrate that widespread pressure from a weighted blanket can reduce the severity of chronic pain, offering an accessible, home-based tool for chronic pain. The study purpose, targeted condition, study design, and primary and secondary outcomes were pre-registered in ClinicalTrials.gov (NCT04447885: "Weighted Blankets and Chronic Pain"). Perspective: This randomized-controlled trial showed that a 15-lb weighted blanket produced significantly greater reductions in broad perceptions of chronic pain relative to a 5-lb weighted blanket, particularly in highly anxious individuals. These findings are relevant to patients and providers seeking home-based, nondrug therapies for chronic pain relief.
Collapse
Affiliation(s)
- Jennifer N Baumgartner
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Desiree Quintana
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Linda Leija
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Nathaniel M Schuster
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Kelly A Bruno
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Joel P Castellanos
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Laura K Case
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California.
| |
Collapse
|
19
|
Yoshida S, Funato H. Physical contact in parent-infant relationship and its effect on fostering a feeling of safety. iScience 2021; 24:102721. [PMID: 34235413 PMCID: PMC8250458 DOI: 10.1016/j.isci.2021.102721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The infant-caregiver relationship involves physical contact for feeding, moving, and other cares, and such contact also encourages the infant to form an attachment, an emotional bond with the caregivers. Physical contact always accompanies somatosensory perception, which is detected by mechanosensory neurons and processed in the brain. Physical contact triggers sensorimotor reflexes such as Transport Response in rodent infants, and calm human infants while being carried. Tactile sensation and deep pressure in physical interactions, such as hugging, can function as emotional communication between infant and caregiver, which can alter the behavior and mood of both the infant and caregiver. This review summarizes the findings related to physical contact between the infant and the caregiver in terms of pleasant, noxious, and neutral somatosensation and discusses how somatosensory perceptions foster a feeling of safety that is important for infant's psychosocial development.
Collapse
Affiliation(s)
- Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
20
|
Langevin HM. Fascia Mobility, Proprioception, and Myofascial Pain. Life (Basel) 2021; 11:life11070668. [PMID: 34357040 PMCID: PMC8304470 DOI: 10.3390/life11070668] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/19/2022] Open
Abstract
The network of fasciae is an important part of the musculoskeletal system that is often overlooked. Fascia mobility, especially along shear planes separating muscles, is critical for musculoskeletal function and may play an important, but little studied, role in proprioception. Fasciae, especially the deep epimysium and aponeuroses, have recently been recognized as highly innervated with small diameter fibers that can transmit nociceptive signals, especially in the presence of inflammation. Patients with connective tissue hyper- and hypo-mobility disorders suffer in large number from musculoskeletal pain, and many have abnormal proprioception. The relationships among fascia mobility, proprioception, and myofascial pain are largely unstudied, but a better understanding of these areas could result in improved care for many patients with musculoskeletal pain.
Collapse
Affiliation(s)
- Helene M Langevin
- National Center for Complementary and Integrative Health, National Institutes of Health, 31 Center Drive, Suite 2B11, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Abstract
Mechanosensation is the ability to detect dynamic mechanical stimuli (e.g., pressure, stretch, and shear stress) and is essential for a wide variety of processes, including our sense of touch on the skin. How touch is detected and transduced at the molecular level has proved to be one of the great mysteries of sensory biology. A major breakthrough occurred in 2010 with the discovery of a family of mechanically gated ion channels that were coined PIEZOs. The last 10 years of investigation have provided a wealth of information about the functional roles and mechanisms of these molecules. Here we focus on PIEZO2, one of the two PIEZO proteins found in humans and other mammals. We review how work at the molecular, cellular, and systems levels over the past decade has transformed our understanding of touch and led to unexpected insights into other types of mechanosensation beyond the skin.
Collapse
Affiliation(s)
- Marcin Szczot
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, 583 30 Linköping, Sweden
| | - Alec R Nickolls
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ruby M Lam
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,NIH-Brown University Graduate Program in Neuroscience, Providence, Rhode Island 02912, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|