1
|
Atsrim ES, Eichhorn CD. An evolutionarily conserved tryptophan cage promotes folding of the extended RNA recognition motif in the hnRNPR-like protein family. Protein Sci 2025; 34:e70127. [PMID: 40247750 PMCID: PMC12006756 DOI: 10.1002/pro.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) R-like family is a class of RNA binding proteins in the hnRNP superfamily with diverse functions in RNA processing. Here, we present the 1.90 Å X-ray crystal structure and solution NMR studies of the first RNA recognition motif (RRM) of human hnRNPR. We find that this domain adopts an extended RRM (eRRM1) featuring a canonical RRM with a structured N-terminal extension (Next) motif that docks against the RRM and extends the β-sheet surface. The adjoining loop is structured and forms a tryptophan cage motif to position the Next motif for docking to the RRM. Combining mutagenesis, solution NMR spectroscopy, and thermal denaturation studies, we evaluate the importance of residues in the Next-RRM interface and adjoining loop on eRRM folding and conformational dynamics. We find that these sites are essential for protein solubility, conformational ordering, and thermal stability. Consistent with their importance, mutations in the Next-RRM interface and loop are associated with several cancers in a survey of somatic mutations in cancer studies. Sequence and structure comparison of the human hnRNPR eRRM1 to experimentally verified and predicted hnRNPR-like proteins reveals conserved features in the eRRM.
Collapse
Affiliation(s)
| | - Catherine D. Eichhorn
- Department of ChemistryUniversity of NebraskaLincolnNebraskaUSA
- Nebraska Center for Integrated Biomolecular CommunicationLincolnNebraskaUSA
| |
Collapse
|
2
|
Bujisic B, Lee HG, Xu L, Weissbein U, Rivera C, Topisirovic I, Lee JT. 7SL RNA and signal recognition particle orchestrate a global cellular response to acute thermal stress. Nat Commun 2025; 16:1630. [PMID: 39952919 PMCID: PMC11828898 DOI: 10.1038/s41467-025-56351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025] Open
Abstract
Non-coding 7SL RNA is an ancestor to mammalian Alu and B1 SINE RNAs and is thought to function exclusively within the Signal Recognition Particle (SRP), aiding in the translocation of secretory proteins into the endoplasmic reticulum for export. Here, we discover a function of 7SL/SRP unrelated to protein secretion. Under acute heat shock, 7SL and SRP together selectively arrest cellular transcription and translation machineries during early response to stress. Under thermal stress, 7SL is upregulated, accumulates in the nucleus, and binds to target genes repressed by heat shock. Concurrently, in the cytosol, SRP binds to ribosomes and inhibits new protein synthesis. Translational suppression occurs independently of the signal peptide and is abrogated by depleting SRP. Translation inhibition extends to the mitochondria, as nuclear-encoded genes with mitochondrial functions are enriched among SRP targets. Thus, apart from its role in protein export, 7SL/SRP orchestrates a global response to acute stress that encompasses the nucleus, cytosol, and mitochondria across transcription and translation.
Collapse
Affiliation(s)
- Bojan Bujisic
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Hun-Goo Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Lilei Xu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Carlos Rivera
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Ozisin MS, Imren G, Aydin B, Karaosmanoglu B, Taskiran EZ. The effect of LARP7 on gene expression during osteogenesis. Mol Biol Rep 2025; 52:120. [PMID: 39804499 DOI: 10.1007/s11033-024-10216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/30/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis. METHODS AND RESULTS First, the temporal expression profile of the LARP7 gene during various stages of osteogenesis was examined. Then, RNA interference-mediated knockdown of LARP7 was implemented and high-throughput RNA-seq analysis was performed in order to identify global gene expression changes associated with knockdown of LARP7. The findings show there were significant alterations in the overall gene expression profile. The observed down-regulation in extracellular matrix (ECM) component genes suggests that it might lead to impairments in the structure and function of the bone matrix. Additionally, modulation of alternative splicing events were observed, especially in the RUNX2 and SPP1, indicating the potential contribution of LARP7 to the phenotypic features observed in Alazami syndrome. CONCLUSION Overall, the findings clarify the regulatory mechanisms of LARP7 in osteogenic differentiation and illuminate potential avenues for therapeutic interventions in patients with skeletal disorders.
Collapse
Affiliation(s)
- M Samil Ozisin
- Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey
| | - Gozde Imren
- Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Busra Aydin
- Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey
| | - Beren Karaosmanoglu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Ekim Z Taskiran
- Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Sihhiye, Ankara, Turkey.
| |
Collapse
|
4
|
Kazemi M, Naghdi Sadeh R, Shekari Khaniani M, Rezazadeh M, Derakhshan SM, Ghafouri-Fard S. Identification of RN7SK LncRNA as a novel biomarker in Alzheimer's disease using bioinformatics and expression analysis. Sci Rep 2024; 14:31192. [PMID: 39732800 DOI: 10.1038/s41598-024-82490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative illness that accounts for the common type of dementia among adults over the age of 65. Despite extensive studies on the pathogenesis of the disease, early diagnosis of AD is still debatable. In this research, we performed bioinformatics approaches on the AD-related E-MTAB 6094 dataset to uncover new potential biomarkers for AD diagnosis. To achieve this, we performed in-depth in silico assays, including differentially expressed genes analysis, weighted gene co-expression network analyses, module-trait association analyses, gene ontology and pathway enrichment analyses, and hub genes network analyses. Finally, the expression of the identified candidate genes was evaluated in AD patients PBMC samples by qRT-PCR. Through computational analyses, we found that RN7SK LncRNA and its co-expressed genes of TNF, TNFAIP3, CCLT3, and FLT3 are from key genes in AD development that are associated with inflammatory responses. Our experimental validation revealed that RN7SK LncRNA and TNF were substantially up-regulated in AD samples (P = 0.006 and P = 0.023, respectively). Whereas, TNFAIP3 expression was significantly decreased (P = 0.016). However, the expression of CCL3 and FLT3 did not differ significantly between two groups (P = 0.396 and P = 0.521, respectively). In conclusion, in this study a novel LncRNA associated with AD pathogenesis were identified, which may provide new diagnostic biomarker for AD.
Collapse
Affiliation(s)
- Masoumeh Kazemi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Naghdi Sadeh
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Huang Y, Liu Y, Pu M, Zhang Y, Cao Q, Li S, Wei Y, Hou L. SOX2 interacts with hnRNPK to modulate alternative splicing in mouse embryonic stem cells. Cell Biosci 2024; 14:102. [PMID: 39160617 PMCID: PMC11331657 DOI: 10.1186/s13578-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND SOX2 is a determinant transcription factor that governs the balance between stemness and differentiation by influencing transcription and splicing programs. The role of SOX2 is intricately shaped by its interactions with specific partners. In the interactome of SOX2 in mouse embryonic stem cells (mESCs), there is a cohort of heterogeneous nuclear ribonucleoproteins (hnRNPs) that contributes to multiple facets of gene expression regulation. However, the cross-talk between hnRNPs and SOX2 in gene expression regulation remains unclear. RESULTS Here we demonstrate the indispensable role of the co-existence of SOX2 and heterogeneous nuclear ribonucleoprotein K (hnRNPK) in the maintenance of pluripotency in mESCs. While hnRNPK directly interacts with the SOX2-HMG DNA-binding domain and induces the collapse of the transcriptional repressor 7SK small nuclear ribonucleoprotein (7SK snRNP), hnRNPK does not influence SOX2-mediated transcription, either by modulating the interaction between SOX2 and its target cis-regulatory elements or by facilitating transcription elongation as indicated by the RNA-seq analysis. Notably, hnRNPK enhances the interaction of SOX2 with target pre-mRNAs and collaborates with SOX2 in regulating the alternative splicing of a subset of pluripotency genes. CONCLUSIONS These data reveal that SOX2 and hnRNPK have a direct protein-protein interaction, and shed light on the molecular mechanisms by which hnRNPK collaborates with SOX2 in alternative splicing in mESCs.
Collapse
Affiliation(s)
- Yanlan Huang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuxuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Mingyi Pu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuli Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Senru Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuanjie Wei
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany.
| | - Linlin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
6
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
7
|
Dithmar S, Zare A, Salehi S, Briese M, Sendtner M. hnRNP R regulates mitochondrial movement and membrane potential in axons of motoneurons. Neurobiol Dis 2024; 193:106454. [PMID: 38408684 DOI: 10.1016/j.nbd.2024.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Axonal mitochondria defects are early events in the pathogenesis of motoneuron disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. The RNA-binding protein hnRNP R interacts with different motoneuron disease-related proteins such as SMN and TDP-43 and has important roles in axons of motoneurons, including axonal mRNA transport. However, whether hnRNP R also modulates axonal mitochondria is currently unknown. Here, we show that axonal mitochondria exhibit altered function and motility in hnRNP R-deficient motoneurons. Motoneurons lacking hnRNP R show decreased anterograde and increased retrograde transport of mitochondria in axons. Furthermore, hnRNP R-deficiency leads to mitochondrial hyperpolarization, caused by decreased complex I and reversed complex V activity within the respiratory chain. Taken together, our data indicate a role for hnRNP R in regulating transport and maintaining functionality of axonal mitochondria in motoneurons.
Collapse
Affiliation(s)
- Sophia Dithmar
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
8
|
Amir N, Taube R. Role of long noncoding RNA in regulating HIV infection-a comprehensive review. mBio 2024; 15:e0192523. [PMID: 38179937 PMCID: PMC10865847 DOI: 10.1128/mbio.01925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A complete cure against human immunodeficiency virus (HIV) infection remains out of reach, as the virus persists in stable cell reservoirs that are resistant to antiretroviral therapy. The key to eliminating these reservoirs lies in deciphering the processes that govern viral gene expression and latency. However, while we comprehensively understand how host proteins influence HIV gene expression and viral latency, the emerging role of long noncoding RNAs (lncRNAs) in the context of T cell activation, HIV gene expression, and viral latency remain unexplored. This review dives into the evolving significance of lncRNAs and their impact on HIV gene expression and viral latency. We provide an overview of the current knowledge regarding how lncRNAs regulate HIV gene expression, categorizing them as either activators or inhibitors of viral gene expression and infectivity. Furthermore, we offer insights into the potential therapeutic applications of lncRNAs in combatting HIV. A deeper understanding of how lncRNAs modulate HIV gene transcription holds promise for developing novel RNA-based therapies to complement existing treatment strategies to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Noa Amir
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| |
Collapse
|
9
|
Jiang T, Qu R, Liu X, Hou Y, Wang L, Hua Y. HnRNPR strongly represses splicing of a critical exon associated with spinal muscular atrophy through binding to an exonic AU-rich element. J Med Genet 2023; 60:1105-1115. [PMID: 37225410 DOI: 10.1136/jmg-2023-109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations of survival of motor neuron 1 (SMN1) gene, which encodes the SMN protein. SMN2, a nearly identical copy of SMN1, with several single-nucleotide substitutions leading to predominant skipping of its exon 7, is insufficient to compensate for loss of SMN1. Heterogeneous nuclear ribonucleoprotein R (hnRNPR) has been previously shown to interact with SMN in the 7SK complex in motoneuron axons and is implicated in the pathogenesis of SMA. Here, we show that hnRNPR also interacts with SMN1/2 pre-mRNAs and potently inhibits exon 7 inclusion. METHODS In this study, to examine the mechanism that hnRNPR regulates SMN1/2 splicing, deletion analysis in an SMN2 minigene system, RNA-affinity chromatography, co-overexpression analysis and tethering assay were performed. We screened antisense oligonucleotides (ASOs) in a minigene system and identified a few that markedly promoted SMN2 exon 7 splicing. RESULTS We pinpointed an AU-rich element located towards the 3' end of the exon that mediates splicing repression by hnRNPR. We uncovered that both hnRNPR and Sam68 bind to the element in a competitive manner, and the inhibitory effect of hnRNPR is much stronger than Sam68. Moreover, we found that, among the four hnRNPR splicing isoforms, the exon 5-skipped one has the minimal inhibitory effect, and ASOs inducing hnRNPR exon 5 skipping also promote SMN2 exon 7 inclusion. CONCLUSION We identified a novel mechanism that contributes to mis-splicing of SMN2 exon 7.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Ruobing Qu
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, China
| | - Xuan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Yanjun Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Porat J, Slat VA, Rader SD, Bayfield MA. The fission yeast methyl phosphate capping enzyme Bmc1 guides 2'-O-methylation of the U6 snRNA. Nucleic Acids Res 2023; 51:8805-8819. [PMID: 37403782 PMCID: PMC10484740 DOI: 10.1093/nar/gkad563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Splicing requires the tight coordination of dynamic spliceosomal RNAs and proteins. U6 is the only spliceosomal RNA transcribed by RNA Polymerase III and undergoes an extensive maturation process. In humans and fission yeast, this includes addition of a 5' γ-monomethyl phosphate cap by members of the Bin3/MePCE family as well as snoRNA guided 2'-O-methylation. Previously, we have shown that the Bin3/MePCE homolog Bmc1 is recruited to the S. pombe telomerase holoenzyme by the LARP7 family protein Pof8, where it acts in a catalytic-independent manner to protect the telomerase RNA and facilitate holoenzyme assembly. Here, we show that Bmc1 and Pof8 are required for the formation of a distinct U6 snRNP that promotes 2'-O-methylation of U6, and identify a non-canonical snoRNA that guides this methylation. We also show that the 5' γ-monomethyl phosphate capping activity of Bmc1 is not required for its role in promoting snoRNA guided 2'-O-methylation, and that this role relies on different regions of Pof8 from those required for Pof8 function in telomerase. Our results are consistent with a novel role for Bmc1/MePCE family members in stimulating 2'-O-methylation and a more general role for Bmc1 and Pof8 in guiding noncoding RNP assembly beyond the telomerase RNP.
Collapse
Affiliation(s)
| | - Viktor A Slat
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Stephen D Rader
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, Canada
| | | |
Collapse
|
11
|
Šimčíková D, Gelles-Watnick S, Neugebauer KM. Tudor-dimethylarginine interactions: the condensed version. Trends Biochem Sci 2023; 48:689-698. [PMID: 37156649 PMCID: PMC10524826 DOI: 10.1016/j.tibs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Biomolecular condensates (BMCs) can facilitate or inhibit diverse cellular functions. BMC formation is driven by noncovalent protein-protein, protein-RNA, and RNA-RNA interactions. Here, we focus on Tudor domain-containing proteins - such as survival motor neuron protein (SMN) - that contribute to BMC formation by binding to dimethylarginine (DMA) modifications on protein ligands. SMN is present in RNA-rich BMCs, and its absence causes spinal muscular atrophy (SMA). SMN's Tudor domain forms cytoplasmic and nuclear BMCs, but its DMA ligands are largely unknown, highlighting open questions about the function of SMN. Moreover, DMA modification can alter intramolecular interactions and affect protein localization. Despite these emerging functions, the lack of direct methods of DMA detection remains an obstacle to understanding Tudor-DMA interactions in cells.
Collapse
Affiliation(s)
- Daniela Šimčíková
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Sara Gelles-Watnick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Salehi S, Zare A, Prezza G, Bader J, Schneider C, Fischer U, Meissner F, Mann M, Briese M, Sendtner M. Cytosolic Ptbp2 modulates axon growth in motoneurons through axonal localization and translation of Hnrnpr. Nat Commun 2023; 14:4158. [PMID: 37438340 DOI: 10.1038/s41467-023-39787-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The neuronal RNA-binding protein Ptbp2 regulates neuronal differentiation by modulating alternative splicing programs in the nucleus. Such programs contribute to axonogenesis by adjusting the levels of protein isoforms involved in axon growth and branching. While its functions in alternative splicing have been described in detail, cytosolic roles of Ptbp2 for axon growth have remained elusive. Here, we show that Ptbp2 is located in the cytosol including axons and growth cones of motoneurons, and that depletion of cytosolic Ptbp2 affects axon growth. We identify Ptbp2 as a major interactor of the 3' UTR of Hnrnpr mRNA encoding the RNA-binding protein hnRNP R. Axonal localization of Hnrnpr mRNA and local synthesis of hnRNP R protein are strongly reduced when Ptbp2 is depleted, leading to defective axon growth. Ptbp2 regulates hnRNP R translation by mediating the association of Hnrnpr with ribosomes in a manner dependent on the translation factor eIF5A2. Our data thus suggest a mechanism whereby cytosolic Ptbp2 modulates axon growth by fine-tuning the mRNA transport and local synthesis of an RNA-binding protein.
Collapse
Affiliation(s)
- Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Gianluca Prezza
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Wuerzburg, Germany
| | - Jakob Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Cornelius Schneider
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
13
|
Camara MB, Sobeh AM, Eichhorn CD. Progress in 7SK ribonucleoprotein structural biology. Front Mol Biosci 2023; 10:1154622. [PMID: 37051324 PMCID: PMC10083321 DOI: 10.3389/fmolb.2023.1154622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The 7SK ribonucleoprotein (RNP) is a dynamic and multifunctional regulator of RNA Polymerase II (RNAPII) transcription in metazoa. Comprised of the non-coding 7SK RNA, core proteins, and numerous accessory proteins, the most well-known 7SK RNP function is the sequestration and inactivation of the positive transcription elongation factor b (P-TEFb). More recently, 7SK RNP has been shown to regulate RNAPII transcription through P-TEFb-independent pathways. Due to its fundamental role in cellular function, dysregulation has been linked with human diseases including cancers, heart disease, developmental disorders, and viral infection. Significant advances in 7SK RNP structural biology have improved our understanding of 7SK RNP assembly and function. Here, we review progress in understanding the structural basis of 7SK RNA folding, biogenesis, and RNP assembly.
Collapse
Affiliation(s)
- Momodou B. Camara
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Amr M. Sobeh
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Catherine D. Eichhorn
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, United States
- *Correspondence: Catherine D. Eichhorn,
| |
Collapse
|
14
|
Ji C, Deng C, Antor K, Bischler T, Schneider C, Fischer U, Sendtner M, Briese M. hnRNP
R negatively regulates transcription by modulating the association of
P‐TEFb
with
7SK
and
BRD4. EMBO Rep 2022; 23:e55432. [PMID: 35856391 PMCID: PMC9442301 DOI: 10.15252/embr.202255432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Changhe Ji
- Institute of Clinical Neurobiology University Hospital Wuerzburg Wuerzburg Germany
| | - Chunchu Deng
- Institute of Clinical Neurobiology University Hospital Wuerzburg Wuerzburg Germany
| | - Katharina Antor
- Institute of Clinical Neurobiology University Hospital Wuerzburg Wuerzburg Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine University of Wuerzburg Wuerzburg Germany
| | - Cornelius Schneider
- Department of Biochemistry, Theodor Boveri Institute University of Wuerzburg Wuerzburg Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute University of Wuerzburg Wuerzburg Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology University Hospital Wuerzburg Wuerzburg Germany
| | - Michael Briese
- Institute of Clinical Neurobiology University Hospital Wuerzburg Wuerzburg Germany
| |
Collapse
|
15
|
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in SMN1 (encoding survival motor neuron protein (SMN)). Reduced expression of SMN leads to loss of α-motor neurons, severe muscle weakness and often early death. Standard-of-care recommendations for multidisciplinary supportive care of SMA were established in the past few decades. However, improved understanding of the pathogenetic mechanisms of SMA has led to the development of different therapeutic approaches. Three treatments that increase SMN expression by distinct molecular mechanisms, administration routes and tissue biodistributions have received regulatory approval with others in clinical development. The advent of the new therapies is redefining standards of care as in many countries most patients are treated with one of the new therapies, leading to the identification of emerging new phenotypes of SMA and a renewed characterization of demographics owing to improved patient survival.
Collapse
|
16
|
Deng C, Reinhard S, Hennlein L, Eilts J, Sachs S, Doose S, Jablonka S, Sauer M, Moradi M, Sendtner M. Impaired dynamic interaction of axonal endoplasmic reticulum and ribosomes contributes to defective stimulus-response in spinal muscular atrophy. Transl Neurodegener 2022; 11:31. [PMID: 35650592 PMCID: PMC9161492 DOI: 10.1186/s40035-022-00304-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA. Methods Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation. Results We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli. Conclusions These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00304-2.
Collapse
Affiliation(s)
- Chunchu Deng
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Stefan Sachs
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Mehri Moradi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany.
| |
Collapse
|
17
|
Olson SW, Turner AMW, Arney JW, Saleem I, Weidmann CA, Margolis DM, Weeks KM, Mustoe AM. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP. Mol Cell 2022; 82:1708-1723.e10. [PMID: 35320755 PMCID: PMC9081252 DOI: 10.1016/j.molcel.2022.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
Abstract
7SK is a conserved noncoding RNA that regulates transcription by sequestering the transcription factor P-TEFb. 7SK function entails complex changes in RNA structure, but characterizing RNA dynamics in cells remains an unsolved challenge. We developed a single-molecule chemical probing strategy, DANCE-MaP (deconvolution and annotation of ribonucleic conformational ensembles), that defines per-nucleotide reactivity, direct base pairing interactions, tertiary interactions, and thermodynamic populations for each state in RNA structural ensembles from a single experiment. DANCE-MaP reveals that 7SK RNA encodes a large-scale structural switch that couples dissolution of the P-TEFb binding site to structural remodeling at distal release factor binding sites. The 7SK structural equilibrium shifts in response to cell growth and stress and can be targeted to modulate expression of P-TEFbresponsive genes. Our study reveals that RNA structural dynamics underlie 7SK function as an integrator of diverse cellular signals to control transcription and establishes the power of DANCE-MaP to define RNA dynamics in cells.
Collapse
Affiliation(s)
- Samuel W Olson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Anne-Marie W Turner
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Winston Arney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Irfana Saleem
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Páez-Moscoso DJ, Ho DV, Pan L, Hildebrand K, Jensen KL, Levy MJ, Florens L, Baumann P. A putative cap binding protein and the methyl phosphate capping enzyme Bin3/MePCE function in telomerase biogenesis. Nat Commun 2022; 13:1067. [PMID: 35217638 PMCID: PMC8881624 DOI: 10.1038/s41467-022-28545-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/13/2022] [Indexed: 01/29/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) and the noncoding telomerase RNA (TR) subunit constitute the core of telomerase. Additional subunits are required for ribonucleoprotein complex assembly and in some cases remain stably associated with the active holoenzyme. Pof8, a member of the LARP7 protein family is such a constitutive component of telomerase in fission yeast. Using affinity purification of Pof8, we have identified two previously uncharacterized proteins that form a complex with Pof8 and participate in telomerase biogenesis. Both proteins participate in ribonucleoprotein complex assembly and are required for wildtype telomerase activity and telomere length maintenance. One factor we named Thc1 (Telomerase Holoenzyme Component 1) shares structural similarity with the nuclear cap binding complex and the poly-adenosine ribonuclease (PARN), the other is the ortholog of the methyl phosphate capping enzyme (Bin3/MePCE) in metazoans and was named Bmc1 (Bin3/MePCE 1) to reflect its evolutionary roots. Thc1 and Bmc1 function together with Pof8 in recognizing correctly folded telomerase RNA and promoting the recruitment of the Lsm2-8 complex and the catalytic subunit to assemble functional telomerase.
Collapse
Affiliation(s)
- Diego J Páez-Moscoso
- Faculty of Biology, Johannes Gutenberg University, 55099, Mainz, Germany
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Institute of Molecular Biology, Ackermannweg, 4 55128, Mainz, Germany
| | - David V Ho
- Faculty of Biology, Johannes Gutenberg University, 55099, Mainz, Germany
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Lili Pan
- Faculty of Biology, Johannes Gutenberg University, 55099, Mainz, Germany
| | - Katie Hildebrand
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Transgenic and Gene-Targeting Institutional Facility, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Kristi L Jensen
- Faculty of Biology, Johannes Gutenberg University, 55099, Mainz, Germany
| | - Michaella J Levy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- KCAS, 12400 Shawnee Mission Parkway, Shawnee, KS, 66216, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Peter Baumann
- Faculty of Biology, Johannes Gutenberg University, 55099, Mainz, Germany.
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
19
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|
20
|
Ghanawi H, Hennlein L, Zare A, Bader J, Salehi S, Hornburg D, Ji C, Sivadasan R, Drepper C, Meissner F, Mann M, Jablonka S, Briese M, Sendtner M. Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to chromatin. Nucleic Acids Res 2021; 49:12284-12305. [PMID: 34850154 PMCID: PMC8643683 DOI: 10.1093/nar/gkab1120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023] Open
Abstract
Neurons critically rely on the functions of RNA-binding proteins to maintain their polarity and resistance to neurotoxic stress. HnRNP R has a diverse range of post-transcriptional regulatory functions and is important for neuronal development by regulating axon growth. Hnrnpr pre-mRNA undergoes alternative splicing giving rise to a full-length protein and a shorter isoform lacking its N-terminal acidic domain. To investigate functions selectively associated with the full-length hnRNP R isoform, we generated a Hnrnpr knockout mouse (Hnrnprtm1a/tm1a) in which expression of full-length hnRNP R was abolished while production of the truncated hnRNP R isoform was retained. Motoneurons cultured from Hnrnprtm1a/tm1a mice did not show any axonal growth defects but exhibited enhanced accumulation of double-strand breaks and an impaired DNA damage response upon exposure to genotoxic agents. Proteomic analysis of the hnRNP R interactome revealed the multifunctional protein Yb1 as a top interactor. Yb1-depleted motoneurons were defective in DNA damage repair. We show that Yb1 is recruited to chromatin upon DNA damage where it interacts with γ-H2AX, a mechanism that is dependent on full-length hnRNP R. Our findings thus suggest a novel role of hnRNP R in maintaining genomic integrity and highlight the function of its N-terminal acidic domain in this context.
Collapse
Affiliation(s)
- Hanaa Ghanawi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Jakob Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| | - Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Daniel Hornburg
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Changhe Ji
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Carsten Drepper
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried82152, Germany
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried82152, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| |
Collapse
|
21
|
Ottesen EW, Luo D, Singh NN, Singh RN. High Concentration of an ISS-N1-Targeting Antisense Oligonucleotide Causes Massive Perturbation of the Transcriptome. Int J Mol Sci 2021; 22:ijms22168378. [PMID: 34445083 PMCID: PMC8395096 DOI: 10.3390/ijms22168378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022] Open
Abstract
Intronic splicing silencer N1 (ISS-N1) located within Survival Motor Neuron 2 (SMN2) intron 7 is the target of a therapeutic antisense oligonucleotide (ASO), nusinersen (Spinraza), which is currently being used for the treatment of spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. The discovery of ISS-N1 as a promising therapeutic target was enabled in part by Anti-N1, a 20-mer ASO that restored SMN2 exon 7 inclusion by annealing to ISS-N1. Here, we analyzed the transcriptome of SMA patient cells treated with 100 nM of Anti-N1 for 30 h. Such concentrations are routinely used to demonstrate the efficacy of an ASO. While 100 nM of Anti-N1 substantially stimulated SMN2 exon 7 inclusion, it also caused massive perturbations in the transcriptome and triggered widespread aberrant splicing, affecting expression of essential genes associated with multiple cellular processes such as transcription, splicing, translation, cell signaling, cell cycle, macromolecular trafficking, cytoskeletal dynamics, and innate immunity. We validated our findings with quantitative and semiquantitative PCR of 39 candidate genes associated with diverse pathways. We also showed a substantial reduction in off-target effects with shorter ISS-N1-targeting ASOs. Our findings are significant for implementing better ASO design and dosing regimens of ASO-based drugs.
Collapse
|
22
|
Schilling M, Prusty AB, Boysen B, Oppermann FS, Riedel YL, Husedzinovic A, Rasouli H, König A, Ramanathan P, Reymann J, Erfle H, Daub H, Fischer U, Gruss OJ. TOR signaling regulates liquid phase separation of the SMN complex governing snRNP biogenesis. Cell Rep 2021; 35:109277. [PMID: 34161763 DOI: 10.1016/j.celrep.2021.109277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/23/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
The activity of the SMN complex in promoting the assembly of pre-mRNA processing UsnRNPs correlates with condensation of the complex in nuclear Cajal bodies. While mechanistic details of its activity have been elucidated, the molecular basis for condensation remains unclear. High SMN complex phosphorylation suggests extensive regulation. Here, we report on systematic siRNA-based screening for modulators of the capacity of SMN to condense in Cajal bodies and identify mTOR and ribosomal protein S6 kinase β-1 as key regulators. Proteomic analysis reveals TOR-dependent phosphorylations in SMN complex subunits. Using stably expressed or optogenetically controlled phospho mutants, we demonstrate that serine 49 and 63 phosphorylation of human SMN controls the capacity of the complex to condense in Cajal bodies via liquid-liquid phase separation. Our findings link SMN complex condensation and UsnRNP biogenesis to cellular energy levels and suggest modulation of TOR signaling as a rational concept for therapy of the SMN-linked neuromuscular disorder spinal muscular atrophy.
Collapse
Affiliation(s)
- Maximilian Schilling
- Institut für Genetik, Rheinische Friedrich-Wilhelms Universität Bonn, 53115 Bonn, Germany
| | - Archana B Prusty
- Theodor Boveri Institute, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Björn Boysen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | - Yannick L Riedel
- Institut für Genetik, Rheinische Friedrich-Wilhelms Universität Bonn, 53115 Bonn, Germany
| | - Alma Husedzinovic
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Homa Rasouli
- Evotec SE, Am Klopferspitz 19a, 82152 Martinsried, Germany
| | - Angelika König
- Institut für Genetik, Rheinische Friedrich-Wilhelms Universität Bonn, 53115 Bonn, Germany
| | - Pradhipa Ramanathan
- Theodor Boveri Institute, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Jürgen Reymann
- Advanced Biological Screening Facility, BioQuant Centre, Universität Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Holger Erfle
- Advanced Biological Screening Facility, BioQuant Centre, Universität Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Henrik Daub
- Evotec SE, Am Klopferspitz 19a, 82152 Martinsried, Germany
| | - Utz Fischer
- Theodor Boveri Institute, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Oliver J Gruss
- Institut für Genetik, Rheinische Friedrich-Wilhelms Universität Bonn, 53115 Bonn, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Briese M, Sendtner M. Keeping the balance: The noncoding RNA 7SK as a master regulator for neuron development and function. Bioessays 2021; 43:e2100092. [PMID: 34050960 DOI: 10.1002/bies.202100092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The noncoding RNA 7SK is a critical regulator of transcription by adjusting the activity of the kinase complex P-TEFb. Release of P-TEFb from 7SK stimulates transcription at many genes by promoting productive elongation. Conversely, P-TEFb sequestration by 7SK inhibits transcription. Recent studies have shown that 7SK functions are particularly important for neuron development and maintenance and it can thus be hypothesized that 7SK is at the center of many signaling pathways contributing to neuron function. 7SK activates neuronal gene expression programs that are key for terminal differentiation of neurons. Proteomics studies revealed a complex protein interactome of 7SK that includes several RNA-binding proteins. Some of these novel 7SK subcomplexes exert non-canonical cytosolic functions in neurons by regulating axonal mRNA transport and fine-tuning spliceosome production in response to transcription alterations. Thus, a picture emerges according to which 7SK acts as a multi-functional RNA scaffold that is integral for neuron homeostasis.
Collapse
Affiliation(s)
- Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|