1
|
Ge Z, Wu Q, Lv C, He Q. The Roles of T Cells in the Development of Metabolic Dysfunction-Associated Steatohepatitis. Immunology 2025. [PMID: 40414629 DOI: 10.1111/imm.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/28/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), the progressed period of metabolic dysfunction-associated steatotic liver disease (MASLD), is a multifaceted liver disease characterised by inflammation and fibrosis that develops from simple steatosis, even contributing to hepatocellular carcinoma and death. MASH involves several immune cell-mediated inflammation and fibrosis, where T cells play a crucial role through the release of pro-inflammatory cytokines and pro-fibrotic factors. This review discusses the complex role of various T cell subsets in the pathogenesis of MASH and highlights the progress of ongoing clinical trials involving T cell-targeted MASH therapies.
Collapse
Affiliation(s)
- Zhifa Ge
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingwei Wu
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qifeng He
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Zhang C, Sun G, Jin H, Wei Y, Zheng S, Wang X, Zhao X, Zhang D, Jia J. Double-negative T cells in combination with ursodeoxycholic acid ameliorates immune-mediated cholangitis in mice. BMC Med 2025; 23:209. [PMID: 40189495 PMCID: PMC11974204 DOI: 10.1186/s12916-025-04043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is a liver-specific autoimmune disease. Treatment of PBC with ursodeoxycholic acid (UDCA) is not sufficient to prevent disease progression. Our previous study revealed that the number of hepatic double-negative T cells (DNT), which are unique regulatory T cells, was reduced in PBC patients. However, whether replenishment of DNT can prevent the progression of PBC remains unclear. METHODS DnTGFβRII (Tg) mice and 2OA-BSA-immunized mice received DNT alone or in combination with oral UDCA. After 6-12 weeks of treatment, these mice were assessed for serological changes, liver pathological manifestations and intrahepatic immune responses. RESULTS Adoptive transfer of DNT alone significantly decreased serum levels of alanine transaminase (ALT), aspartate transaminase (AST), antimitochondrial antibody M2 (AMA-M2) and immunoglobulin M (IgM) in both Tg and 2OA-BSA-immunized PBC mouse models. In addition, DNT exhibited a strong killing effect on liver T cells and strong inhibition of their proliferation, but did not significantly improve the histology of PBC liver. However, combination therapy with DNT and oral UDCA predominantly ameliorated liver inflammation and significantly inhibited hepatic T and B cells. In vitro further study revealed that UDCA up-regulated the proliferation of DNT, increased the expression of the functional molecule perforin, and reduced the expression of NKG2A and endothelial cell protein C receptor (EPCR) through the farnesoid X receptor (FXR)/JNK signaling pathway in both mice and human DNT. CONCLUSIONS A single transfer of DNT ameliorated PBC in mice, while combination therapy of DNT with oral UDCA displayed a better efficacy, with stronger inhibition of hepatic T and B cells. This study highlights the potential application of DNT-based combination therapy for PBC, especially for UDCA non-responders.
Collapse
Affiliation(s)
- Chunpan Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China
| | - Guangyong Sun
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hua Jin
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yunxiong Wei
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shimeng Zheng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiyu Wang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China
| | - Dong Zhang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China.
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, 100069, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China.
| |
Collapse
|
3
|
Wu Y, Han X, Zhou L, Liu X, Zhang D, Sun G. The T-box transcription factor plays an important role in regulating the immunoregulatory function of double-negative T cells. Biochem Biophys Res Commun 2025; 752:151492. [PMID: 39955950 DOI: 10.1016/j.bbrc.2025.151492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Double-negative T (DNT) cells are important immunoregulatory cells that play a key role in maintaining immune homeostasis. However, the specific immune molecular mechanisms regulating DNT cell function have yet to be studied in depth. This study revealed that compared with conventional T cells, natural DNT cells and CD4+ T cell-converted DNT (cDNT) cells can secrete high levels of IFN-γ. Further analysis revealed that DNT cells highly expressed Th1-related genes and the T-box transcription factor (T-bet). Knocking out T-bet significantly reduced the level of IFN-γ secretion by DNT cells, indicating that T-bet is involved in the regulation of IFN-γ. Knocking out T-bet did not affect the conversion, survival or proliferation of cDNT cells but weakened the ability of cDNT cells to kill monocytes and inhibit monocytes TNF-α secretion. Transcriptome sequencing analysis confirmed that T-bet knockout in cDNT cells significantly reduced the immune-killing ability and activation level of cDNT cells. The ChIP-seq analysis revealed that T-bet directly transcriptionally regulated genes associated with cytotoxicity and activation, such as Gzma, Gzmb, Prf1, and Cd28. After T-bet knockout, the expression levels of these genes in cDNT cells were significantly reduced. In summary, this study revealed the key role of T-bet in regulating the immunoregulatory function of DNT cells, expanded knowledge on the mechanisms of action by which DNT cells exert immunoregulatory effects and provided a theoretical basis for the application of DNT cells in immune cell therapy.
Collapse
Affiliation(s)
- Yongle Wu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Xiaotong Han
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Longyang Zhou
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Dong Zhang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China.
| | - Guangyong Sun
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China.
| |
Collapse
|
4
|
Wei Y, Jiang Y, Zhu J, Zhang Z, Li M, Zheng S, Wang X, Sun J, Li C, Shi W, Wang S, Liu X, Lin M, Zhang Z, Zhang D, Sun G. CD36-mediated uptake of oxidized LDL induces double-negative regulatory T cell ferroptosis in metabolic dysfunction-associated steatotic liver disease. Metabolism 2025; 164:156127. [PMID: 39743040 DOI: 10.1016/j.metabol.2024.156127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Metabolic alterations have been shown to instigate liver inflammation in metabolic dysfunction-associated steatotic liver disease (MASLD), but the underlying mechanism is not fully elucidated. During MASLD progression, intrahepatic CD3+TCRαβ+CD4-CD8- double negative T regulatory cells (DNT) decrease cell survival and immunosuppressive function, leading to aggravated liver inflammation. In this study, we aim to reveal the underlying mechanisms that cause changes in DNT during MASLD progression. METHODS The correlation of serum oxidized low-density lipoprotein (oxLDL) levels and DNT from patients with MASLD and MASLD mouse models were evaluated. The mechanisms of oxLDL affecting DNT survival and function were explored through transcriptome sequencing analysis, flow cytometry, and CUT & TAG experiments. RESULTS Serum oxLDL levels are negative correlated with survival and functional molecule expression of circulating DNT in patients with MASLD and intrahepatic DNT in MASLD mouse models. Mechanistically, oxLDL increases DNT CD36 expression through the NF-κB pathway, leading to enhanced uptake of oxLDL and subsequent occurrence of ferroptosis and functional impairment. oxLDL enhances ferroptosis in DNT by upregulating acyl-CoA synthetase long chain family member 4 expression. By transferring CD36-/- DNT into MASLD mice, we observe a significant reduction in ferroptosis and improved immune regulation in CD36-/- DNT compared to wild type DNT. This improvement in DNT results in a notable enhancement of therapeutic efficacy against MASLD. CONCLUSION oxLDL induces a decline in the survival and immune regulatory function of DNT, subsequently weakening their role in maintaining liver immune homeostasis in MASLD. Specific targeting of CD36 to prevent ferroptosis in DNT may provide a novel therapeutic approach for the treatment of MASLD.
Collapse
Affiliation(s)
- Yunxiong Wei
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yuan Jiang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jingjing Zhu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zihan Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Mengyi Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shimeng Zheng
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jie Sun
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Changying Li
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wen Shi
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Minjie Lin
- Academic Affairs Department, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China.
| | - Guangyong Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
5
|
Zhang S, Wu J, Wang L, Zhang C, Zhang Y, Feng Y. Exploring the hepatic-ophthalmic axis through immune modulation and cellular dynamics in diabetic retinopathy and non-alcoholic fatty liver disease. Hum Genomics 2025; 19:19. [PMID: 40011971 PMCID: PMC11866823 DOI: 10.1186/s40246-025-00730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Dysfunctions within the liver system are intricately linked to the progression of diabetic retinopathy (DR) and non-alcoholic fatty liver disease (NAFLD). This study leverages systematic analysis to elucidate the complex cross-talk and communication pathways among diverse cell populations implicated in the pathogenesis of DR and NAFLD. METHODS Single-cell RNA sequencing data for proliferative diabetic retinopathy (PDR) and NAFLD were retrieved from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was conducted and followed by pseudo-time analysis to delineate dynamic changes in core cells and differentially expressed genes (DEGs). CellChat was employed to predict intercellular communication and signaling pathways. Additionally, gene set enrichment and variation analyses (GSEA and GSVA) were performed to uncover key functional enrichments. RESULTS Our comparative analysis of the two datasets focused on T cells, macrophages and endothelial cells, revealing SYNE2 as a notable DEG. Notably, common genes including PYHIN1, SLC38A1, ETS1 (T cells), PPFIBP1, LIFR, HSPG2 (endothelial cells), and MSR1 (macrophages), emerged among the top 50 DEGs across these cell types. The CD45 signaling pathway was pivotal for T cells and macrophages, exerting profound effects on other cells in both PDR and NAFLD. Moreover, GSEA and GSVA underscored their involvement in cellular communication, immune modulation, energy metabolism, mitotic processes. CONCLUSION The comprehensive investigation of T cells, macrophages, endothelial cells, and the CD45 signaling pathway advances our understanding of the intricate biological processes underpinning DR and NAFLD. This research underscores the imperative of exploring immune-related cell interactions, shedding light on novel therapeutic avenues in these disease contexts.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiajun Wu
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Leilei Wang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Wang K, Sun Z, Shao Q, Wang Z, Zhang H, Li Y, Ming J, Zhang W, Wang T, Zhao Y, Wang Q, Cheng F. Modulation of double-negative T cells by Huang-Lian-Jie-Du Decoction attenuates neuroinflammation in ischemic stroke: insights from single-cell transcriptomics. Front Immunol 2025; 16:1537277. [PMID: 40018035 PMCID: PMC11865039 DOI: 10.3389/fimmu.2025.1537277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/20/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Ischemic stroke (IS) represents a significant global health challenge, characterized by elevated morbidity and mortality rates, largely driven by inflammatory responses. Double-negative T cells (DNTs), a distinct subset of T cells lacking both CD4 and CD8 markers, have been implicated in the pathogenesis of IS, exhibiting potentially dual roles. However, the precise functional contributions of DNTs in this context remain poorly understood. Methods In this study, we investigated the role of DNTs during the acute phase of IS and assessed the influence of Huang-Lian-Jie-Du Decoction (HLJD), a traditional Chinese medicinal formula, on these cells. Using single-cell transcriptomics, we identified two distinct subtypes of DNTs: an activated, cytotoxic phenotype (Kill+) and a resting, immunosuppressive phenotype (Kill-). Results Our findings indicate that HLJD treatment modulates the balance between these DNT subtypes, specifically reducing the proportion of cytotoxic DNTs while promoting an increase in immunosuppressive DNTs. This shift was associated with a reduction in immune cell infiltration and inflammation within the brain tissue, potentially mitigating neuronal damage. Discussion These results suggest that HLJD exerts neuroprotective effects in IS by modulating the activity and distribution of DNT cells, offering valuable insights into the therapeutic potential of traditional Chinese medicine for the treatment of IS. Further studies are required to elucidate the mechanisms underlying DNT-mediated immune responses in IS and to explore the broader applications of HLJD in other neuroinflammatory conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Zhao
- *Correspondence: Yan Zhao, ; Qingguo Wang, ; Fafeng Cheng,
| | - Qingguo Wang
- *Correspondence: Yan Zhao, ; Qingguo Wang, ; Fafeng Cheng,
| | - Fafeng Cheng
- *Correspondence: Yan Zhao, ; Qingguo Wang, ; Fafeng Cheng,
| |
Collapse
|
7
|
Wang Z, Gao H, Ma X, Zhu D, Zhao L, Xiao W. Adrenic acid: A promising biomarker and therapeutic target (Review). Int J Mol Med 2025; 55:20. [PMID: 39575474 PMCID: PMC11611323 DOI: 10.3892/ijmm.2024.5461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 01/05/2025] Open
Abstract
Adrenic acid is a 22‑carbon unsaturated fatty acid that is widely present in the adrenal gland, liver, brain, kidney and vascular system that plays a regulatory role in various pathophysiological processes, such as inflammatory reactions, lipid metabolism, oxidative stress, vascular function, and cell death. Adrenic acid is a potential biomarker for various ailments, including metabolic, neurodegenerative and cardiovascular diseases and cancer. In addition, adrenic acid is influenced by the pharmacological properties of several natural products, such as astragaloside IV, evodiamine, quercetin, kaempferol, Berberine‑baicalin and prebiotics, so it is a promising new target for clinical treatment and drug development. However, the molecular mechanisms by which adrenic acid exerts are unclear. The present study systematically reviewed the biosynthesis and metabolism of adrenic acid, focusing on intrinsic mechanisms that influence the progression of metabolic, cardiovascular and neurological disease. These mechanisms regulate several key processes, including immuno‑inflammatory response, oxidative stress, vascular function and cell death. In addition, the present study explored the potential clinical translational value of adrenic acid as a biomarker and therapeutic target. To the best of our knowledge, the present study is first systematic summary of the mechanisms of action of adrenic acid across a range of diseases. The present study provides understanding of the wide range of metabolic activities of adrenic acid and a basis for further exploring the pathogenesis and therapeutic targets of various diseases.
Collapse
Affiliation(s)
- Ze Wang
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haoyang Gao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaotong Ma
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Danlin Zhu
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Linlin Zhao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
- School of Physical Education, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Weihua Xiao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
8
|
Jin H, Li M, Wang X, Yang L, Zhong X, Zhang Z, Han X, Zhu J, Li M, Wang S, Robson SC, Sun G, Zhang D. Purinergic signaling by TCRαβ + double-negative T regulatory cells ameliorates liver ischemia-reperfusion injury. Sci Bull (Beijing) 2025; 70:241-254. [PMID: 39658411 PMCID: PMC11749161 DOI: 10.1016/j.scib.2024.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is an important cause of liver injury following liver transplantation and major resections, and neutrophils are the key effector cells in HIRI. Double-negative T regulatory cells (DNT) are increasingly recognized as having critical regulatory functions in the immune system. Whether DNT expresses distinct immunoregulatory mechanisms to modulate neutrophils, as in HIRI, remains largely unknown. In this study, we found that murine and human DNT highly expressed CD39 that protected DNT from extracellular ATP-induced apoptosis and generated adenosine in tandem with CD73, to induce high levels of neutrophil apoptosis. Furthermore, extracellular adenosine enhanced DNT survival and suppressive function by upregulating survivin and NKG2D expression via the A2AR/pAKT/FOXO1 signaling pathway. Adoptive transfer of DNT ameliorated HIRI in mice through the inhibition of neutrophils in a CD39-dependent manner. Lastly, the adoptive transfer of A2ar-/- DNT validated the importance of adenosine/A2AR signaling, in promoting DNT survival and immunomodulatory function to protect against HIRI in vivo. In conclusion, purinergic signaling is crucial for DNT homeostasis in HIRI. Augmentation of CD39 or activation of A2AR signaling in DNT may provide novel therapeutic strategies to target innate immune disorders.
Collapse
Affiliation(s)
- Hua Jin
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Mingyang Li
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lu Yang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xinjie Zhong
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zihan Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaotong Han
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jingjing Zhu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Mengyi Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Guangyong Sun
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China.
| |
Collapse
|
9
|
Zhang B, Wen J, Li M, Wang J, Ji Z, Lv X, Usman M, Mauck J, Loor JJ, Yang W, Wang G, Ma J, Xu C. Fatty acids promote migration of CD4 + T cells through calcium release-activated calcium modulator ORAI1 sensitive glycolysis in dairy cows. J Dairy Sci 2025; 108:856-867. [PMID: 39477060 DOI: 10.3168/jds.2024-24845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/17/2024] [Indexed: 12/28/2024]
Abstract
Nutritional and metabolic state in dairy cows are important determinants of the immune response. During the periparturient period, a state of negative energy balance in the cow increases plasma concentrations of fatty acids (FA), which are associated with inflammation. Among immune cells, CD4+ T are able to function under high-FA conditions, but the underlying mechanisms regulating these events remain unclear. The objective of this study was to clarify the functional mechanisms of CD4+ T cells under high-FA conditions. The effects of glycolysis and calcium release-activated calcium modulator 1 (ORAI1) on migration of CD4+ T cells exposed to high FA were investigated in vivo and in vitro. The CD4+ T cells were isolated from peripheral blood of healthy (n = 9) and high-FA (n = 9) Holstein cows (average 2.5 ± 0.2 lactations [SE], 12.3 ± 0.8 DIM). In the first experiment, real-time quantitative PCR was used to assess chemokine receptors in isolated CD4+ T cells and migration capacity. The relative mRNA measurements results revealed downregulation of CCR1 and CXCR2, and upregulation of CCR2, CCR4, CCR5, CCR7, CCR8, CCR10, CXCR1, CXCR3, CXCR4, and CX3CR1. Among them, the expression of CXCR4 was relatively high. Therefore, CXCL12, a ligand chemokine of CXCR4, was an inducer of CD4+ T cell migration. The CD4+ T cells were inoculated in the upper chamber and CXCL12 (100 ng/mL, Peprotech) in RPMI1640 was added to the lower chamber and transmigrated for 3 h at 37°C and 5% CO2. The cell migration assay revealed that the migration capacity of CD4+ T cells from high-FA cows was greater. Real-time-qPCR indicated greater abundance of the glycolysis-related targets HIF1A, HK2, PKM2, Glut1, GAPDH, and LDHA and Western blotting indicated greater abundance of the glycolysis-related targets HIF1A, HK2, PKM2, Glut1, GAPDH, and LDHA in CD4+ T cells of high-FA cows. To characterize specific mechanisms of CD4+ T cell migration in vitro, cells from the spleens of 3 newborn (1 d old, 40-50 kg) healthy female Holstein calves were isolated after euthanasia. Inhibition of glycolysis attenuated the migration ability of cells, but had no effect on the protein and mRNA abundance of store-operated Ca2+ entry (SOCE)-associated calcium release-activated calcium modulator 1 (ORAI1) and stromal interaction molecule 1 (STIM1). In contrast, ORAI1 was upregulated in CD4+ T cells of cows exposed to high FA. To explore the potential mechanisms whereby an active glycolytic metabolism affects CD4+ T cells under high-FA conditions, we knocked down ORAI1 using small interfering RNA (siORAI1). Isolated CD4+ T cells from high-FA cows with the siORAI1 had an attenuated glycolytic metabolism and migration capacity. Taken together, these data suggested that calcium ions in CD4+ T cells from cows with high FA regulate glycolytic metabolism and influence cell migration at least in part by modulating ORAI1. Thus, these studies identified a novel mechanism of Ca2+ regulation of CD4+ T cell glycolytic metabolism affecting their migration through the SOCE pathway.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianan Wen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 032699, China
| | - Ming Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100000, China
| | - Jingjing Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ziwei Ji
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xinquan Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Muhammad Usman
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - John Mauck
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Guihua Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100000, China.
| |
Collapse
|
10
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
11
|
Cheng W, Zhu N, Wang J, Yang R. A role of gut microbiota metabolites in HLA-E and NKG2 blockage immunotherapy against tumors: new insights for clinical application. Front Immunol 2024; 15:1331518. [PMID: 39229258 PMCID: PMC11368731 DOI: 10.3389/fimmu.2024.1331518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
One of major breakthroughs in immunotherapy against tumor is from blocking immune checkpoint molecules on tumor and reactive T cells. The development of CTLA-4 and PD-1 blockage antibodies has triggered to search for additional effective therapeutic strategies. This causes recent findings that blocking the interaction of checkpoint molecule NKG2A in NK and CD8 T cells with HLA-E in tumors is effective in defensing tumors. Interestingly, gut microbiota also affects this immune checkpoint immunotherapy against tumor. Gut microbiota such as bacteria can contribute to the regulation of host immune response and homeostasis. They not only promote the differentiation and function of immunosuppressive cells but also the inflammatory cells through the metabolites such as tryptophan (Trp) and bile acid (BA) metabolites as well as short chain fatty acids (SCFAs). These gut microbiota metabolites (GMMs) educated immune cells can affect the differentiation and function of effective CD8 and NK cells. Notably, these metabolites also directly affect the activity of CD8 and NK cells. Furthermore, the expression of CD94/NKG2A in the immune cells and/or their ligand HLA-E in the tumor cells is also regulated by gut microbiota associated immune factors. These findings offer new insights for the clinical application of gut microbiota in precise and/or personalized treatments of tumors. In this review, we will discuss the impacts of GMMs and GMM educated immune cells on the activity of effective CD8 and NK cells and the expression of CD94/NKG2A in immune cells and/or their ligand HLA-E in tumor cells.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Zheng Y, Zhao L, Xiong Z, Huang C, Yong Q, Fang D, Fu Y, Gu S, Chen C, Li J, Zhu Y, Liu J, Liu F, Li Y. Ursolic acid targets secreted phosphoprotein 1 to regulate Th17 cells against metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2024; 30:449-467. [PMID: 38623614 PMCID: PMC11261229 DOI: 10.3350/cmh.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) has become an increasingly important health challenge, with a substantial rise linked to changing lifestyles and global obesity. Ursolic acid, a natural pentacyclic triterpenoid, has been explored for its potential therapeutic effects. Given its multifunctional bioactive properties, this research further revealed the pharmacological mechanisms of ursolic acid on MASLD. METHODS Drug target chips and bioinformatics analysis were combined in this study to explore the potential therapeutic effects of ursolic acid on MASLD. Molecular docking simulations, surface plasmon resonance analyses, pull-down experiments, and co-immunoprecipitation assays were used to verify the direct interactions. Gene knockdown mice were generated, and high-fat diets were used to validate drug efficacy. Furthermore, initial CD4+ T cells were isolated and stimulated to demonstrate our findings. RESULTS In this study, the multifunctional extracellular matrix phosphorylated glycoprotein secreted phosphoprotein 1 (SPP1) was investigated, highlighting its capability to induce Th17 cell differentiation, amplifying inflammatory cascades, and subsequently promoting the evolution of MASLD. In addition, this study revealed that in addition to the canonical TGF-β/IL-6 cytokine pathway, SPP1 can directly interact with ITGB1 and CD44, orchestrating Th17 cell differentiation via their joint downstream ERK signaling pathway. Remarkably, ursolic acid intervention notably suppressed the protein activity of SPP1, suggesting a promising avenue for ameliorating the immunoinflammatory trajectory in MASLD progression. CONCLUSION Ursolic acid could improve immune inflammation in MASLD by modulating SPP1-mediated Th17 cell differentiation via the ERK signaling pathway, which is orchestrated jointly by ITGB1 and CD44, emerging as a linchpin in this molecular cascade.
Collapse
Affiliation(s)
- Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhekun Xiong
- Department of Spleen, Stomach and Hepatobiliary, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Chaoyuan Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qiuhong Yong
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Fang
- Medical Affairs Department, Ton-Bridge Medical Technology Co., Ltd., Zhuhai, China
| | - Yugang Fu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingying Zhu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Protschka M, Di Placido D, Moore PF, Büttner M, Alber G, Eschke M. Canine peripheral non-conventional TCRαβ + CD4 -CD8α - double-negative T cells show T helper 2-like and regulatory properties. Front Immunol 2024; 15:1400550. [PMID: 38835756 PMCID: PMC11148280 DOI: 10.3389/fimmu.2024.1400550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
The dog is an important companion animal and also serves as model species for human diseases. Given the central role of T cells in immune responses, a basic understanding of canine conventional T cell receptor (TCR)αβ+ T cells, comprising CD4+ single-positive (sp) T helper (Th) and CD8α+ sp cytotoxic T cell subsets, is available. However, characterization of canine non-conventional TCRαβ+ CD4+CD8α+ double-positive (dp) and TCRαβ+ CD4-CD8α- double-negative (dn) T cells is limited. In this study, we performed a comprehensive analysis of canine dp and dn T cells in comparison with their conventional counterparts. TCRαβ+ T cells from peripheral blood of healthy dogs were sorted according to their CD4/CD8α phenotype into four populations (i.e. CD4+ sp, CD8α+ sp, dp, and dn) and selected surface markers, transcription factors and effector molecules were analyzed ex vivo and after in vitro stimulation by RT-qPCR. Novel characteristics of canine dp T cells were identified, expanding the previously characterized Th1-like phenotype to Th17-like and Th2-like properties. Overall, mRNA expression of various Th cell-associated cytokines (i.e. IFNG, IL17A, IL4, IL13) in dp T cells upon stimulation highlights their versatile immunological potential. Furthermore, we demonstrated that the CD4-CD8α- dn phenotype is stable during in vitro stimulation. Strikingly, dn T cells were found to express highest mRNA levels of type 2 effector cytokines (IL4, IL5, and IL13) upon stimulation. Their strong ability to produce IL-4 was confirmed at the protein level. Upon stimulation, the percentage of IL-4-producing cells was even higher in the non-conventional dn than in the conventional CD4+ sp population. Constitutive transcription of IL1RL1 (encoding IL-33Rα) further supports Th2-like properties within the dn T cell population. These data point to a role of dn T cells in type 2 immunity. In addition, the high potential of dn T cells to transcribe the gene encoding the co-inhibitory receptor CTLA-4 and to produce the inhibitory cytokine IL-10 indicates putative immunosuppressive capacity of this population. In summary, this study reveals important novel aspects of canine non-conventional T cells providing the basis for further studies on their effector and/or regulatory functions to elucidate their role in health and disease.
Collapse
MESH Headings
- Animals
- Dogs
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Th2 Cells/immunology
- CD8 Antigens/metabolism
- CD8 Antigens/immunology
- Cytokines/metabolism
- CD4 Antigens/metabolism
- CD4 Antigens/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Immunophenotyping
- Male
Collapse
Affiliation(s)
- Martina Protschka
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Daniela Di Placido
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Peter F. Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Mathias Büttner
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Maria Eschke
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
14
|
Zhang D, Alip M, Chen H, Wu D, Zhu H, Han Y, Yuan X, Feng X, Sun L, Wang D. Immune profiling analysis of double-negative T cells in patients with systemic sclerosis. Clin Rheumatol 2024; 43:1623-1634. [PMID: 38436769 DOI: 10.1007/s10067-024-06920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE To construct a molecular immune map of patients with systemic sclerosis (SSc) by mass flow cytometry, and compare the number and molecular expression of double-negative T (DNT) cell subsets between patients and healthy controls (HC). METHODS Peripheral blood mononuclear cells (PBMCs) were extracted from the peripheral blood of 17 SSc patients and 9 HC. A 42-channel panel was set up to perform mass cytometry by time of flight (CyTOF) analysis for DNT subgroups. Flow cytometry was used to validate subpopulation functions. The clinical data of patients were collected for correlation analysis. RESULTS Compared with HC, the number of total DNT cells decreased in SSc patients. Six DNT subsets were obtained from CyTOF analysis, in which the proportion of cluster1 increased, while the proportion of cluster3 decreased. Further analysis revealed that cluster1 was characterized by high expression of CD28 and CCR7, and cluster3 was characterized by high expression of CD28 and CCR5. After in vitro stimulation, cluster1 secreted more IL-4 and cluster3 secreted more IL-10 in SSc patients compared to HC. Clinical correlation analysis suggested that cluster1 may play a pathogenic role while cluster3 may play a protective role in SSc. ROC curve analysis further revealed that cluster3 may be a potential indicator for determining disease activity in SSc patients. CONCLUSION We found a new CCR5+CD28+ DNT cell subset, which played a protective role in the pathogenesis of SSc. Key Points • The number of DNT cells decreased in SSc patients' peripheral blood. • DNT cells do not infiltrate in the skin but secrete cytokines to participate in the pathogenesis of SSc. • A CCR5+CD28+ DNT cell population may play a protective role in SSc.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Mihribangvl Alip
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Hongzhen Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine Nanjing, Jiangsu, 210008, China
| | - Dan Wu
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Huimin Zhu
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Yichen Han
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Xinran Yuan
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China.
| | - Dandan Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China.
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
15
|
Wei Y, Sun G, Yang Y, Li M, Zheng S, Wang X, Zhong X, Zhang Z, Han X, Cheng H, Zhang D, Mei X. Double-negative T cells ameliorate psoriasis by selectively inhibiting IL-17A-producing γδ low T cells. J Transl Med 2024; 22:328. [PMID: 38566145 PMCID: PMC10988838 DOI: 10.1186/s12967-024-05132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition. Although biologic treatments are effective in controlling psoriasis, some patients do not respond or lose response to these therapies. Thus, new strategies for psoriasis treatment are still urgently needed. Double-negative T cells (DNT) play a significant immunoregulatory role in autoimmune diseases. In this study, we aimed to evaluate the protective effect of DNT in psoriasis and explore the underlying mechanism. METHODS We conducted a single adoptive transfer of DNT into an imiquimod (IMQ)-induced psoriasis mouse model through tail vein injection. The skin inflammation and IL-17A producing γδ T cells were evaluated. RESULTS DNT administration significantly reduced the inflammatory response in mouse skin, characterized by decreased skin folds, scales, and red patches. After DNT treatment, the secretion of IL-17A by RORc+ γδlow T cells in the skin was selectively suppressed, resulting in an amelioration of skin inflammation. Transcriptomic data suggested heightened expression of NKG2D ligands in γδlow T cells within the mouse model of psoriasis induced by IMQ. When blocking the NKG2D ligand and NKG2D (expressed by DNT) interaction, the cytotoxic efficacy of DNT against RORc+IL17A+ γδlow T cells was attenuated. Using Ccr5-/- DNT for treatment yielded evidence that DNT migrates into inflamed skin tissue and fails to protect IMQ-induced skin lesions. CONCLUSIONS DNT could migrate to inflamed skin tissue through CCR5, selectively inhibit IL-17-producing γδlow T cells and finally ameliorate mouse psoriasis. Our study provides feasibility for using immune cell therapy for the prevention and treatment of psoriasis in the clinic.
Collapse
Affiliation(s)
- Yunxiong Wei
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guangyong Sun
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yang Yang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Mingyang Li
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shimeng Zheng
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xinjie Zhong
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zihan Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaotong Han
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haiyan Cheng
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, 100069, China.
| | - Xueling Mei
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
16
|
Mladenić K, Lenartić M, Marinović S, Polić B, Wensveen FM. The "Domino effect" in MASLD: The inflammatory cascade of steatohepatitis. Eur J Immunol 2024; 54:e2149641. [PMID: 38314819 DOI: 10.1002/eji.202149641] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly common complication of obesity, affecting over a quarter of the global adult population. A key event in the pathophysiology of MASLD is the development of metabolic-associated steatohepatitis (MASH), which greatly increases the chances of developing cirrhosis and hepatocellular carcinoma. The underlying cause of MASH is multifactorial, but accumulating evidence indicates that the inflammatory process in the hepatic microenvironment typically follows a pattern that can be roughly divided into three stages: (1) Detection of hepatocyte stress by tissue-resident immune cells including γδ T cells and CD4-CD8- double-negative T cells, followed by their secretion of pro-inflammatory mediators, most notably IL-17A. (2) Recruitment of pro-inflammatory cells, mostly of the myeloid lineage, and initiation of inflammation through secretion of effector-type cytokines such as TNF, TGF-β, and IL-1β. (3) Escalation of the inflammatory response by recruitment of lymphocytes including Th17, CD8 T, and B cells leading to chronic inflammation, hepatic stellate cell activation, and fibrosis. Here we will discuss these three stages and how they are consecutively linked like falling domino tiles to the pathophysiology of MASH. Moreover, we will highlight the clinical potential of inflammation as a biomarker and therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sonja Marinović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
17
|
Dong T, Li J, Liu Y, Zhou S, Wei X, Hua H, Tang K, Zhang X, Wang Y, Wu Z, Gao C, Zhang H. Roles of immune dysregulation in MASLD. Biomed Pharmacother 2024; 170:116069. [PMID: 38147736 DOI: 10.1016/j.biopha.2023.116069] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide. Its occurrence and progression involve the process from simple hepatic steatosis to metabolic dysfunction associated steatohepatitis (MASH), which could develop into advanced liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Growing evidences support that the pathogenesis and progression of MASLD are closely related to immune system dysfunction. This review aims to summarize the association of MASLD with immune disorders and the prospect of using immunotherapy for MASLD.
Collapse
Affiliation(s)
- Tingyu Dong
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Jiajin Li
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuqing Liu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Shikai Zhou
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China
| | - Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hongting Hua
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yiming Wang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Zhen Wu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Chaobing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
18
|
Zhang C, Sui Y, Liu S, Yang M. Molecular mechanisms of metabolic disease-associated hepatic inflammation in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. EXPLORATION OF DIGESTIVE DISEASES 2023:246-275. [DOI: https:/doi.org/10.37349/edd.2023.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/05/2023] [Indexed: 11/27/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide, with a progressive form of non-alcoholic steatohepatitis (NASH). It may progress to advanced liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD/NASH is a comorbidity of many metabolic disorders such as obesity, insulin resistance, type 2 diabetes, cardiovascular disease, and chronic kidney disease. These metabolic diseases are often accompanied by systemic or extrahepatic inflammation, which plays an important role in the pathogenesis and treatment of NAFLD or NASH. Metabolites, such as short-chain fatty acids, impact the function, inflammation, and death of hepatocytes, the primary parenchymal cells in the liver tissue. Cholangiocytes, the epithelial cells that line the bile ducts, can differentiate into proliferative hepatocytes in chronic liver injury. In addition, hepatic non-parenchymal cells, including liver sinusoidal endothelial cells, hepatic stellate cells, and innate and adaptive immune cells, are involved in liver inflammation. Proteins such as fibroblast growth factors, acetyl-coenzyme A carboxylases, and nuclear factor erythroid 2-related factor 2 are involved in liver metabolism and inflammation, which are potential targets for NASH treatment. This review focuses on the effects of metabolic disease-induced extrahepatic inflammation, liver inflammation, and the cellular and molecular mechanisms of liver metabolism on the development and progression of NAFLD and NASH, as well as the associated treatments.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, Shanxi Province, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
19
|
Sun X, Zhang C, Sun F, Li S, Wang Y, Wang T, Li L. IL-33 promotes double negative T cell survival via the NF-κB pathway. Cell Death Dis 2023; 14:242. [PMID: 37019882 PMCID: PMC10076344 DOI: 10.1038/s41419-023-05766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
IL-33, which is a crucial modulator of adaptive immune responses far beyond type 2 response, can enhance the function of several T cell subsets and maintain the immune homeostasis. However, the contribution of IL-33 to double negative T (DNT) cell remains unappreciated. Here, we demonstrated that the IL-33 receptor ST2 was expressed on DNT cells, and that IL-33 stimulation increased DNT cells proliferation and survival in vivo and in vitro. Transcriptome sequencing analysis also demonstrated that IL-33 enhanced the biological function of DNT cells, especially effects on proliferation and survival. IL-33 promoted DNT cells survival by regulating Bcl-2, Bcl-xl and Survivin expression. IL-33-TRAF4/6-NF-κB axis activation promoted the transmission of essential division and survival signals in DNT cells. However, IL-33 failed to enhance the expression of immunoregulatory molecules in DNT cells. DNT cells therapy combined with IL-33 inhibited T cells survival and further ameliorated ConA-induced liver injury, which mainly depended on the proliferative effect of IL-33 on DNT cells in vivo. Finally, we stimulated human DNT cells with IL-33, and similar results were observed. In conclusion, we revealed a cell intrinsic role of IL-33 in the regulation of DNT cells, thereby identifying a previously unappreciated pathway supporting the expansion of DNT cells in the immune environment.
Collapse
Affiliation(s)
- Xiaojing Sun
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunpan Zhang
- Department of Infectious Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fanqi Sun
- Capital Medical University Forth Clinical School, Beijing, China
| | - Shuxiang Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medical On Liver Cirrhosis, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yaning Wang
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Wang
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Li Li
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Liu J, Ding M, Bai J, Luo R, Liu R, Qu J, Li X. Decoding the role of immune T cells: A new territory for improvement of metabolic-associated fatty liver disease. IMETA 2023; 2:e76. [PMID: 38868343 PMCID: PMC10989916 DOI: 10.1002/imt2.76] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/14/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new emerging concept and is associated with metabolic dysfunction, generally replacing the name of nonalcoholic fatty liver disease (NAFLD) due to heterogeneous liver condition and inaccuracies in definition. The prevalence of MAFLD is rising by year due to dietary changes, metabolic disorders, and no approved therapy, affecting a quarter of the global population and representing a major economic problem that burdens healthcare systems. Currently, in addition to the common causative factors like insulin resistance, oxidative stress, and lipotoxicity, the role of immune cells, especially T cells, played in MAFLD is increasingly being emphasized by global scholars. Based on the diverse classification and pathophysiological effects of immune T cells, we comprehensively analyzed their bidirectional regulatory effects on the hepatic inflammatory microenvironment and MAFLD progression. This interaction between MAFLD and T cells was also associated with hepatic-intestinal immune crosstalk and gut microbiota homeostasis. Moreover, we pointed out several T-cell-based therapeutic approaches including but not limited to adoptive transfer of T cells, fecal microbiota transplantation, and drug therapy, especially for natural products and Chinese herbal prescriptions. Overall, this study contributes to a better understanding of the important role of T cells played in MAFLD progression and corresponding therapeutic options and provides a potential reference for further drug development.
Collapse
Affiliation(s)
- Jia Liu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Mingning Ding
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Jinzhao Bai
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Ranyi Luo
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Runping Liu
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jiaorong Qu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xiaojiaoyang Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
21
|
Zi C, Wang D, Gao Y, He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front Immunol 2023; 13:1104943. [PMID: 36726994 PMCID: PMC9884980 DOI: 10.3389/fimmu.2022.1104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
T Helper 17 (Th17) cells are adaptive immune cells that play myriad roles in the body. Immune-endocrine interactions are vital in endocrine organs during pathological states. Th17 cells are known to take part in multiple autoimmune diseases over the years. Current evidence has moved from minimal to substantial that Th17 cells are closely related to endocrine organs. Diverse tissue Th17 cells have been discovered within endocrine organs, including gut, adipose tissue, liver and bone, and these cells are modulated by various secretions from endocrine organs. Th17 cells in these endocrine organs are key players in the process of an array of metabolic disorders and inflammatory conditions, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), osteoporosis and inflammatory bowel disease (IBD). We reviewed the pathogenetic or protective functions played by Th17 cells in various endocrine tissues and identified potential regulators for plasticity of it. Furthermore, we discussed the roles of Th17 cells in crosstalk of gut-organs axis.
Collapse
Affiliation(s)
- Changyan Zi
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| | - Lisha He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| |
Collapse
|
22
|
Tian D, Pan Y, Zhao Y, Wang H, Tian Y, Yang L, Shi W, Zhang C, Zhu Y, Zhang Y, Wang S, Zhang D. TCRαβ +NK1.1 -CD4 -CD8 - double-negative T cells inhibit central and peripheral inflammation and ameliorate ischemic stroke in mice. Theranostics 2023; 13:896-909. [PMID: 36793857 PMCID: PMC9925325 DOI: 10.7150/thno.80307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Excessive immune activation leads to secondary injury and impedes injured brain recovery after ischemic stroke. However, few effective methods are currently used for equilibrating immune balance. CD3+NK1.1-TCRβ+CD4-CD8- double-negative T (DNT) cells which do not express NK cell surface markers are unique regulatory cells that maintain homeostasis in several immune-related diseases. However, the therapeutic potential and regulatory mechanism of DNT cells in ischemic stroke are still unknown. Methods: Mouse ischemic stroke is induced by occlusion of the distal branches of the middle cerebral artery (dMCAO). DNT cells were adoptively transferred intravenously into ischemic stroke mice. Neural recovery was evaluated by TTC staining and behavioral analysis. Using immunofluorescence, flow cytometry, and RNA sequencing, the immune regulatory function of DNT cells was investigated at different time points post ischemic stroke. Results: Adoptive transfer of DNT cells significantly reduces infarct volume and improves sensorimotor function after ischemic stroke. DNT cells suppress peripheral Trem1+ myeloid cell differentiation during the acute phase. Furthermore, they infiltrate the ischemic tissue via CCR5 and equilibrate the local immune balance during the subacute phase. During the chronic phase, DNT cells enhance Treg cell recruitment through CCL5, eventually developing an immune homeostatic milieu for neuronal recovery. Conclusions: DNT cell treatment renders the comprehensive anti-inflammatory roles in specific phases of ischemic stroke. Our study suggests that the adoptive transfer of regulatory DNT cells may be a potential cell-based therapy for ischemic stroke.
Collapse
Affiliation(s)
- Dan Tian
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China
| | - Yuhualei Pan
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Yushang Zhao
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Huan Wang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Yue Tian
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Lu Yang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China
| | - Wen Shi
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Chengjie Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front Immunol 2022; 13:960852. [PMID: 36032104 PMCID: PMC9399941 DOI: 10.3389/fimmu.2022.960852] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
In recent studies, NKG2A is revealed to be a key immune checkpoint for both natural killer (NK) cells and CD8+ T cells. It form heterodimer receptors with CD94, and targets the peptide-presenting human leukocyte antigen-E (HLA-E) molecules. Upon crosslinking, NKG2A/CD94 delivers inhibitory signals for NK cells and CD8+ T cells, while blocking NKG2A can effectively unleash functions of these cytotoxic lymphocytes. The interaction between NKG2A and HLA-E contributes to tumor immune escape, and NKG2A-mediated mechanisms are currently being exploited to develop potential antitumor therapeutic strategies. In addition, growing evidence shows that NKG2A also plays important roles in other immune-related diseases including viral infections, autoimmune diseases, inflammatory diseases, parasite infections and transplant rejection. Therefore, the current work focuses on describing the effect of NKG2A on immune regulation and exploring its potential role in immune-mediated disorders.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| |
Collapse
|
24
|
Zhang F, Zhang Z, Li Y, Sun Y, Zhou X, Chen X, Sun S. Integrated Bioinformatics Analysis Identifies Robust Biomarkers and Its Correlation With Immune Microenvironment in Nonalcoholic Fatty Liver Disease. Front Genet 2022; 13:942153. [PMID: 35910194 PMCID: PMC9330026 DOI: 10.3389/fgene.2022.942153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Objective: Nonalcoholic fatty liver disease (NAFLD) is a serious threat to human health worldwide. In this study, the aim is to analyze diagnosis biomarkers in NAFLD and its relationship with the immune microenvironment based on bioinformatics analysis. Methods: We downloaded microarray datasets (GSE48452 and GSE63067) from the Gene Expression Omnibus (GEO) database for screening differentially expressed genes (DEGs). The hub genes were screened by a series of machine learning analyses, such as support vector machine (SVM), least absolute shrinkage and selection operator (LASSO), and weighted gene co-expression network analysis (WGCNA). It is worth mentioning that we used the gene enrichment analysis to explore the driver pathways of NAFLD occurrence. Subsequently, the aforementioned genes were validated by external datasets (GSE66676). Moreover, the CIBERSORT algorithm was used to estimate the proportion of different types of immune cells. Finally, the Spearman analysis was used to verify the relationship between hub genes and immune cells. Results: Hub genes (CAMK1D, CENPV, and TRHDE) were identified. In addition, we found that the pathogenesis of NAFLD is mainly related to nutrient metabolism and the immune system. In correlation analysis, CENPV expression had a strong negative correlation with resting memory CD4 T cells, and TRHDE expression had a strong positive correlation with naive B cells. Conclusion: CAMK1D, CENPV, and TRHDE play regulatory roles in NAFLD. In particular, CENPV and TRHDE may regulate the immune microenvironment by mediating resting memory CD4 T cells and naive B cells, respectively, and thus influence disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shibo Sun
- *Correspondence: Xiaoning Chen, ; Shibo Sun,
| |
Collapse
|
25
|
Gadi D, Griffith A, Wang Z, Tyekucheva S, Rai V, Fernandes SM, Machado JH, Munugalavadla V, Lederer J, Brown JR. Idelalisib reduces regulatory T cells and activates T helper 17 cell differentiation in relapsed refractory patients with chronic lymphocytic leukaemia. Br J Haematol 2022; 197:207-211. [PMID: 35170759 PMCID: PMC9263710 DOI: 10.1111/bjh.18053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol 3 kinase (PI3K) inhibitors such as idelalisib have been associated with potentially severe autoimmune toxicity. In the present study, we demonstrate that relapsed refractory patients with chronic lymphocytic leukaemia treated with idelalisib rituximab on the phase III registration trial show uniform decrease in regulatory T cells (Tregs) and increase in CD8 T cells with treatment. Patients who do not develop toxicity show enrichment for T cells expressing multiple chemokine receptors, while those who do develop toxicity have an activated CD8 T cell population with T helper 17 cell differentiation at baseline, which then increases, leading to an increased CD8:Treg ratio that likely triggers autoimmune toxicity.
Collapse
Affiliation(s)
- Deepti Gadi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alec Griffith
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Zixu Wang
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Vanessa Rai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - John-Hanson Machado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - James Lederer
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Ramadori P, Kam S, Heikenwalder M. T cells: Friends and foes in NASH pathogenesis and hepatocarcinogenesis. Hepatology 2022; 75:1038-1049. [PMID: 35023202 DOI: 10.1002/hep.32336] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
In association with the pandemic spreading of obesity and metabolic syndrome, the prevalence of NAFLD-related HCC is increasing almost exponentially. In recent years, many of the underlining multifactorial causes of NAFLD have been identified, and the cellular mechanisms sustaining disease development have been dissected up to the single-cell level. However, there is still an urgent need to provide clinicians with more therapeutic targets, with particular attention on NAFLD-induced HCC, where immune checkpoint inhibitors do not work as efficiently. Whereas much effort has been invested in elucidating the role of innate immune response in the hepatic NAFLD microenvironment, only in the past decade have novel critical roles been unraveled for T cells in driving chronic inflammation toward HCC. The metabolic and immune microenvironment interact to recreate a tumor-promoting and immune-suppressive terrain, responsible for resistance to anticancer therapy. In this article, we will review the specific functions of several T-cell populations involved in NAFLD and NAFLD-driven HCC. We will illustrate the cellular crosstalk with other immune cells, regulatory networks or stimulatory effects of these interactions, and role of the metabolic microenvironment in influencing immune cell functionality. Finally, we will present the pros and cons of the current therapeutic strategies against NAFLD-related HCC and delineate possible novel approaches for the future.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Division of Chronic Inflammation and CancerGerman Center for Cancer Research (DKFZ)HeidelbergGermany
| | | | | |
Collapse
|
27
|
Li C, Du X, Shen Z, Wei Y, Wang Y, Han X, Jin H, Zhang C, Li M, Zhang Z, Wang S, Zhang D, Sun G. The Critical and Diverse Roles of CD4 -CD8 - Double Negative T Cells in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 13:1805-1827. [PMID: 35247631 PMCID: PMC9059101 DOI: 10.1016/j.jcmgh.2022.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatic inflammation is a hallmark of nonalcoholic fatty liver disease (NAFLD). Double negative T (DNT) cells are a unique subset of T lymphocytes that do not express CD4, CD8, or natural killer cell markers, and studies have suggested that DNT cells play critical and diverse roles in the immune system. However, the role of intrahepatic DNT cells in NAFLD is largely unknown. METHODS The proportions and RNA transcription profiling of intrahepatic DNT cells were compared between C57BL/6 mice fed with control diet or methionine-choline-deficient diet for 5 weeks. The functions of DNT cells were tested in vitro and in vivo. RESULTS The proportion of intrahepatic DNT cells was significantly increased in mice with diet-induced NAFLD. In NAFLD mice, the proportion of intrahepatic TCRγδ+ DNT cells was increased along with elevated interleukin (IL) 17A; in contrast, the percentage of TCRαβ+ DNT cells was decreased, accompanied by reduced granzyme B (GZMB). TCRγδ+ DNT cell depletion resulted in lowered liver IL17A levels and significantly alleviated NAFLD. Adoptive transfer of intrahepatic TCRαβ+ DNT cells from control mice increased intrahepatic CD4 and CD8 T cell apoptosis and inhibited NAFLD progression. Furthermore, we revealed that adrenic acid and arachidonic acid, harmful fatty acids that were enriched in the liver of the mice with NAFLD, could induce apoptosis of TCRαβ+ DNT cells and inhibit their immunosuppressive function and nuclear factor kappa B (NF-κB) or AKT signaling pathway activity. However, arachidonic acid facilitated IL17A secretion by TCRγδ+ DNT cells, and the NF-κB signaling pathway was involved. Finally, we also confirmed the variation of intrahepatic TCRαβ+ DNT cells and TCRγδ+ DNT cells in humans. CONCLUSIONS During NAFLD progression, TCRγδ+ DNT cells enhance IL17A secretion and aggravate liver inflammation, whereas TCRαβ+ DNT cells decrease GZMB production and lead to weakened immunoregulatory function. Shifting of balance from TCRγδ+ DNT cell response to one that favors TCRαβ+ DNT regulation would be beneficial for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Changying Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Xiaonan Du
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Zongshan Shen
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Yunxiong Wei
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Yaning Wang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Xiaotong Han
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Hua Jin
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Chunpan Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Mengyi Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Songlin Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China,Dong Zhang, PhD, Capital Medical University Affiliated Beijing Friendship Hospital, Yongan Street 95#, Xicheng District, Beijing 100050, China.
| | - Guangyong Sun
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China,Correspondence Address correspondence to: Guangyong Sun, PhD, Capital Medical University Affiliated Beijing Friendship Hospital, Yongan Street 95#, Xicheng District, Beijing 100050, China. fax: (8610)63139421.
| |
Collapse
|
28
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
Zhang C, Yang M. Targeting T Cell Subtypes for NAFLD and NAFLD-Related HCC Treatment: An Opinion. Front Med (Lausanne) 2021; 8:789859. [PMID: 34869507 PMCID: PMC8637206 DOI: 10.3389/fmed.2021.789859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
| |
Collapse
|