1
|
Tani H. Biomolecules Interacting with Long Noncoding RNAs. BIOLOGY 2025; 14:442. [PMID: 40282307 PMCID: PMC12025117 DOI: 10.3390/biology14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
This review explores the complex interactions between long noncoding RNAs (lncRNAs) and other biomolecules, highlighting their pivotal roles in gene regulation and cellular function. LncRNAs, defined as RNA transcripts exceeding 200 nucleotides without encoding proteins, are involved in diverse biological processes, from embryogenesis to pathogenesis. They interact with DNA through mechanisms like triplex structure formation, influencing chromatin organization and gene expression. LncRNAs also modulate RNA-mediated processes, including mRNA stability, translational control, and splicing regulation. Their versatility stems from their forming of complex structures that enable interactions with various biomolecules. This review synthesizes current knowledge on lncRNA functions, discusses emerging roles in development and disease, and evaluates potential applications in diagnostics and therapeutics. By examining lncRNA interactions, it provides insights into the intricate regulatory networks governing cellular processes, underscoring the importance of lncRNAs in molecular biology. Unlike the majority of previous reviews that primarily focused on individual aspects of lncRNA biology, this comprehensive review uniquely integrates structural, functional, and mechanistic perspectives on lncRNA interactions across diverse biomolecules. Additionally, this review critically evaluates cutting-edge methodologies for studying lncRNA interactions, bridges fundamental molecular mechanisms with potential clinical applications, and highlights their potential.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama 245-0066, Japan
| |
Collapse
|
2
|
Leroy E, Challal D, Pelletier S, Goncalves C, Menant A, Marchand V, Jaszczyszyn Y, van Dijk E, Naquin D, Andreani J, Motorin Y, Palancade B, Rougemaille M. A bifunctional snoRNA with separable activities in guiding rRNA 2'-O-methylation and scaffolding gametogenesis effectors. Nat Commun 2025; 16:3250. [PMID: 40185772 PMCID: PMC11971394 DOI: 10.1038/s41467-025-58664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Small nucleolar RNAs are non-coding transcripts that guide chemical modifications of RNA substrates and modulate gene expression at the epigenetic and post-transcriptional levels. However, the extent of their regulatory potential and the underlying molecular mechanisms remain poorly understood. Here, we identify a conserved, previously unannotated intronic C/D-box snoRNA, termed snR107, hosted in the fission yeast long non-coding RNA mamRNA and carrying two independent cellular functions. On the one hand, snR107 guides site-specific 25S rRNA 2'-O-methylation and promotes pre-rRNA processing and 60S subunit biogenesis. On the other hand, snR107 associates with the gametogenic RNA-binding proteins Mmi1 and Mei2, mediating their reciprocal inhibition and restricting meiotic gene expression during sexual differentiation. Both functions require distinct cis-motifs within snR107, including a conserved 2'-O-methylation guiding sequence. Together, our results position snR107 as a dual regulator of rRNA modification and gametogenesis effectors, expanding our vision on the non-canonical functions exerted by snoRNAs in cell fate decisions.
Collapse
MESH Headings
- RNA, Small Nucleolar/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- Methylation
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- Schizosaccharomyces pombe Proteins/metabolism
- Schizosaccharomyces pombe Proteins/genetics
- Gametogenesis/genetics
- RNA Processing, Post-Transcriptional
- Gene Expression Regulation, Fungal
- RNA Precursors/metabolism
- RNA Precursors/genetics
- RNA, Fungal/metabolism
- RNA, Fungal/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- mRNA Cleavage and Polyadenylation Factors
Collapse
Affiliation(s)
- Estelle Leroy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Drice Challal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Stéphane Pelletier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Coralie Goncalves
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Alexandra Menant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Virginie Marchand
- Université de Lorraine, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (SMP IBSLor) and UMR7365 IMoPA CNRS, Nancy, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Erwin van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Yuri Motorin
- Université de Lorraine, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (SMP IBSLor) and UMR7365 IMoPA CNRS, Nancy, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Mathieu Rougemaille
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
4
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
5
|
Gilliland WD, May DP, Bowen AO, Conger KO, Elrad D, Marciniak M, Mashburn SA, Presbitero G, Welk LF. A cytological F1 RNAi screen for defects in Drosophila melanogaster female meiosis. Genetics 2024; 227:iyae046. [PMID: 38531678 PMCID: PMC11075555 DOI: 10.1093/genetics/iyae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
Genetic screens for recessive alleles induce mutations, make the mutated chromosomes homozygous, and then assay those homozygotes for the phenotype of interest. When screening for genes required for female meiosis, the phenotype of interest has typically been nondisjunction from chromosome segregation errors. As this requires that mutant females be viable and fertile, any mutants that are lethal or sterile when homozygous cannot be recovered by this approach. To overcome these limitations, we have screened the VALIUM22 collection of RNAi constructs that target germline-expressing genes in a vector optimized for germline expression by driving RNAi with GAL4 under control of a germline-specific promoter (nanos or mat-alpha4). This allowed us to test genes that would be lethal if knocked down in all cells, and by examining unfertilized metaphase-arrested mature oocytes, we could identify defects in sterile females. After screening >1,450 lines of the collection for two different defects (chromosome congression and the hypoxic sequestration of Mps1-GFP to ooplasmic filaments), we obtained multiple hits for both phenotypes, identified novel meiotic phenotypes for genes that had been previously characterized in other processes, and identified the first phenotypes to be associated with several previously uncharacterized genes.
Collapse
Affiliation(s)
- William D Gilliland
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Dennis P May
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Amelia O Bowen
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Kelly O Conger
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Doreen Elrad
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Marcin Marciniak
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Sarah A Mashburn
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | | | - Lucas F Welk
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| |
Collapse
|
6
|
Gilliland WD, May DP, Bowen AO, Conger KO, Elrad D, Marciniak M, Mashburn SA, Presbitero G, Welk LF. A Cytological F1 RNAi Screen for Defects in Drosophila melanogaster Female Meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575435. [PMID: 38293152 PMCID: PMC10827134 DOI: 10.1101/2024.01.12.575435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Genetic screens for recessive alleles induce mutations, make the mutated chromosomes homozygous, and then assay those homozygotes for the phenotype of interest. When screening for genes required for female meiosis, the phenotype of interest has typically been nondisjunction from chromosome segregation errors. As this requires that mutant females be viable and fertile, any mutants that are lethal or sterile when homozygous cannot be recovered by this approach. To overcome these limitations, our lab has screened the VALIUM22 collection produced by the Harvard TRiP Project, which contains RNAi constructs targeting genes known to be expressed in the germline in a vector optimized for germline expression. By driving RNAi with GAL4 under control of a germline-specific promoter (nanos or mat-alpha4), we can test genes that would be lethal if knocked down in all cells, and by examining unfertilized metaphase-arrested mature oocytes, we can identify defects associated with genes whose knockdown results in sterility or causes other errors besides nondisjunction. We screened this collection to identify genes that disrupt either of two phenotypes when knocked down: the ability of meiotic chromosomes to congress to a single mass at the end of prometaphase, and the sequestration of Mps1-GFP to ooplasmic filaments in response to hypoxia. After screening >1450 lines of the collection, we obtained multiple hits for both phenotypes, identified novel meiotic phenotypes for genes that had been previously characterized in other processes, and identified the first phenotypes to be associated with several previously uncharacterized genes.
Collapse
Affiliation(s)
| | | | | | | | - Doreen Elrad
- DePaul University Department of Biological Sciences
| | | | | | | | | |
Collapse
|
7
|
Patrick MT, Sreeskandarajan S, Shefler A, Wasikowski R, Sarkar MK, Chen J, Qin T, Billi AC, Kahlenberg JM, Prens E, Hovnanian A, Weidinger S, Elder JT, Kuo CC, Gudjonsson JE, Tsoi LC. Large-scale functional inference for skin-expressing lncRNAs using expression and sequence information. JCI Insight 2023; 8:e172956. [PMID: 38131377 PMCID: PMC10807743 DOI: 10.1172/jci.insight.172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate the expression of protein-coding genes and have been shown to play important roles in inflammatory skin diseases. However, we still have limited understanding of the functional impact of lncRNAs in skin, partly due to their tissue specificity and lower expression levels compared with protein-coding genes. We compiled a comprehensive list of 18,517 lncRNAs from different sources and studied their expression profiles in 834 RNA-Seq samples from multiple inflammatory skin conditions and cytokine-stimulated keratinocytes. Applying a balanced random forest to predict involvement in biological functions, we achieved a median AUROC of 0.79 in 10-fold cross-validation, identifying significant DNA binding domains (DBDs) for 39 lncRNAs. G18244, a skin-expressing lncRNA predicted for IL-4/IL-13 signaling in keratinocytes, was highly correlated in expression with F13A1, a protein-coding gene involved in macrophage regulation, and we further identified a significant DBD in F13A1 for G18244. Reflecting clinical implications, AC090198.1 (predicted for IL-17 pathway) and AC005332.6 (predicted for IFN-γ pathway) had significant negative correlation with the SCORAD metric for atopic dermatitis. We also utilized single-cell RNA and spatial sequencing data to validate cell type specificity. Our research demonstrates lncRNAs have important immunological roles and can help prioritize their impact on inflammatory skin diseases.
Collapse
Affiliation(s)
- Matthew T. Patrick
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sutharzan Sreeskandarajan
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alanna Shefler
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachael Wasikowski
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mrinal K. Sarkar
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiahan Chen
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Tingting Qin
- Department of Computational Medicine & Bioinformatics and
| | - Allison C. Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Errol Prens
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - James T. Elder
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Chao-Chung Kuo
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Johann E. Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Prozzillo Y, Santopietro MV, Messina G, Dimitri P. Unconventional roles of chromatin remodelers and long non-coding RNAs in cell division. Cell Mol Life Sci 2023; 80:365. [PMID: 37982870 PMCID: PMC10661750 DOI: 10.1007/s00018-023-04949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 11/21/2023]
Abstract
The aim of this review article is to focus on the unconventional roles of epigenetic players (chromatin remodelers and long non-coding RNAs) in cell division, beyond their well-characterized functions in chromatin regulation during cell differentiation and development. In the last two decades, diverse experimental evidence has shown that subunits of SRCAP and p400/TIP60 chromatin remodeling complexes in humans relocate from interphase nuclei to centrosomes, spindle or midbody, with their depletion yielding an array of aberrant outcomes of mitosis and cytokinesis. Remarkably, this behavior is shared by orthologous subunits of the Drosophila melanogaster DOM/TIP60 complex, despite fruit flies and humans diverged over 700 million years ago. In short, the available data support the view that subunits of these complexes are a new class of moonlighting proteins, in that they lead a "double life": during the interphase, they function in chromatin regulation within the nucleus, but as the cell progresses through mitosis, they interact with established mitotic factors, thus becoming integral components of the cell division apparatus. By doing so, they contribute to ensuring the correct distribution of chromosomes in the two daughter cells and, when dysfunctional, can cause genomic instability, a condition that can trigger tumorigenesis and developmental diseases. Research over the past few years has unveiled a major contribution of long non-coding RNAs (lncRNAs) in the epigenetics regulation of gene expression which also impacts on cell division control. Here, we focus on possible structural roles of lncRNAs in the execution of cytokinesis: in particular, we suggest that specific classes of lncRNAs relocate to the midbody to form an architectural scaffold ensuring its proper assembly and function during abscission. Drawing attention to experimental evidence for non-canonical extranuclear roles of chromatin factors and lncRNAs has direct implications on important and novel aspects concerning both the epigenetic regulation and the evolutionary dynamics of cell division with a significant impact on differentiation, development, and diseases.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Giovanni Messina
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
- Universita degli Studi di Milano-Bicocca, Piazza dell' Ateneo Nuovo, 1, 20126, Milano, Italy.
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
9
|
Yu Q, Cai B, Zhang Y, Xu J, Liu D, Zhang X, Han Z, Ma Y, Jiao L, Gong M, Yang X, Wang Y, Li H, Sun L, Bian Y, Yang F, Xuan L, Wu H, Yang B, Zhang Y. Long non-coding RNA LHX1-DT regulates cardiomyocyte differentiation through H2A.Z-mediated LHX1 transcriptional activation. iScience 2023; 26:108051. [PMID: 37942009 PMCID: PMC10628816 DOI: 10.1016/j.isci.2023.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/22/2023] [Accepted: 09/22/2023] [Indexed: 11/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play widespread roles in various processes. However, there is still limited understanding of the precise mechanisms through which they regulate early stage cardiomyocyte differentiation. In this study, we identified a specific lncRNA called LHX1-DT, which is transcribed from a bidirectional promoter of LIM Homeobox 1 (LHX1) gene. Our findings demonstrated that LHX1-DT is nuclear-localized and transiently elevated expression along with LHX1 during early differentiation of cardiomyocytes. The phenotype was rescued by overexpression of LHX1 into the LHX1-DT-/- hESCs, indicating LHX1 is the downstream of LHX1-DT. Mechanistically, we discovered that LHX1-DT physically interacted with RNA/histone-binding protein PHF6 during mesoderm commitment and efficiently replaced conventional histone H2A with a histone variant H2A.Z at the promoter region of LHX1. In summary, our work uncovers a novel lncRNA, LHX1-DT, which plays a vital role in mediating the exchange of histone variants H2A.Z and H2A at the promoter region of LHX1.
Collapse
Affiliation(s)
- Qi Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Benzhi Cai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Dongping Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiyang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhenbo Han
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Avenue, COMRB 4100, Chicago, IL 60612, USA
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lei Jiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Manyu Gong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xuewen Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Haodong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lihua Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yu Bian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Fan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Haodi Wu
- Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences (2019RU070), Harbin 150086, China
| | - Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
10
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
11
|
Duan B, Zhang H, Zhu Z, Yan X, Ji Z, Li J. LncRNA LINC01871 sponging miR-142-3p to modulate ZYG11B promotes the chemoresistance of colorectal cancer cells by inducing autophagy. Anticancer Drugs 2023; 34:827-836. [PMID: 36847071 PMCID: PMC10344439 DOI: 10.1097/cad.0000000000001478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 08/22/2022] [Indexed: 03/01/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignant tumor in the digestive tract. Increasing evidence indicated that chemoresistance leads to a poor prognosis of CRC. Herein, we aimed to uncover the potential mechanism by which long intergenic noncoding RNA-1871 (LINC01871) affects the chemoresistance of CRC cells. METHODS Relative level of LINC01871 in CRC tissues was assessed by reverse transcription quantitative PCR (RT-qPCR). Kaplan-Meier analysis was conducted to determine the relevance of LINC01871 and the prognosis of CRC patients. Cell Counting Kit-8 (CCK-8) and colony formation assay were used to evaluate the proliferation of SW480 cells. Expression levels of proteins and their genes were assessed by western blot, immunofluorescence staining and RT-qPCR. In addition, the interaction of LINC01871, miR-142-3p and protein zyg-11 homolog B (ZYG11B) were analyzed via dual-luciferase reporter assays. RESULTS LINC01871 was low-expressed in CRC tissues and cell lines. Patients with a low level of LINC01871 showed significantly lower survival rate. pcDNA-LINC01871 significantly reduced the viability of SW480 cells ( P < 0.01), elevated SW480 cells sensitivity to 5-FU ( P < 0.01), reduced LC3 punctate aggregates ( P < 0.01) and downregulated the relative mRNA expression level of autophagy related protein 9A, autophagy related protein 4B and high mobility group box 1 ( P < 0.01) in SW480 cells. Moreover, LINC01871 was found to sponge miR-142-3p, and ZYG11B was the target of miR-142-3p. MiR-142-3p mimic significantly recovered the effect of pcDNA-LINC001871, whereas pcDNA-ZYG11B reversed the recovery effect of the miR-142-3p mimic. CONCLUSION LINC01871/miR-142-3p/ ZYG11B axis regulates the chemoresistance of CRCs by inducing autophagy.
Collapse
Affiliation(s)
- Bensong Duan
- Department of Gastroenterology, Endoscopy Center
| | - Haibin Zhang
- Department of Gastroenterology, Endoscopy Center
| | | | - Xiaohan Yan
- Department of Gastroenterology, Endoscopy Center
| | - Zhonghua Ji
- Department of Anesthesia, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingze Li
- Department of Gastroenterology, Endoscopy Center
| |
Collapse
|
12
|
Bekkouche I, Shishonin AY, Vetcher AA. Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability. Polymers (Basel) 2023; 15:858. [PMID: 36850142 PMCID: PMC9964087 DOI: 10.3390/polym15040858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes.
Collapse
Affiliation(s)
- Incherah Bekkouche
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| |
Collapse
|
13
|
Lv L, Huang B, Yi L, Zhang L. Long non-coding RNA SNHG4 enhances RNF14 mRNA stability to promote the progression of colorectal cancer by recruiting TAF15 protein. Apoptosis 2022; 28:414-431. [PMID: 36482019 DOI: 10.1007/s10495-022-01781-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 12/13/2022]
Abstract
SNHG4 is a lncRNA that was previously reported to promote colorectal cancer (CRC) progression via molecular sponge mechanism. Bioinformatic analysis suggested SNHG4 might scaffold TAF15 protein-RNF14 mRNA interaction. We aimed to investigate the mechanisms of potential SNHG4/TAF15/RNF14 axis in promoting CRC malignant phenotypes. Protein-RNA interaction was determined using RNA immunoprecipitation, pull-down and fluorescence in situ hybridization (FISH) combined immunofluorescence assays. Cell apoptosis rates were quantified using flow cytometry. CCK-8 and colony formation were adopted to determine cell proliferation. Wound healing and transwell assays were employed to assess cell migration and invasion, respectively. Xenograft tumor model was applied to assess the effects of SNHG4 on CRC tumorigenesis in vivo. SNHG4, TAF15 and RNF14 were up-regulated in CRC tissues. SNHG4 overexpression promoted cell proliferation, migration, invasion, and Wnt/β-catenin pathway activation in vitro, as well as tumor growth in vivo. The inhibited malignant phenotypes caused by SNHG4 knockdown were impeded by TAF15 or RNF14 overexpression. Mechanistically, SNHG4 recruited TAF15 protein and thus promoted the interaction between TAF15 protein and RNF14 mRNA, leading to the increased RNF14 mRNA stability. This in turn facilitated the Wnt/β-catenin signal transduction. SNHG4 enhanced RNF14 mRNA stability and activated the Wnt/β-catenin pathway to promote the progression of colorectal cancer by recruiting TAF15 protein.
Collapse
Affiliation(s)
- Lv Lv
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, NO.8, Wenchang Road, Liuzhou, 545006, Guangxi, People's Republic of China.
| | - Bojie Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Lu Yi
- Department of Dermatology & Venerology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Li Zhang
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, NO.8, Wenchang Road, Liuzhou, 545006, Guangxi, People's Republic of China
| |
Collapse
|
14
|
RNA-Mediated Regulation of Meiosis in Budding Yeast. Noncoding RNA 2022; 8:ncrna8060077. [PMID: 36412912 PMCID: PMC9680404 DOI: 10.3390/ncrna8060077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cells change their physiological state in response to environmental cues. In the absence of nutrients, unicellular fungi such as budding yeast exit mitotic proliferation and enter the meiotic cycle, leading to the production of haploid cells that are encased within spore walls. These cell state transitions are orchestrated in a developmentally coordinated manner. Execution of the meiotic cell cycle program in budding yeast, Saccharomyces cerevisiae, is regulated by the key transcription factor, Ime1. Recent developments have uncovered the role of non-coding RNA in the regulation of Ime1 and meiosis. In this review, we summarize the role of ncRNA-mediated and RNA homeostasis-based processes in the regulation of meiosis in Saccharomyces cerevisiae.
Collapse
|
15
|
Ono Y, Katayama K, Onuma T, Kubo K, Tsuyuzaki H, Hamada M, Sato M. Structure-based screening for functional non-coding RNAs in fission yeast identifies a factor repressing untimely initiation of sexual differentiation. Nucleic Acids Res 2022; 50:11229-11242. [PMID: 36259651 PMCID: PMC9638895 DOI: 10.1093/nar/gkac825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
Non-coding RNAs (ncRNAs) ubiquitously exist in normal and cancer cells. Despite their prevalent distribution, the functions of most long ncRNAs remain uncharacterized. The fission yeast Schizosaccharomyces pombe expresses >1800 ncRNAs annotated to date, but most unconventional ncRNAs (excluding tRNA, rRNA, snRNA and snoRNA) remain uncharacterized. To discover the functional ncRNAs, here we performed a combinatory screening of computational and biological tests. First, all S. pombe ncRNAs were screened in silico for those showing conservation in sequence as well as in secondary structure with ncRNAs in closely related species. Almost a half of the 151 selected conserved ncRNA genes were uncharacterized. Twelve ncRNA genes that did not overlap with protein-coding sequences were next chosen for biological screening that examines defects in growth or sexual differentiation, as well as sensitivities to drugs and stresses. Finally, we highlighted an ncRNA transcribed from SPNCRNA.1669, which inhibited untimely initiation of sexual differentiation. A domain that was predicted as conserved secondary structure by the computational operations was essential for the ncRNA to function. Thus, this study demonstrates that in silico selection focusing on conservation of the secondary structure over species is a powerful method to pinpoint novel functional ncRNAs.
Collapse
Affiliation(s)
- Yu Ono
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kenta Katayama
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomoki Onuma
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kento Kubo
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Bioinformatics Laboratory, Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hayato Tsuyuzaki
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Bioinformatics Laboratory, Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan.,Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
16
|
Warwick T, Seredinski S, Krause NM, Bains JK, Althaus L, Oo JA, Bonetti A, Dueck A, Engelhardt S, Schwalbe H, Leisegang MS, Schulz MH, Brandes RP. A universal model of RNA.DNA:DNA triplex formation accurately predicts genome-wide RNA-DNA interactions. Brief Bioinform 2022; 23:6760135. [PMID: 36239395 PMCID: PMC9677506 DOI: 10.1093/bib/bbac445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022] Open
Abstract
RNA.DNA:DNA triple helix (triplex) formation is a form of RNA-DNA interaction which regulates gene expression but is difficult to study experimentally in vivo. This makes accurate computational prediction of such interactions highly important in the field of RNA research. Current predictive methods use canonical Hoogsteen base pairing rules, which whilst biophysically valid, may not reflect the plastic nature of cell biology. Here, we present the first optimization approach to learn a probabilistic model describing RNA-DNA interactions directly from motifs derived from triplex sequencing data. We find that there are several stable interaction codes, including Hoogsteen base pairing and novel RNA-DNA base pairings, which agree with in vitro measurements. We implemented these findings in TriplexAligner, a program that uses the determined interaction codes to predict triplex binding. TriplexAligner predicts RNA-DNA interactions identified in all-to-all sequencing data more accurately than all previously published tools in human and mouse and also predicts previously studied triplex interactions with known regulatory functions. We further validated a novel triplex interaction using biophysical experiments. Our work is an important step towards better understanding of triplex formation and allows genome-wide analyses of RNA-DNA interactions.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sandra Seredinski
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Nina M Krause
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Lara Althaus
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Alessandro Bonetti
- Translational Genomics, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50 Mölndal, Sweden
| | - Anne Dueck
- Institute of Pharmacology and Toxicology, Technical University of Munich, Biedersteiner Str. 29, D-80802, Munich, Germany,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Biedersteiner Str. 29, D-80802, Munich, Germany,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Marcel H Schulz
- Corresponding authors. Ralf P. Brandes, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail: ; Marcel H. Schulz, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail:
| | - Ralf P Brandes
- Corresponding authors. Ralf P. Brandes, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail: ; Marcel H. Schulz, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail:
| |
Collapse
|
17
|
Martín Caballero L, Capella M, Barrales RR, Dobrev N, van Emden T, Hirano Y, Suma Sreechakram VN, Fischer-Burkart S, Kinugasa Y, Nevers A, Rougemaille M, Sinning I, Fischer T, Hiraoka Y, Braun S. The inner nuclear membrane protein Lem2 coordinates RNA degradation at the nuclear periphery. Nat Struct Mol Biol 2022; 29:910-921. [PMID: 36123402 PMCID: PMC9507967 DOI: 10.1038/s41594-022-00831-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
Abstract
Transcriptionally silent chromatin often localizes to the nuclear periphery. However, whether the nuclear envelope (NE) is a site for post-transcriptional gene repression is not well understood. Here we demonstrate that Schizosaccharomycespombe Lem2, an NE protein, regulates nuclear-exosome-mediated RNA degradation. Lem2 deletion causes accumulation of RNA precursors and meiotic transcripts and de-localization of an engineered exosome substrate from the nuclear periphery. Lem2 does not directly bind RNA but instead interacts with the exosome-targeting MTREC complex and its human homolog PAXT to promote RNA recruitment. This pathway acts largely independently of nuclear bodies where exosome factors assemble. Nutrient availability modulates Lem2 regulation of meiotic transcripts, implying that this pathway is environmentally responsive. Our work reveals that multiple spatially distinct degradation pathways exist. Among these, Lem2 coordinates RNA surveillance of meiotic transcripts and non-coding RNAs by recruiting exosome co-factors to the nuclear periphery. The Braun lab shows that the conserved nuclear membrane protein Lem2 interacts with the MTREC complex of the nuclear-exosome pathway to promote recruitment and degradation of ncRNAs and meiotic transcripts at the nuclear periphery in Schizosaccharomycespombe.
Collapse
Affiliation(s)
- Lucía Martín Caballero
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Matías Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| | - Nikolay Dobrev
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Vishnu N Suma Sreechakram
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Fischer-Burkart
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Regulation for intractable Infectious Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Alicia Nevers
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mathieu Rougemaille
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Tamás Fischer
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.,The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Sigurd Braun
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany. .,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany. .,Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
18
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
19
|
Li Y, Zhang J, Sun H, Yu X, Chen Y, Ma C, Zheng X, Zhang L, Zhao X, Jiang Y, Xin W, Wang S, Hu J, Wang M, Zhu D. RPS4XL encoded by lnc-Rps4l inhibits hypoxia-induced pyroptosis by binding HSC70 glycosylation site. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:920-934. [PMID: 35757299 PMCID: PMC9185019 DOI: 10.1016/j.omtn.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/18/2022] [Indexed: 10/25/2022]
|
20
|
Shen S, Jian Y, Cai Z, Li F, Lv M, Liu Y, Wu J, Fu C, Shi Y. Structural insights reveal the specific recognition of meiRNA by the Mei2 protein. J Mol Cell Biol 2022; 14:6581319. [PMID: 35512546 PMCID: PMC9486875 DOI: 10.1093/jmcb/mjac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, Mei2, an RNA-binding protein essential for entry into meiosis, regulates meiosis initiation. Mei2 binds to a specific non-coding RNA species, meiRNA, and accumulates at sme2 gene locus, which encodes meiRNA. Previous research has shown that the Mei2 C-terminal RNA recognition motif (RRM3) physically interacts with meiRNA 5' region in vitro and stimulates meiosis in vivo. However, the underlying mechanism still remains elusive. We first employed an in vitro crosslinking and immunoprecipitation sequencing (CLIP-seq) assay and demonstrated a preference for U-rich motifs of meiRNA by Mei2 RRM3. We then solved the crystal structures of Mei2 RRM3 in the apo form and complex with an 8mer RNA fragment, derived from meiRNA, as detected by in vitro CLIP-seq. These results provide structural insights into Mei2 RRM3-meiRNA complex and reveal that Mei2 RRM3 binds specifically to the UUC(U) sequence. Furthermore, a structure-based Mei2 mutation, Mei2F644A causes defective karyogamy, suggesting an essential role of the RNA-binding ability of Mei2 in regulating meiosis.
Collapse
Affiliation(s)
- Siyuan Shen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.,MOE key Laboratory for Cellular Dynamics, University of Science & Technology of China, Hefei 230026, China
| | - Yanze Jian
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.,MOE key Laboratory for Cellular Dynamics, University of Science & Technology of China, Hefei 230026, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fudong Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.,MOE key Laboratory for Cellular Dynamics, University of Science & Technology of China, Hefei 230026, China
| | - Mengqi Lv
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.,MOE key Laboratory for Cellular Dynamics, University of Science & Technology of China, Hefei 230026, China
| | - Yongrui Liu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.,MOE key Laboratory for Cellular Dynamics, University of Science & Technology of China, Hefei 230026, China
| | - Jihui Wu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.,MOE key Laboratory for Cellular Dynamics, University of Science & Technology of China, Hefei 230026, China
| | - Chuanhai Fu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.,MOE key Laboratory for Cellular Dynamics, University of Science & Technology of China, Hefei 230026, China
| | - Yunyu Shi
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.,MOE key Laboratory for Cellular Dynamics, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Faber MW, Vo TV. Long RNA-Mediated Chromatin Regulation in Fission Yeast and Mammals. Int J Mol Sci 2022; 23:968. [PMID: 35055152 PMCID: PMC8778201 DOI: 10.3390/ijms23020968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
As part of a complex network of genome control, long regulatory RNAs exert significant influences on chromatin dynamics. Understanding how this occurs could illuminate new avenues for disease treatment and lead to new hypotheses that would advance gene regulatory research. Recent studies using the model fission yeast Schizosaccharomyces pombe (S. pombe) and powerful parallel sequencing technologies have provided many insights in this area. This review will give an overview of key findings in S. pombe that relate long RNAs to multiple levels of chromatin regulation: histone modifications, gene neighborhood regulation in cis and higher-order chromosomal ordering. Moreover, we discuss parallels recently found in mammals to help bridge the knowledge gap between the study systems.
Collapse
Affiliation(s)
| | - Tommy V. Vo
- Department of Biochemistry and Molecular Biology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
22
|
Rodriguez-Lopez M, Anver S, Cotobal C, Kamrad S, Malecki M, Correia-Melo C, Hoti M, Townsend S, Marguerat S, Pong SK, Wu MY, Montemayor L, Howell M, Ralser M, Bähler J. Functional profiling of long intergenic non-coding RNAs in fission yeast. eLife 2022; 11:e76000. [PMID: 34984977 PMCID: PMC8730722 DOI: 10.7554/elife.76000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions.
Collapse
Affiliation(s)
- Maria Rodriguez-Lopez
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Shajahan Anver
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Cristina Cotobal
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Stephan Kamrad
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Institute of BiochemistryBerlinGermany
| | - Michal Malecki
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Clara Correia-Melo
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
| | - Mimoza Hoti
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - StJohn Townsend
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
| | - Samuel Marguerat
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Sheng Kai Pong
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Mary Y Wu
- The Francis Crick Institute, High Throughput ScreeningLondonUnited Kingdom
| | - Luis Montemayor
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Michael Howell
- The Francis Crick Institute, High Throughput ScreeningLondonUnited Kingdom
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Institute of BiochemistryBerlinGermany
| | - Jürg Bähler
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| |
Collapse
|
23
|
Ding Y, Yin R, Zhang S, Xiao Q, Zhao H, Pan X, Zhu X. The Combined Regulation of Long Non-coding RNA and RNA-Binding Proteins in Atherosclerosis. Front Cardiovasc Med 2021; 8:731958. [PMID: 34796209 PMCID: PMC8592911 DOI: 10.3389/fcvm.2021.731958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a complex disease closely related to the function of endothelial cells (ECs), monocytes/macrophages, and vascular smooth muscle cells (VSMCs). Despite a good understanding of the pathogenesis of atherosclerosis, the underlying molecular mechanisms are still only poorly understood. Therefore, atherosclerosis continues to be an important clinical issue worthy of further research. Recent evidence has shown that long non-coding RNAs (lncRNAs) and RNA-binding proteins (RBPs) can serve as important regulators of cellular function in atherosclerosis. Besides, several studies have shown that lncRNAs are partly dependent on the specific interaction with RBPs to exert their function. This review summarizes the important contributions of lncRNAs and RBPs in atherosclerosis and provides novel and comprehensible interaction models of lncRNAs and RBPs.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongqin Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Wu R, Hu W, Chen H, Wang Y, Li Q, Xiao C, Fan L, Zhong Z, Chen X, Lv K, Zhong S, Shi Y, Chen J, Zhu W, Zhang J, Hu X, Wang J. A Novel Human Long Noncoding RNA SCDAL Promotes Angiogenesis through SNF5-Mediated GDF6 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004629. [PMID: 34319658 PMCID: PMC8456203 DOI: 10.1002/advs.202004629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/23/2021] [Indexed: 06/08/2023]
Abstract
Angiogenesis is essential for vascular development. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating angiogenesis remain under-explored. Human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) are shown to exert more potent cardioprotective effects against cardiac ischemia than human bone marrow-derived MSCs (hBM-MSCs), associated with enhanced neovascularization. The purpose of this study is to search for angiogenic lncRNAs enriched in hES-MSCs, and investigate their roles and mechanisms. AC103746.1 is one of the most highly expressed intergenic lncRNAs detected in hES-MSCs versus hBM-MSCs, and named as SCDAL (stem cell-derived angiogenic lncRNA). SCDAL knockdown significantly reduce the angiogenic potential and reparative effects of hES-MSCs in the infarcted hearts, while overexpression of SCDAL in either hES-MSCs or hBM-MSCs exhibits augmented angiogenesis and cardiac function recovery. Mechanistically, SCDAL induces growth differentiation factor 6 (GDF6) expression via direct interaction with SNF5 at GDF6 promoter. Secreted GDF6 promotes endothelial angiogenesis via non-canonical vascular endothelial growth factor receptor 2 activation. Furthermore, SCDAL-GDF6 is expressed in human endothelial cells, and directly enhances endothelial angiogenesis in vitro and in vivo. Thus, these findings uncover a previously unknown lncRNA-dependent regulatory circuit for angiogenesis. Targeted intervention of the SCDAL-GDF6 pathway has potential as a therapy for ischemic heart diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wangxing Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Huan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou310012P. R. China
| | - Yingchao Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Qingju Li
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Changchen Xiao
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Lin Fan
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Zhiwei Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Xiaoying Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Kaiqi Lv
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Shuhan Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Yanna Shi
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jinghai Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wei Zhu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jianyi Zhang
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamSchool of Medicine and School of EngineeringBirminghamAL35294USA
| | - Xinyang Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jian'an Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| |
Collapse
|
25
|
Andric V, Rougemaille M. Long Non-Coding RNAs in the Control of Gametogenesis: Lessons from Fission Yeast. Noncoding RNA 2021; 7:ncrna7020034. [PMID: 34208016 PMCID: PMC8293462 DOI: 10.3390/ncrna7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to cell fate decisions by modulating genome expression and stability. In the fission yeast Schizosaccharomyces pombe, the transition from mitosis to meiosis results in a marked remodeling of gene expression profiles, which ultimately ensures gamete production and inheritance of genetic information to the offspring. This key developmental process involves a set of dedicated lncRNAs that shape cell cycle-dependent transcriptomes through a variety of mechanisms, including epigenetic modifications and the modulation of transcription, post-transcriptional and post-translational regulations, and that contribute to meiosis-specific chromosomal events. In this review, we summarize the biology of these lncRNAs, from their identification to mechanism of action, and discuss their regulatory role in the control of gametogenesis.
Collapse
Affiliation(s)
- Vedrana Andric
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Institute Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75005 Paris, France;
| | - Mathieu Rougemaille
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|