1
|
Zhao H, Zhu D, Gao Y, Wang B. Bile Acids Modulate Hepatic Glycolipid Metabolism via the Microbiota-Gut-Liver Axis in Lambs. J Nutr 2025:S0022-3166(25)00290-1. [PMID: 40368303 DOI: 10.1016/j.tjnut.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Bile acids are essential molecules that facilitate lipid emulsification and function as signaling molecules mediating host-microbiota interactions. They shape the gut microbial structure and function, playing a critical role in metabolic regulation via the gut-liver axis. OBJECTIVES This study aimed to investigate the effects of exogenous bile acids, primarily hyocholic acid (HCA), on the microbiota-gut-liver metabolism in male Tan-lambs fed a high-grain diet. METHOD Thirty six-month-old male Tan lambs (Ovis aries) were randomly allocated into either a control (CON) group or an HCA-supplemented group (n = 15 per group). The trial lasted 84 days, including a 14-day adaptation period. On day 70, six lambs from each group were randomly selected for slaughter. Rumen and ileal contents were collected for microbial profiling via 16S rRNA sequencing, and liver tissue samples were harvested for transcriptomic and metabolomic analyses. RESULTS The HCA intervention significant altered the composition and structure of ruminal and ileal bacteria. Notable increases were observed in Turicibacter (linear discriminant analysis (LDA) score = 2.48; P < 0.05) and Muribaculaceae (LDA score = 3.75; P < 0.05) in the rumen, and Eubacterium fissicatena group (LDA score = 2.50; P < 0.05) in the ileum. Key hepatic genes and metabolites targeted by HCA were identified, including ENPP3, RFK, Ifi203, LIPG, CYP1A1, CYP4A11, nordeoxycholic acid (log-fold change = 6.30, P < 0.005), α-muricholic acid (log-fold change = 5.60, P < 0.001), β-muricholic acid (log-fold change = 5.60, P < 0.001). CONCLUSIONS Exogenous bile acids regulate the microbiota-gut-liver axis, influencing hepatic glycolipid metabolism in sheep. Specifically, nordeoxycholic acid, demonstrates potential as a dietary intervention to promote metabolic homeostasis in ruminants. These findings highlight the potential of HCA and norDCA as functional feed additives or prebiotic agents for improving metabolic health in ruminants and potentially other species.
Collapse
Affiliation(s)
- Hailong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Daiwei Zhu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Yuyang Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
2
|
Chen M, Huang K, Luo W, Zhang F, Gan H, Yang Z. Hyodeoxycholic Acid Ameliorates Metabolic Syndrome Through Pathways of Primary Bile Acid Synthesis and Fatty Acid Degradation: Insights From a Rat Model. Drug Des Devel Ther 2025; 19:3611-3630. [PMID: 40330818 PMCID: PMC12052017 DOI: 10.2147/dddt.s514189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025] Open
Abstract
Background Bile acids (BAs) play a crucial role in metabolic regulation, but their specific functions in metabolic syndrome (MS) remain unclear. Hyodeoxycholic acid (HDCA) has shown potential effects in non-alcoholic fatty liver disease (NAFLD), yet its role in MS is unexplored. Aim This study aims to assess whether HDCA is a characteristic BA of MS and to investigate its intervention effects and potential mechanisms. Methods We employed 16S rDNA sequencing and UHPLC-MS/MS to investigate the dynamics of the gut microbiota and BA profiles in rats and conducted a correlation study between indices, identifying HDCA as the potential characteristic BA. We then examined its interventional effects in MS rats comparing efficacy with the positive drug of MS (metformin). Subsequently, liver RNA sequencing (RNA-seq), gene set enrichment analysis (GSEA), and Wes Automated Simple Western assays were employed to investigate mechanisms of HDCA ameliorating MS. Results HDCA was identified as a characteristic BA for MS, exhibiting a significant positive correlation with beneficial gut bacteria and a negative correlation with harmful bacteria, and highly inversely related to various abnormal MS indexes. HDCA treatment led to significant improvements in metabolic abnormalities in MS rats, with a central role in altering serum BA profiles and profoundly modifying the gut microbiome composition. The results of RNA-seq and GSEA indicated that HDCA influenced the expression of genes related to primary bile acid synthesis and fatty acid degradation (p<0.05). Wes assays validated that FXR, CYP7A1, CYP7B1, PPARα, CPT1, CPT2, FABP1, HMGCS1 and HMGCS2 proteins in MS rats exhibited significant changes after HDCA treatment (p<0.05), and this was more effective than metformin treatment. Conclusion These study is the first to highlight HDCA as a therapeutic candidate for MS and provides new insights into the BA-MS axis, though further validation is needed.
Collapse
Affiliation(s)
- Meimei Chen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
| | - Kaiyue Huang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
| | - Wenqian Luo
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
| | - Fei Zhang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
| | - Huijuan Gan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
| | - Zhaoyang Yang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, People’s Republic of China
| |
Collapse
|
3
|
Tao D, Dong Y, Che D, Wang Z, Zheng Y, Han R, Jiang H. Acanthopanax senticosus polysaccharide alleviates LPS-induced intestinal inflammation in piglets by gut microbiota and hyodeoxycholic acid regulation. Int J Biol Macromol 2025; 307:141467. [PMID: 40010458 DOI: 10.1016/j.ijbiomac.2025.141467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
The purpose of this study is to investigate the effects and mechanisms of Acanthopanax senticosus polysaccharides (ASPS) on lipopolysaccharide (LPS)-induced intestinal injury and growth performance in piglets. Our results indicated that ASPS improved the growth performance in LPS-challenged piglets, including the increase in average daily gain (ADG), average daily feed intake (ADFI), and the feed to gain ratio (F/G). ASPS alleviated LPS-induced intestinal inflammation in piglets, accompanied by the increase in the villus height to crypt depth ratio (VCR) and the decreased in the expression levels of IL-1β, IL-6, and TNF-α. 16S rRNA sequencing results showed that ASPS improved gut microbiota dysbiosis and increased Lactobacillus_sp._L_YJ abundance. The combined analysis of untargeted metabolomics of intestinal contents and serum showed that ASPS significantly increased the levels of hyodeoxycholic acid (HDCA), DHA ethyl ester, and alanylalanine, and the level of HDCA is the highest among all metabolites, suggesting that ASPS regulated the metabolites of intestinal contents and serum to alleviate LPS-induced intestinal inflammation in piglets, and HDCA might play a significant role during this process. Furthermore, we investigated the effects of HDCA on growth performance and intestinal inflammation in LPS-challenged piglets. The results indicated that HDCA alleviated LPS-induced intestinal inflammation and improved the growth performance in piglets. In conclusion, ASPS could alleviate LPS-induced intestinal inflammation in piglets by gut microbiota and hyodeoxycholic acid regulation. These findings might provide strong evidence for ASPS as a feed additive to improve piglet diarrhea, and reveal the therapeutic potential of hyodeoxycholic acid in preventing intestinal inflammation in piglets.
Collapse
Affiliation(s)
- Dapeng Tao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Yangyunyi Dong
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China 132109
| | - Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Zhongshen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Yingying Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118
| | - Rui Han
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118.
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China 130118; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun, China 130118; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun, China 130118.
| |
Collapse
|
4
|
Qiu X, Gao Q, Wang J, Zhang Z, Tao L. The microbiota-m 6A-metabolism axis: Implications for therapeutic strategies in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189317. [PMID: 40222422 DOI: 10.1016/j.bbcan.2025.189317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Gastrointestinal (GI) cancers remain a leading cause of cancer-related mortality worldwide, with metabolic reprogramming recognized as a central driver of tumor progression and therapeutic resistance. Among the key regulatory layers, N6-methyladenosine (m6A) RNA modification-mediated by methyltransferases (writers such as METTL3/14), RNA-binding proteins (readers like YTHDFs and IGF2BPs), and demethylases (erasers including FTO and ALKBH5), plays a pivotal role in controlling gene expression and metabolic flux in the tumor context. Concurrently, the gut microbiota profoundly influences GI tumorigenesis and immune evasion by modulating metabolite availability and remodeling the tumor microenvironment. Recent evidence has uncovered a bidirectional crosstalk between microbial metabolites and m6A methylation: microbiota-derived signals dynamically regulate m6A deposition on metabolic and immune transcripts, while m6A modifications, in turn, regulate the stability and translation of key mRNAs such as PD-L1 and FOXP3. This reciprocal interaction forms self-reinforcing epigenetic circuits that drive tumor plasticity, immune escape, and metabolic adaptation. In this review, we dissect the molecular underpinnings of the microbiota-m6A-metabolism axis in GI cancers and explore its potential to inform novel strategies in immunotherapy, metabolic intervention, and microbiome-guided precision oncology.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qi Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiahui Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Tao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
5
|
Wu X, Tjahyo AS, Volchanskaya VSB, Wong LH, Lai X, Yong YN, Osman F, Tay SL, Govindharajulu P, Ponnalagu S, Tso R, Teo HS, Khoo K, Fan H, Goh CC, Yap CPL, Leow MKS, Henry CJ, Haldar S, Lim KJ. A legume-enriched diet improves metabolic health in prediabetes mediated through gut microbiome: a randomized controlled trial. Nat Commun 2025; 16:942. [PMID: 39843443 PMCID: PMC11754483 DOI: 10.1038/s41467-025-56084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Healthy dietary patterns rich in legumes can improve metabolic health, although their additional benefits in conjunction with calorie restriction have not been well-established. We investigated effects of a calorie-restricted, legume-enriched, multicomponent intervention diet compared with a calorie-restricted control diet in 127 Chinese prediabetes participants, living in Singapore. The study was a 16-week, single-blind, parallel-design, randomized controlled trial (n = 63 intervention group (IG), n = 64 control group (CG); mean ± SD age 62.2 ± 6.3 years, BMI 23.8 ± 2.6 kg/m2). Primary outcomes were markers of glycemia and all measurements were taken at 2 or 4-weekly intervals. At the end of 16 weeks, both groups had significantly lower BMI (q(Time) = 1.92 ×10-42, β = -0.02) compared with baseline, with minimal difference between groups. The IG had significantly greater reductions in LDL cholesterol (q(Treatment×Time) = 0.01, β = -0.16), total cholesterol (q(Treatment×Time) = 0.02, β = -0.3) and HbA1c (q(Treatment×Time) = 0.04, β = -0.004) compared with CG, alongside increases in fiber degrading species in IG, mediated through metabolites such as bile acids and amino acids. A legume-enriched, multicomponent intervention diet can improve metabolic health in a prediabetes population, in addition to benefits obtained from calorie restriction alone, partially mediated through changes in gut microbial composition and function. Trial registration: Clinical Trials NCT04745702.
Collapse
Affiliation(s)
- Xiaorong Wu
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Alvin Surya Tjahyo
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | | | - Long Hui Wong
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Xianning Lai
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Yi Ning Yong
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Farhana Osman
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Shia Lyn Tay
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Priya Govindharajulu
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Shalini Ponnalagu
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Rachel Tso
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Hwee Sze Teo
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Kaijie Khoo
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Huan Fan
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Chew Chan Goh
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Clara Poh Lian Yap
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Institute for Human Development and Potential (IHDP), A*STAR, Singapore, Singapore
- Division of Medicine, Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Sumanto Haldar
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth Gateway Building, St. Paul's Lane, Bournemouth, United Kingdom.
| | - Kevin Junliang Lim
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore.
| |
Collapse
|
6
|
Jia W, Chan JC, Wong TY, Fisher EB. Diabetes in China: epidemiology, pathophysiology and multi-omics. Nat Metab 2025; 7:16-34. [PMID: 39809974 DOI: 10.1038/s42255-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Although diabetes is now a global epidemic, China has the highest number of affected people, presenting profound public health and socioeconomic challenges. In China, rapid ecological and lifestyle shifts have dramatically altered diabetes epidemiology and risk factors. In this Review, we summarize the epidemiological trends and the impact of traditional and emerging risk factors on Chinese diabetes prevalence. We also explore recent genetic, metagenomic and metabolomic studies of diabetes in Chinese, highlighting their role in pathogenesis and clinical management. Although heterogeneity across these multidimensional areas poses major analytic challenges in classifying patterns or features, they have also provided an opportunity to increase the accuracy and specificity of diagnosis for personalized treatment and prevention. National strategies and ongoing research are essential for improving diabetes detection, prevention and control, and for personalizing care to alleviate societal impacts and maintain quality of life.
Collapse
Affiliation(s)
- Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute for Proactive Healthcare, Shanghai Jiao Tong University, Shanghai, China.
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences and Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Tien Y Wong
- Tsinghua Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Singapore National Eye Center, SingHealth, Singapore, Singapore
| | - Edwin B Fisher
- Peers for Progress, Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Chen J, Yang H, Qin Y, Zhou X, Ma Q. Tryptophan Ameliorates Metabolic Syndrome by Inhibiting Intestinal Farnesoid X Receptor Signaling: The Role of Gut Microbiota-Bile Acid Crosstalk. RESEARCH (WASHINGTON, D.C.) 2024; 7:0515. [PMID: 39679283 PMCID: PMC11638488 DOI: 10.34133/research.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 12/17/2024]
Abstract
Background and Aims: Metabolic syndrome (MS) is a progressive metabolic disease characterized by obesity and multiple metabolic disorders. Tryptophan (Trp) is an essential amino acid, and its metabolism is linked to numerous physiological functions and diseases. However, the mechanisms by which Trp affects MS are not fully understood. Methods and Results: In this study, experiments involving a high-fat diet (HFD) and fecal microbiota transplantation (FMT) were conducted to investigate the role of Trp in regulating metabolic disorders. In a mouse model, Trp supplementation inhibited intestinal farnesoid X receptor (FXR) signaling and promoted hepatic bile acid (BA) synthesis and excretion, accompanied by elevated levels of conjugated BAs and the ratio of non-12-OH to 12-OH BAs in hepatic and fecal BA profiles. As Trp alters the gut microbiota and the abundance of bile salt hydrolase (BSH)-enriched microbes, we collected fresh feces from Trp-supplemented mice and performed FMT and sterile fecal filtrate (SFF) inoculations in HFD-treated mice. FMT and SFF not only displayed lipid-lowering properties but also inhibited intestinal FXR signaling and increased hepatic BA synthesis. This suggests that the gut microbiota play a beneficial role in improving BA metabolism through Trp. Furthermore, fexaramine (a gut-specific FXR agonist) reversed the therapeutic effects of Trp, suggesting that Trp acts through the FXR signaling pathway. Finally, validation in a finishing pig model revealed that Trp improved lipid metabolism, enlarged the hepatic BA pool, and altered numerous glycerophospholipid molecules in the hepatic lipid profile. Conclusion: Our studies suggest that Trp inhibits intestinal FXR signaling mediated by the gut microbiota-BA crosstalk, which in turn promotes hepatic BA synthesis, thereby ameliorating MS.
Collapse
Affiliation(s)
| | | | | | | | - Qingquan Ma
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Zha A, Qi M, Deng Y, Li H, Wang N, Wang C, Liao S, Wan D, Xiong X, Liao P, Wang J, Yin Y, Tan B. Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis. IMETA 2024; 3:e261. [PMID: 39742294 PMCID: PMC11683477 DOI: 10.1002/imt2.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments. Notably, the higher abundance of Bifidobacterium pseudocatenulatum was significantly associated with lower backfat thickness in lean pigs. Microbial-derived lithocholic acid (LCA) species were also significantly enriched in lean pigs and positively correlated with the abundance of B. pseudocatenulatum. In a high-fat diet (HFD)-fed mice model, administration of live B. pseudocatenulatum decreased fat deposition and enhances colonic secondary bile acid biosynthesis. Importantly, pharmacological inhibition of the bile salt hydrolase (BSH), which mediates secondary bile acid biosynthesis, impaired the anti-fat deposition effect of B. pseudocatenulatum in antibiotic-pretreated, HFD-fed mice. Furthermore, dietary LCA also decreased fat deposition in HFD-fed rats and obese pig models. These findings provide mechanistic insights into the anti-fat deposition role of B. pseudocatenulatum and identify BSH as a potential target for preventing excessive fat deposition in humans and animals.
Collapse
Affiliation(s)
- Andong Zha
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
- School of Basic Medical Science, Central South UniversityChangshaChina
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Yuankun Deng
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Hao Li
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Nan Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Chengming Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Simeng Liao
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Jing Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| | - Yulong Yin
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Bi'e Tan
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and PoultryCollege of Animal Science and Technology, Hunan Agricultural UniversityChangshaChina
- Yuelushan LaboratoryHunanChina
| |
Collapse
|
9
|
Guppy B, Mitchell C, Taylor EB. Parameter Estimation and Identifiability in Kinetic Flux Profiling Models of Metabolism. Bull Math Biol 2024; 87:7. [PMID: 39601930 PMCID: PMC11602815 DOI: 10.1007/s11538-024-01386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Metabolic fluxes are the rates of life-sustaining chemical reactions within a cell and metabolites are the components. Determining the changes in these fluxes is crucial to understanding diseases with metabolic causes and consequences. Kinetic flux profiling (KFP) is a method for estimating flux that utilizes data from isotope tracing experiments. In these experiments, the isotope-labeled nutrient is metabolized through a pathway and integrated into the downstream metabolite pools. Measurements of proportion labeled for each metabolite in the pathway are taken at multiple time points and used to fit an ordinary differential equations model with fluxes as parameters. We begin by generalizing the process of converting diagrams of metabolic pathways into mathematical models composed of differential equations and algebraic constraints. The scaled differential equations for proportions of unlabeled metabolite contain parameters related to the metabolic fluxes in the pathway. We investigate flux parameter identifiability given data collected only at the steady state of the differential equation. Next, we give criteria for valid parameter estimations in the case of a large separation of timescales with fast-slow analysis. Bayesian parameter estimation on simulated data from KFP experiments containing both irreversible and reversible reactions illustrates the accuracy and reliability of flux estimations. These analyses provide constraints that serve as guidelines for the design of KFP experiments to estimate metabolic fluxes.
Collapse
Affiliation(s)
- Breanna Guppy
- Mathematics, University of Iowa, 2 West Washington Street, Iowa City, IA, 52242, USA
- Applied Mathematical and Computational Sciences, University of Iowa, 2 West Washington Street, Iowa City, IA, 52242, USA
| | - Colleen Mitchell
- Mathematics, University of Iowa, 2 West Washington Street, Iowa City, IA, 52242, USA.
- Applied Mathematical and Computational Sciences, University of Iowa, 2 West Washington Street, Iowa City, IA, 52242, USA.
| | - Eric B Taylor
- Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, 169 Newton Road, Iowa City, IA, 52246, USA
- Pappajohn Biomedical Institute, University of Iowa, 169 Newton Road, Iowa City, IA, 52246, USA
- University of Iowa Carver College of Medicine, University of Iowa, 451 Newton Road, Iowa City, IA, 52246, USA
| |
Collapse
|
10
|
Ke Z, Ma Q, Ye X, Wang Y, Jin Y, Zhao X, Su Z. Peptide GLP-1 receptor agonists: From injection to oral delivery strategies. Biochem Pharmacol 2024; 229:116471. [PMID: 39127152 DOI: 10.1016/j.bcp.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Peptide glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective drugs for treating type 2 diabetes (T2DM) and have been proven to benefit the heart and kidney. Apart from oral semaglutide, which does not require injection, other peptide GLP-1RAs need to be subcutaneously administered. However, oral semaglutide also faces significant challenges, such as low bioavailability and frequent gastrointestinal discomfort. Thus, it is imperative that advanced oral strategies for peptide GLP-1RAs need to be explored. This review mainly compares the current advantages and disadvantages of various oral delivery strategies for peptide GLP-1RAs in the developmental stage and discusses the latest research progress of peptide GLP-1RAs, providing a useful guide for the development of new oral peptide GLP-1RA drugs.
Collapse
Affiliation(s)
- Zhiqiang Ke
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Diabetes and Angiopathy, National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Qianqian Ma
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xiaonan Ye
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Yanlin Wang
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Yan Jin
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Xinyuan Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| | - Zhengding Su
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
11
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
12
|
Huang J, Lin H, Liu AN, Wu W, Alisi A, Loomba R, Xu C, Xiang W, Shao J, Dong G, Zheng MH, Fu J, Ni Y. Dynamic pattern of postprandial bile acids in paediatric non-alcoholic fatty liver disease. Liver Int 2024; 44:2793-2806. [PMID: 39082260 DOI: 10.1111/liv.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Dysregulation of bile acids (BAs), as important signalling molecules in regulating lipid and glucose metabolism, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, static BA profiles during fasting may obscure certain pathogenetic aspects. In this study, we investigate the dynamic alterations of BAs in response to an oral glucose tolerance test (OGTT) among children with NAFLD. METHODS We recruited 230 subjects, including children with overweight/obesity, or complicated with NAFLD, and healthy controls. Serum BAs, 7-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19) were quantified during OGTT. Clinical markers related to liver function, lipid metabolism and glucose metabolism were assessed at baseline or during OGTT. FINDINGS Conjugated BAs increased while unconjugated ones decreased after glucose uptake. Most BAs were blunted in response to glucose in NAFLD (p > .05); only glycine and taurine-conjugated chenodeoxycholic acid (CDCA) and cholic acid (CA) were responsive (p < .05). Primary BAs were significantly increased while secondary BAs were decreased in NAFLD. C4 and FGF19 were significantly increased while their ratio FGF19/C4 ratio was decreased in NAFLD. The dynamic pattern of CDCA and taurine-conjugated hyocholic acid (THCA) species was closely correlated with glucose (correlation coefficient r = .175 and -.233, p < .05), insulin (r = .327 and -.236, p < .05) and c-peptide (r = .318 and -.238, p < .05). Among which, CDCA was positively associated with liver fat content in NAFLD (r = .438, p < .05). Additionally, glycochenodeoxycholic acid (GCDCA), CDCA and THCA were potential biomarkers to discriminate paediatric NAFLD from healthy controls and children with obesity. INTERPRETATION This study provides novel insights into the dynamics of BAs during OGTT in paediatric NAFLD. The observed variations in CDCA and HCA species were associated with liver dysfunction, dyslipidaemia and dysglycaemia, highlighting their potential roles as promising diagnostic and therapeutic targets in NAFLD.
Collapse
Affiliation(s)
- Jiating Huang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hu Lin
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - A-Na Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wei Wu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Cuifang Xu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqin Xiang
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Shao
- Department of Child Healthcare, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
13
|
Zheng D, Zhang H, Zheng X, Zhao A, Jia W. Novel microbial modifications of bile acids and their functional implications. IMETA 2024; 3:e243. [PMID: 39429880 PMCID: PMC11487544 DOI: 10.1002/imt2.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
This review outlines the recent discoveries of bile acids that have undergone novel microbial modifications, highlighting their biological roles and the profound implications for the development of innovative therapeutic strategies. The review aims to provide valuable insights and breakthroughs for future drug candidates in the expanding field of bile acid therapeutics.
Collapse
Affiliation(s)
- Dan Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huiheng Zhang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong KongChina
| |
Collapse
|
14
|
Byndloss M, Devkota S, Duca F, Hendrik Niess J, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes Care 2024; 47:1491-1508. [PMID: 38996003 PMCID: PMC11362125 DOI: 10.2337/dci24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 07/14/2024]
Abstract
This article summarizes the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organized by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g., genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomization in humans; 2) the highly individualized nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; 3) because single-time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and 4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
15
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The gut microbiota and diabetes: research, translation, and clinical applications - 2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetologia 2024; 67:1760-1782. [PMID: 38910152 PMCID: PMC11410996 DOI: 10.1007/s00125-024-06198-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarises the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organised by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: (1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g. genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomisation in humans; (2) the highly individualised nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; (3) because single time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and (4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN, USA
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Devkota
- Cedars-Sinai Medical Center, Human Microbiome Research Institute, Los Angeles, CA, USA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
16
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes 2024; 73:1391-1410. [PMID: 38912690 PMCID: PMC11333376 DOI: 10.2337/dbi24-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarizes the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organized by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g., genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomization in humans; 2) the highly individualized nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; 3) because single-time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and 4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
17
|
Pi Y, Fang M, Li Y, Cai L, Han R, Sun W, Jiang X, Chen L, Du J, Zhu Z, Li X. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024; 16:2838. [PMID: 39275156 PMCID: PMC11397228 DOI: 10.3390/nu16172838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.
Collapse
Affiliation(s)
- Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyu Fang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
18
|
Choucair I, Mallela DP, Hilser JR, Hartiala JA, Nemet I, Gogonea V, Li L, Lusis AJ, Fischbach MA, Tang WW, Allayee H, Hazen SL. Comprehensive Clinical and Genetic Analyses of Circulating Bile Acids and Their Associations With Diabetes and Its Indices. Diabetes 2024; 73:1215-1228. [PMID: 38701355 PMCID: PMC11262044 DOI: 10.2337/db23-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Bile acids (BAs) are cholesterol-derived compounds that regulate glucose, lipid, and energy metabolism. Despite their significance in glucose homeostasis, the association between specific BA molecular species and their synthetic pathways with diabetes is unclear. Here, we used a recently validated, stable-isotope dilution, high-performance liquid chromatography with tandem mass spectrometry method to quantify a panel of BAs in fasting plasma from 2,145 study participants and explored structural and genetic determinants of BAs linked to diabetes, insulin resistance, and obesity. Multiple 12α-hydroxylated BAs were associated with diabetes (adjusted odds ratio [aOR] range, 1.3-1.9; P < 0.05 for all) and insulin resistance (aOR range, 1.3-2.2; P < 0.05 for all). Conversely, multiple 6α-hydroxylated BAs and isolithocholic acid (iso-LCA) were inversely associated with diabetes and obesity (aOR range, 0.3-0.9; P < 0.05 for all). Genome-wide association studies revealed multiple genome-wide significant loci linked with 9 of the 14 diabetes-associated BAs, including a locus for iso-LCA (rs11866815). Mendelian randomization analyses showed genetically elevated deoxycholic acid levels were causally associated with higher BMI, and iso-LCA levels were causally associated with reduced BMI and diabetes risk. In conclusion, comprehensive, large-scale, quantitative mass spectrometry and genetics analyses show circulating levels of multiple structurally specific BAs, especially DCA and iso-LCA, are clinically associated with and genetically linked to obesity and diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Ibrahim Choucair
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
| | - Deepthi P. Mallela
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
| | - James R. Hilser
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jaana A. Hartiala
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
- Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
| | - Aldons J. Lusis
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA
| | | | - W.H. Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Hooman Allayee
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
19
|
Wahlström A, Aydin Ö, Olsson LM, Sjöland W, Henricsson M, Lundqvist A, Marschall HU, Franken R, van de Laar A, Gerdes V, Meijnikman AS, Hofsø D, Groen AK, Hjelmesæth J, Nieuwdorp M, Bäckhed F. Alterations in bile acid kinetics after bariatric surgery in patients with obesity with or without type 2 diabetes. EBioMedicine 2024; 106:105265. [PMID: 39096744 PMCID: PMC11345581 DOI: 10.1016/j.ebiom.2024.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Bariatric surgery is an effective treatment option for obesity and provides long-term weight loss and positive effects on metabolism, but the underlying mechanisms are poorly understood. Alterations in bile acid metabolism have been suggested as a potential contributing factor, but comprehensive studies in humans are lacking. METHODS In this study, we analysed the postprandial responses of bile acids, C4 and FGF19 in plasma, and excretion of bile acids in faeces, before and after bariatric surgery in patients (n = 38; 74% females) with obesity with or without type 2 diabetes from the BARIA cohort. FINDINGS We observed that total fasting plasma bile acid levels increased, and faecal excretion of bile acids decreased after surgery suggesting increased reabsorption of bile acids. Consistent with increased bile acid levels after surgery we observed increased postprandial levels of FGF19 and suppression of the bile acid synthesis marker C4, suggesting increased FXR activation in the gut. We also noted that a subset of bile acids had altered postprandial responses before and after surgery. Finally, fasting plasma levels of 6α-hydroxylated bile acids, which are TGR5 agonists and associated with improved glucose metabolism, were increased after surgery and one of them, HDCA, covaried with diabetes remission in an independent cohort. INTERPRETATION Our findings provide new insights regarding bile acid kinetics and suggest that bariatric surgery in humans alters bile acid profiles leading to activation of FXR and TGR5, which may contribute to weight loss, improvements in glucose metabolism, and diabetes remission. FUNDING Novo Nordisk Fonden, Leducq Foundation, Swedish Heart-Lung Foundation, Knut and Alice Wallenberg Foundation, the ALF-agreement, ZonMw.
Collapse
Affiliation(s)
- Annika Wahlström
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Ömrüm Aydin
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Lisa M Olsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Wilhelm Sjöland
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Marcus Henricsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Annika Lundqvist
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Rutger Franken
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | | | - Victor Gerdes
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Abraham S Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Dag Hofsø
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Albert K Groen
- Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway; Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.
| |
Collapse
|
20
|
Wang Y, Xu H, Zhou X, Chen W, Zhou H. Dysregulated bile acid homeostasis: unveiling its role in metabolic diseases. MEDICAL REVIEW (2021) 2024; 4:262-283. [PMID: 39135605 PMCID: PMC11317083 DOI: 10.1515/mr-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 08/15/2024]
Abstract
Maintaining bile acid homeostasis is essential for metabolic health. Bile acid homeostasis encompasses a complex interplay between biosynthesis, conjugation, secretion, and reabsorption. Beyond their vital role in digestion and absorption of lipid-soluble nutrients, bile acids are pivotal in systemic metabolic regulation. Recent studies have linked bile acid dysregulation to the pathogenesis of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Bile acids are essential signaling molecules that regulate many critical biological processes, including lipid metabolism, energy expenditure, insulin sensitivity, and glucose metabolism. Disruption in bile acid homeostasis contributes to metabolic disease via altered bile acid feedback mechanisms, hormonal dysregulation, interactions with the gut microbiota, and changes in the expression and function of bile acid transporters and receptors. This review summarized the essential molecular pathways and regulatory mechanisms through which bile acid dysregulation contributes to the pathogenesis and progression of obesity, T2DM, and MASLD. We aim to underscore the significance of bile acids as potential diagnostic markers and therapeutic agents in the context of metabolic diseases, providing insights into their application in translational medicine.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huangru Xu
- School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
21
|
Guppy B, Mitchell C, Taylor EB. Parameter Estimation and Identifiability in Kinetic Flux Profiling Models of Metabolism. ARXIV 2024:arXiv:2407.08844v1. [PMID: 39040651 PMCID: PMC11261987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Metabolic fluxes are the rates of life-sustaining chemical reactions within a cell and metabolites are the components. Determining the changes in these fluxes is crucial to understanding diseases with metabolic causes and consequences. Kinetic flux profiling (KFP) is a method for estimating flux that utilizes data from isotope tracing experiments. In these experiments, the isotope-labeled nutrient is metabolized through a pathway and integrated into the downstream metabolite pools. Measurements of proportion labeled for each metabolite in the pathway are taken at multiple time points and used to fit an ordinary differential equations model with fluxes as parameters. We begin by generalizing the process of converting diagrams of metabolic pathways into mathematical models composed of differential equations and algebraic constraints. The scaled differential equations for proportions of unlabeled metabolite contain parameters related to the metabolic fluxes in the pathway. We investigate flux parameter identifiability given data collected only at the steady state of the differential equation. Next, we give criteria for valid parameter estimations in the case of a large separation of timescales with fast-slow analysis. Bayesian parameter estimation on simulated data from KFP experiments containing both irreversible and reversible reactions illustrates the accuracy and reliability of flux estimations. These analyses provide constraints that serve as guidelines for the design of KFP experiments to estimate metabolic fluxes.
Collapse
Affiliation(s)
- Breanna Guppy
- Mathematics, University of Iowa, 2 West Washington Street, Iowa City, 52242, Iowa, USA
- Applied Mathematical & Computational Sciences, University of Iowa, 2 West Washington Street, Iowa City, 52242, Iowa, USA
| | - Colleen Mitchell
- Mathematics, University of Iowa, 2 West Washington Street, Iowa City, 52242, Iowa, USA
- Applied Mathematical & Computational Sciences, University of Iowa, 2 West Washington Street, Iowa City, 52242, Iowa, USA
| | - Eric B. Taylor
- Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, Iowa City, 52242, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, 169 Newton Road, Iowa City, 52246, Iowa, USA
- Pappajohn Biomedical Institute, University of Iowa, 169 Newton Road, Iowa City, 52246, Iowa, USA
- University of Iowa Carver College of Medicine, University of Iowa, 451 Newton Road, Iowa City, 52246, Iowa, USA
| |
Collapse
|
22
|
Wu L, Wang J, Lei J, Ge K, Qu C, Liu J, Huang F, Sun D, Chao X, Chen T, Zhao A, Jia W, Zheng X, Xie G. Toxicological evaluation of porcine bile powder in Kunming mice and Sprague-Dawley rats. Front Pharmacol 2024; 15:1424940. [PMID: 39040472 PMCID: PMC11260644 DOI: 10.3389/fphar.2024.1424940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Background: Porcine bile powder (PBP) is a traditional Chinese medicine that has been used for centuries in various therapeutic applications. However, PBP has not previously undergone comprehensive component analysis and not been evaluated for safety through standard in vivo toxicological studies. Methods: In our study, we characterized the component of PBP by liquid chromatography-mass spectrometry. The acute and subchronic oral toxicity, genotoxicity, and teratogenicity studies of PBP were designed and conducted in Kunming mice and Sprague-Dawley (SD) rats. Results: The chemical analysis of PBP showed that the main components of PBP were bile acids (BAs), especially glycochenodeoxycholic acid. There were no signs of toxicity observed in the acute oral test and the subchronic test. In the genotoxicity tests, no positive results were observed in the bacterial reverse mutation test. Additionally, in the mammalian micronucleus test and mouse spermatocyte chromosomal aberration test, no abnormal chromosomes were observed. In the teratogenicity test, no abnormal fetal development was observed. Conclusion: Our findings demonstrate that PBP, composed mainly of BAs, is non-toxic and safe based on the conditions tested in this study.
Collapse
Affiliation(s)
- Lirong Wu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieyi Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Lei
- Human Metabolomics Institute, Inc., Shenzhen, China
| | - Kun Ge
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Qu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajian Liu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Dongnan Sun
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowen Chao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoxiang Xie
- Human Metabolomics Institute, Inc., Shenzhen, China
| |
Collapse
|
23
|
Xie Y, Fang X, Wang A, Xu S, Li Y, Xia W. Association of cord plasma metabolites with birth weight: results from metabolomic and lipidomic studies of discovery and validation cohorts. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:87-96. [PMID: 38243991 DOI: 10.1002/uog.27591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE Birth weight is a good predictor of fetal intrauterine growth and long-term health, and several studies have evaluated the relationship between metabolites and birth weight. The aim of this study was to investigate the association of cord blood metabolomics and lipidomics with birth weight, using a two-stage discovery and validation approach. METHODS Firstly, a pseudotargeted metabolomics approach was applied to detect metabolites in 504 cord blood samples in the discovery set enrolled from the Wuhan Healthy Baby Cohort, China. Metabolome-wide association scan analysis and pathway enrichment were applied to identify metabolites and metabolic pathways that were significantly associated with birth weight adjusted for gestational age Z-score (BW Z-score). Logistic regression models were used to analyze the association of metabolites in the most significantly associated pathways with small-for-gestational age (SGA) at delivery and low birth weight (LBW). Subsequently, 350 cord blood samples in a validation cohort were subjected to targeted analysis to validate the metabolites identified by screening in the discovery cohort. RESULTS In the discovery set, of 2566 metabolites detected, 2418 metabolites were retained for subsequent analysis after data preprocessing. Of these, 513 metabolites were significantly associated with BW Z-score (P-value adjusted for false discovery rate (PFDR) < 0.05), of which 298 Kyoto Encyclopedia of Genes and Genomes (KEGG)-annotated metabolites were included in the pathway analysis. The primary bile acid biosynthesis pathway was the most relevant metabolic pathway associated with BW Z-score. Elevated cord plasma primary bile acids were associated with lower BW Z-score and higher risk of SGA or LBW in the discovery and validation cohorts. In the validation set, a 2-fold increase in taurochenodeoxycholic acid (TCDCA) and in taurocholic acid (TCA) was associated with a decrease in BW Z-score (estimated β coefficient, -0.10 (95% CI, -0.20 to 0.00) and -0.18 (95% CI, -0.31 to -0.04), respectively), after adjusting for covariates. In addition, a 2-fold increase in cord plasma TCDCA and of cord plasma TCA was associated with an increased risk of SGA (adjusted odds ratio (OR), 1.52 (95% CI, 1.00-2.30) and 1.77 (95% CI, 1.05-2.98), respectively). The adjusted OR for LBW, for a 2-fold increase in TCDCA and TCA concentration, were 2.39 (95% CI, 1.00-5.71) and 3.21 (95% CI, 0.96-10.74), respectively. CONCLUSIONS These results indicate a significant association of elevated primary bile acids, particularly TCDCA and TCA, in cord blood with lower BW Z-score, as well as increased risk of SGA and LBW. Abnormalities of primary bile acid metabolism may play an important role in restricted fetal development. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y Xie
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - X Fang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - A Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - S Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Y Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - W Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Zhao AQ, Zheng JY, Chen C, Liu LF, Xin GZ. Enzyme-Driven LC-HRMS Approach for Specific Recognition of 12α-Hydroxy Bile Acids. Anal Chem 2024; 96:8613-8621. [PMID: 38706229 DOI: 10.1021/acs.analchem.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The synthesis of 12α-hydroxylated bile acids (12HBAs) and non-12α-hydroxylated bile acids (non-12HBAs) occurs via classical and alternative pathways, respectively. The composition of these BAs is a crucial index for pathophysiologic assessment. However, accurately differentiating 12HBAs and non-12HBAs is highly challenging due to the limited standard substances. Here, we innovatively introduce 12α-hydroxysteroid dehydrogenase (12α-HSDH) as an enzymatic probe synthesized by heterologous expression in Escherichia coli, which can specifically and efficiently convert 12HBAs in vitro under mild conditions. Coupled to the conversion rate determined by liquid chromatography-high resolution mass spectrometry (LC-HRMS), this enzymatic probe allows for the straightforward distinguishing of 210 12HBAs and 312 non-12HBAs from complex biological matrices, resulting in a BAs profile with a well-defined hydroxyl feature at the C12 site. Notably, this enzyme-driven LC-HRMS approach can be extended to any molecule with explicit knowledge of enzymatic transformation. We demonstrate the practicality of this BAs profile in terms of both revealing cross-species BAs heterogeneity and monitoring the alterations of 12HBAs and non-12HBAs under asthma disease. We envisage that this work will provide a novel pattern to recognize the shift of BA metabolism from classical to alternative synthesis pathways in different pathophysiological states, thereby offering valuable insights into the management of related diseases.
Collapse
Affiliation(s)
- An-Qi Zhao
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Chen Chen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tianfei Lane, Nanjing 210004, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
25
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
26
|
Zhang L, Liu X, Jin T, Dong J, Li X, Zhang Y, Liu D. Isomers-oriented separation of forty-five plasma bile acids with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1721:464827. [PMID: 38520985 DOI: 10.1016/j.chroma.2024.464827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Some bile acids (BAs) were considered as biomarkers or have therapeutical effect on metabolic diseases. However, due to the existence of isomers and limitations in sensitivity, simultaneous quantification of multiple BAs remains a challenge. The aim of this study is to establish an accurate and sensitive method for the determination of multiple BAs with similar polarity. A LC-MS/MS analytical method capable of quantifying forty-five BAs simultaneously using nine stable isotope internal standards was developed and fully validated based on key isomers-oriented separation strategy. The method was further applied to analyze plasma samples to describe the dynamic profile of BAs after high glucose intake. The chromatography and mass spectrum conditions were optimized to enable the accurate quantification of forty-five BAs, while ensuring the lower limit of quantification between 0.05-10 ng/mL. The results of system suitability, linearity, dilution integrity, accuracy and precision demonstrated the good quantitative capacity and robustness of the method. A total of thirty-five BAs were quantified in plasma samples from twelve healthy Chinese individuals. The established method featured superior sensitivity and better separation efficiency compared to previous studies. Meanwhile, BAs exhibited correlations with glucose and insulin, suggesting their potential as biomarkers for metabolic disorders.
Collapse
Affiliation(s)
- Lei Zhang
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China; Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xu Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Tenghui Jin
- Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Jing Dong
- Shimadzu China Innovation Center, Beijing 100020, China
| | - Xiaodong Li
- Shimadzu China Innovation Center, Beijing 100020, China
| | - Youyi Zhang
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Dongyang Liu
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China; Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
27
|
Du Z, Luo Z, Huang Y, Zhou T, Ma L, Wu D, Yao X, Shen L, Yu S, Yong K, Yan Z, Cao S. Screening for potential warning biomarkers in cows with ketosis based on host-microbiota co-metabolism analysis. Front Microbiol 2024; 15:1373402. [PMID: 38605714 PMCID: PMC11006965 DOI: 10.3389/fmicb.2024.1373402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction The risk of ketosis is assessed by monitoring changes in plasma metabolites and cow behavior during the peripartum period. However, little is known about changes in the fecal bile acid and microbiota of cows before parturition. Therefore, this study clarified the bile acid profile and screened potential warning biomarkers in heifers 7 days before calving. Methods Ninety healthy cows were tracked in the transition period, and plasma and feces were collected 7 days before calving, on calving day, and 7 days after calving. The cows were divided into ketosis and healthy groups based on the blood β-hydroxybutyric acid levels from day 7 after calving. The levels of serum biochemical indices were measured at three time points using commercial kits. Ten cows in the ketosis group (KET-7) and 10 healthy cows (HEA-7) were randomly selected 7 days before calving for metabolome and 16S rRNA amplicon sequencing. Results No significant differences in serum energy-related indices were observed 7 days before calving. The major bile acids in the feces of the KET-7 group were non-conjugated secondary bile acids (UnconSBA). Differential bile acids were primarily derived from UnconSBA. The potential ketosis warning metabolite in feces for 7 days before delivery was isodeoxycholic acid. The abundance of Rikenellaaceae-RC9-gut-group in the KET-7 group increased, whereas the abundance of Oscillospiraceae UCG-010 bacteria significantly decreased. Lactobacillus and Prevotella-9 in feces were potential warning biomarkers for ketosis in dairy cows 7 days before calving. The variation in differential bile acids in the plasma, consistent with the feces, was mainly derived from UnconSBA. Lithocholic acid in the plasma was a potential ketosis warning metabolite 7 days before delivery. Conclusion Ketotic cows experienced bile acid metabolism disorders 7 days before calving, and the gut microbiota was closely related to bile acid metabolism disorders. Future studies should investigate the relationship between secondary bile acids and the development of ketosis.
Collapse
Affiliation(s)
- Zhenlong Du
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengzhong Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixin Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dan Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Yong
- Department of Animal Husbandry and Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Zuoting Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
28
|
Zhang S, Liu R, Ma Y, Ma Y, Feng H, Ding X, Zhang Q, Li Y, Shan J, Bian H, Zhu R, Meng Q. Lactiplantibacillus plantarum ATCC8014 Alleviates Postmenopausal Hypercholesterolemia in Mice by Remodeling Intestinal Microbiota to Increase Secondary Bile Acid Excretion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6236-6249. [PMID: 38484389 DOI: 10.1021/acs.jafc.3c08232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Hypercholesterolemia poses a significant cardiovascular risk, particularly in postmenopausal women. The anti-hypercholesterolemic properties of Lactiplantibacillus plantarum ATCC8014 (LP) are well recognized; however, its improving symptoms on postmenopausal hypercholesterolemia and the possible mechanisms have yet to be elucidated. Here, we utilized female ApoE-deficient (ApoE-/-) mice undergoing bilateral ovariectomy, fed a high-fat diet, and administered 109 colony-forming units (CFU) of LP for 13 consecutive weeks. LP intervention reduces total cholesterol (TC) and triglyceride (TG) accumulation in the serum and liver and accelerates their fecal excretion, which is mainly accomplished by increasing the excretion of fecal secondary bile acids (BAs), thereby facilitating cholesterol conversion. Correlation analysis revealed that lithocholic acid (LCA) is an important regulator of postmenopausal lipid abnormalities. LP can reduce LCA accumulation in the liver and serum while enhancing its fecal excretion, accomplished by elevating the relative abundances of Allobaculum and Olsenella in the ileum. Our findings demonstrate that postmenopausal lipid dysfunction is accompanied by abnormalities in BA metabolism and dysbiosis of the intestinal microbiota. LP holds therapeutic potential for postmenopausal hypercholesterolemia. Its effectiveness in ameliorating lipid dysregulation is primarily achieved through reshaping the diversity and abundance of the intestinal microbiota to correct BA abnormalities.
Collapse
Affiliation(s)
- Shurui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ronghui Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxin Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuting Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Han Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruigong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinghai Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
29
|
Chen T, Wang L, Xie G, Kristal BS, Zheng X, Sun T, Arnold M, Louie G, Li M, Wu L, Mahmoudiandehkordi S, Sniatynski MJ, Borkowski K, Guo Q, Kuang J, Wang J, Nho K, Ren Z, Kueider‐Paisley A, Blach C, Kaddurah‐Daouk R, Jia W. Serum Bile Acids Improve Prediction of Alzheimer's Progression in a Sex-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306576. [PMID: 38093507 PMCID: PMC10916590 DOI: 10.1002/advs.202306576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Indexed: 03/07/2024]
Abstract
Sex disparities in serum bile acid (BA) levels and Alzheimer's disease (AD) prevalence have been established. However, the precise link between changes in serum BAs and AD development remains elusive. Here, authors quantitatively determined 33 serum BAs and 58 BA features in 4 219 samples collected from 1 180 participants from the Alzheimer's Disease Neuroimaging Initiative. The findings revealed that these BA features exhibited significant correlations with clinical stages, encompassing cognitively normal (CN), early and late mild cognitive impairment, and AD, as well as cognitive performance. Importantly, these associations are more pronounced in men than women. Among participants with progressive disease stages (n = 660), BAs underwent early changes in men, occurring before AD. By incorporating BA features into diagnostic and predictive models, positive enhancements are achieved for all models. The area under the receiver operating characteristic curve improved from 0.78 to 0.91 for men and from 0.76 to 0.83 for women for the differentiation of CN and AD. Additionally, the key findings are validated in a subset of participants (n = 578) with cerebrospinal fluid amyloid-beta and tau levels. These findings underscore the role of BAs in AD progression, offering potential improvements in the accuracy of AD prediction.
Collapse
Affiliation(s)
- Tianlu Chen
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lu Wang
- School of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong Kong999077China
| | | | - Bruce S. Kristal
- Division of Sleep and Circadian DisordersDepartment of MedicineBrigham and Women's HospitalBostonMA02115USA
- Division of Sleep MedicineHarvard Medical SchoolBostonMA02115USA
| | - Xiaojiao Zheng
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Tao Sun
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Matthias Arnold
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNC27710USA
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental Health85764NeuherbergGermany
| | - Gregory Louie
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNC27710USA
| | - Mengci Li
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lirong Wu
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | | | - Matthew J. Sniatynski
- Division of Sleep and Circadian DisordersDepartment of MedicineBrigham and Women's HospitalBostonMA02115USA
- Division of Sleep MedicineHarvard Medical SchoolBostonMA02115USA
| | - Kamil Borkowski
- West Coast Metabolomics CenterGenome CenterUniversity of California DavisDavisCA95616USA
| | - Qihao Guo
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Junliang Kuang
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Jieyi Wang
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Zhenxing Ren
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | | | - Colette Blach
- Duke Molecular Physiology InstituteDuke UniversityDurhamNC27708USA
| | - Rima Kaddurah‐Daouk
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNC27710USA
- Duke Institute of Brain SciencesDuke UniversityDurhamNC27708USA
- Department of MedicineDuke UniversityDurhamNC27708USA
| | - Wei Jia
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
- School of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong Kong999077China
| | | |
Collapse
|
30
|
Liu W, Li Z, Ze X, Deng C, Xu S, Ye F. Multispecies probiotics complex improves bile acids and gut microbiota metabolism status in an in vitro fermentation model. Front Microbiol 2024; 15:1314528. [PMID: 38444809 PMCID: PMC10913090 DOI: 10.3389/fmicb.2024.1314528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
The consumption of probiotics has been extensively employed for the management or prevention of gastrointestinal disorders by modifying the gut microbiota and changing metabolites. Nevertheless, the probiotic-mediated regulation of host metabolism through the metabolism of bile acids (BAs) remains inadequately comprehended. The gut-liver axis has received more attention in recent years due to its association with BA metabolism. The objective of this research was to examine the changes in BAs and gut microbiota using an in vitro fermentation model. The metabolism and regulation of gut microbiota by commercial probiotics complex containing various species such as Lactobacillus, Bifidobacterium, and Streptococcus were investigated. The findings indicated that the probiotic strains had produced diverse metabolic profiles of BAs. The probiotics mixture demonstrated the greatest capacity for Bile salt hydrolase (BSH) deconjugation and 7α-dehydroxylation, leading to a significant elevation in the concentrations of Chenodeoxycholic acid, Deoxycholic acidcholic acid, and hyocholic acid in humans. In addition, the probiotic mixtures have the potential to regulate the microbiome of the human intestines, resulting in a reduction of isobutyric acid, isovaleric acid, hydrogen sulfide, and ammonia. The probiotics complex intervention group showed a significant increase in the quantities of Lactobacillus and Bifidobacterium strains, in comparison to the control group. Hence, the use of probiotics complex to alter gut bacteria and enhance the conversion of BAs could be a promising approach to mitigate metabolic disorders in individuals.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Chaoming Deng
- BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Shunfu Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Minoretti P, Emanuele E. Bile Acids in Cardiovascular Diseases: Don't Forget Hyocholic Acid. Aging Dis 2024; 15:1-2. [PMID: 37307831 PMCID: PMC10796090 DOI: 10.14336/ad.2023.0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Affiliation(s)
| | - Enzo Emanuele
- 2E Science, Via Monte Grappa, 13, I-27038 Robbio (PV), Italy
| |
Collapse
|
32
|
Bajaj JS, Fagan A, Gavis EA, Mousel T, Gallagher ML, Puri P, Fuchs M, Davis BC, Hylemon PB, Zhou H, Ahluwalia V, Cadrain R, Sikaroodi M, Gillevet PM. The RIVET RCT: Rifamycin SV MMX improves muscle mass, physical function, and ammonia in cirrhosis and minimal encephalopathy. Hepatol Commun 2024; 8:e0384. [PMID: 38315140 PMCID: PMC10843468 DOI: 10.1097/hc9.0000000000000384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Minimal hepatic encephalopathy (MHE) negatively affects the prognosis of cirrhosis, but treatment is not standard. Rifamycin SV MMX (RiVM) is a nonabsorbable rifampin derivative with colonic action. METHODS In a phase 2 placebo-controlled, double-blind randomized clinical trial patients with MHE were randomized to RiVM or placebo for 30 days with a 7-day follow-up. The primary endpoint was a change in stool cirrhosis dysbiosis ratio. Gut-brain (cognition, stool/salivary microbiome, ammonia, brain magnetic resonance spectroscopy), inflammation (stool calprotectin/serum cytokines), patient-reported outcomes (sickness impact profile: total/physical/psychosocial, high = worse), and sarcopenia (handgrip, bioelectric impedance) were secondary. Between/within groups and delta (post-pre) comparisons were performed. RESULTS Thirty patients (15/group) were randomized and completed the study without safety concerns. While cirrhosis dysbiosis ratio was statistically similar on repeated measures ANOVA (95% CI: -0.70 to 3.5), ammonia significantly reduced (95% CI: 4.4-29.6) in RiVM with changes in stool microbial α/β-diversity. MHE status was unchanged but only serial dotting (which tests motor strength) improved in RiVM-assigned patients. Delta physical sickness impact profile (95% CI: 0.33 = 8.5), lean mass (95% CI: -3.3 to -0.9), and handgrip strength (95% CI: -8.1 to -1.0) improved in RiVM versus placebo. Stool short-chain fatty acids (propionate, acetate, and butyrate) increased post-RiVM. Serum, urine, and stool bile acid profile changed to nontoxic bile acids (higher hyocholate/ursodeoxycholate and lower deoxycholate/lithocholate) post-RiVM. Serum IL-1β and stool calprotectin decreased while brain magnetic resonance spectroscopy showed higher glutathione concentrations in RiVM. CONCLUSIONS RiVM is well tolerated in patients with MHE with changes in stool microbial composition and function, ammonia, inflammation, brain oxidative stress, and sarcopenia-related parameters without improvement in cognition. RiVM modulates the gut-brain axis and gut-muscle axis in cirrhosis.
Collapse
Affiliation(s)
- Jasmohan S. Bajaj
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Andrew Fagan
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Edith A. Gavis
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Travis Mousel
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Mary L. Gallagher
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Puneet Puri
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Michael Fuchs
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Brian C. Davis
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Vishwadeep Ahluwalia
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
- Center for Advanced Brain Imaging, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Robert Cadrain
- Collaborative Advanced Research Imaging Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | - Patrick M. Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
33
|
He X, Gao X, Hong Y, Zhong J, Li Y, Zhu W, Ma J, Huang W, Li Y, Li Y, Wang H, Liu Z, Bao Y, Pan L, Zheng N, Sheng L, Li H. High Fat Diet and High Sucrose Intake Divergently Induce Dysregulation of Glucose Homeostasis through Distinct Gut Microbiota-Derived Bile Acid Metabolism in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:230-244. [PMID: 38079533 DOI: 10.1021/acs.jafc.3c02909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A high calorie diet such as excessive fat and sucrose intake is always accompanied by impaired glucose homeostasis such as T2DM (type 2 diabetes mellitus). However, it remains unclear how fat and sucrose individually affect host glucose metabolism. In this study, mice were fed with high fat diet (HFD) or 30% sucrose in drinking water (HSD) for 24 weeks, and glucose metabolism, gut microbiota composition, as well as bile acid (BA) profile were investigated. In addition, the functional changes of HFD or HSD-induced gut microbiota were further verified by fecal microbiota transplantation (FMT) and ex vivo culture of gut bacteria with BAs. Our results showed that both HFD and HSD caused dysregulated lipid metabolism, while HFD feeding had a more severe effect on impaired glucose homeostasis, accompanied by reduced hyocholic acid (HCA) levels in all studied tissues. Meanwhile, HFD had a more dramatic influence on composition and function of gut microbiota based on α diversity indices, β diversity analysis, as well as the abundance of secondary BA producers than HSD. In addition, the phenotypes of impaired glucose homeostasis and less formation of HCA caused by HFD can be transferred to recipient mice by FMT. Ex vivo culture with gut bacteria and BAs revealed HFD-altered gut bacteria produced less HCA than HSD, which might closely associate with reduced relative abundance of C7 epimerase-coding bacteria g_norank/unclassified_f_Eggerthellaceae and bile salt hydrolase-producing bacteria Lactobacillus and Bifidobacterium in HFD group. Our findings revealed that the divergent effects of different high-calorie diets on glucose metabolism may be due to the gut microbiota-mediated generation and metabolism of BAs, highlighting the importance of dietary management in T2DM.
Collapse
Affiliation(s)
- Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
34
|
Su J, Lin X, Li D, Yang C, Lv S, Chen X, Yang X, Pan B, Xu R, Ren L, Zhang Y, Xie Y, Chen Q, Xia C. Prevotella copri exhausts intrinsic indole-3-pyruvic acid in the host to promote breast cancer progression: inactivation of AMPK via UHRF1-mediated negative regulation. Gut Microbes 2024; 16:2347757. [PMID: 38773738 PMCID: PMC11123460 DOI: 10.1080/19490976.2024.2347757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Emerging evidence has revealed the novel role of gut microbiota in the development of cancer. The characteristics of function and composition in the gut microbiota of patients with breast cancer patients has been reported, however the detailed causation between gut microbiota and breast cancer remains uncertain. In the present study, 16S rRNA sequencing revealed that Prevotella, particularly the dominant species Prevotella copri, is significantly enriched and prevalent in gut microbiota of breast cancer patients. Prior-oral administration of P. copri could promote breast cancer growth in specific pathogen-free mice and germ-free mice, accompanied with sharp reduction of indole-3-pyruvic acid (IPyA). Mechanistically, the present of excessive P. copri consumed a large amount of tryptophan (Trp), thus hampering the physiological accumulation of IPyA in the host. Our results revealed that IPyA is an intrinsic anti-cancer reagent in the host at physiological level. Briefly, IPyA directly suppressed the transcription of UHRF1, following by the declined UHRF1 and PP2A C in nucleus, thus inhibiting the phosphorylation of AMPK, which is just opposite to the cancer promoting effect of P. copri. Therefore, the exhaustion of IPyA by excessive P. copri strengthens the UHRF1-mediated negative control to inactivated the energy-controlling AMPK signaling pathway to promote tumor growth, which was indicated by the alternation in pattern of protein expression and DNA methylation. Our findings, for the first time, highlighted P. copri as a risk factor for the progression of breast cancer.
Collapse
Affiliation(s)
- Jiyan Su
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xiaojie Lin
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Dan Li
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, P. R. China
| | - Chunmin Yang
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Shumei Lv
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
| | - Xiaohong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, P. R. China
| | - Xiujuan Yang
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Botao Pan
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Rui Xu
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Liping Ren
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yanfang Zhang
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yizhen Xie
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- R&D Department, Guangdong Yuewei Edible Fungi Technology Co. Ltd, Guangzhou, P. R. China
| | - Qianjun Chen
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Chenglai Xia
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
35
|
Zhu Q, Yuan C, Dong X, Wang Y, Li B, Tu B, Chen W, Xu X, Gong W, Xiao W, Ding Y, Hu L, Li W, Lu G. Bile acid metabolomics identifies chenodeoxycholic acid as a therapeutic agent for pancreatic necrosis. Cell Rep Med 2023; 4:101304. [PMID: 38035885 PMCID: PMC10772342 DOI: 10.1016/j.xcrm.2023.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Bile acids are altered and associated with prognosis in patients with acute pancreatitis (AP). Here, we conduct targeted metabolomic analyses to detect bile acids changes in patients during the acute (n = 326) and the recovery (n = 133) phases of AP, as well as in healthy controls (n = 60). Chenodeoxycholic acid (CDCA) decreases in the acute phase, increases in the recovery phase, and is associated with pancreatic necrosis. CDCA and its derivative obeticholic acid exhibit a protective effect against acinar cell injury in vitro and pancreatic necrosis in murine models, and RNA sequencing reveals that the oxidative phosphorylation pathway is mainly involved. Moreover, we find that overexpression of farnesoid X receptor (FXR, CDCA receptor) inhibits pancreatic necrosis, and interfering expression of FXR exhibits an opposite phenotype in mice. Our results possibly suggest that targeting CDCA is a potential strategy for the treatment of acinar cell necrosis in AP, but further verification is needed.
Collapse
Affiliation(s)
- Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaowu Dong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaodong Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Baiqiang Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bo Tu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xingmeng Xu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|
36
|
Wu Y, Peng L, Feng P, Han R, Khan A, Kulshreshtha S, Ling Z, Liu P, Li X. Gut microbes consume host energy and reciprocally provide beneficial factors to sustain a symbiotic relationship with the host. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166773. [PMID: 37689204 DOI: 10.1016/j.scitotenv.2023.166773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
The gut microbes thrive by utilizing host energy and, in return, provide valuable benefits, akin to the symbiotic relationship. To study the mutualistic association between the gut microbiota and host, a range of gut microbe populations (85 %, 66 %, 45 % and 38 % at the normal level) with comparable structures were constructed in broiler model. The results revealed that reductions in gut microbial population led to decreased energy consumption, resulting in increased host weight (10.26 %, 30.88 %, 17.65 % and - 12.77 %, respectively). Fecal metabolome revealed that among 85 % and 66 % of the normal population level, the gut microbes downregulated the immune-associated pathways of tryptophan metabolism and catecholamine biosynthesis, while the level of fatty acid oxidation was upregulated at 45 %. In the host, the concentration of gut microbes contributed to regulate functions related to lipid biosynthesis (from glycerophosphoserines to glycerophosphoethanolamines (9.63 %, 12.20 %, 6.66 % and 47.75 %) and glycerophosphocholines (10.78 %, 36.51 %, 2.00 % and 87.11 %)) and inflammation responses (methionine and betaine metabolism). From 85 % to 45 % of gut microbes, broiler showed an inhibited immunity (thymus gland, spleen, SIgG and IgA) and increased low-level inflammation response (ALT and T-SOD). However, at 38 %, the immune indexes exhibited an increase (thymus gland, spleen, SIgG, and IgA increased by 8.67 %, 8.50 %, 20.87 %, and 29.43 %, respectively), indicating the host lipid accumulation and inflammation response were negatively correlated with the immune reaction. Collectively, the gut microbiota maintains a symbiotic relationship with the host through the secretion of beneficial substances to interact with the host.
Collapse
Affiliation(s)
- Ying Wu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Liang Peng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Department of Children Rehabilitation Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rong Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Sourabh Kulshreshtha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173212, Himachal Pradesh, India
| | - Zhenmin Ling
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Chi S, Zhang T, Pan Y, Niu S, Zhao L, Gu Z, Liu Q, Jin A, Wang W, Tan S. Time-restricted feeding alleviates metabolic implications of circadian disruption by regulating gut hormone release and brown fat activation. Food Funct 2023; 14:10443-10458. [PMID: 37916301 DOI: 10.1039/d3fo02063k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Individuals with rotating and night shift work are highly susceptible to developing metabolic disorders such as obesity and diabetes. This is primarily attributed to disruptions in the circadian rhythms caused by activities and irregular eating habits. Time-restricted feeding (tRF) limits the daily eating schedules and has been demonstrated to markedly improve several metabolic disorders. Although an intricate relationship exists between tRF and circadian rhythms, the underlying specific mechanism remains elusive. We used a sleep disruption device for activity interference and established a model of circadian rhythm disorder in mice with different genetic backgrounds. We found that circadian rhythm disruption led to abnormal hormone secretion in the gut and elevated insulin resistance. tRF improved metabolic abnormalities caused by circadian rhythm disruption, primarily by restoring the gut hormone secretion rhythm and activating brown fat thermogenesis. The crucial function of brown fat in tRF was confirmed using a mouse model with brown fat removal. We demonstrated that chenodeoxycholic acid (CDCA) effectively improved circadian rhythm disruption-induced metabolic disorders by restoring brown fat activation. Our findings demonstrate the potential benefits of CDCA in reversing metabolic disadvantages associated with irregular circadian rhythms.
Collapse
Affiliation(s)
- Sensen Chi
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
| | - Taoyuan Zhang
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
| | - Yu Pan
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zili Gu
- Department of Radiology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Qi Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Aishun Jin
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
| | - Wang Wang
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
| | - Shuai Tan
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
38
|
Chen S, Shao Q, Chen J, Lv X, Ji J, Liu Y, Song Y. Bile acid signalling and its role in anxiety disorders. Front Endocrinol (Lausanne) 2023; 14:1268865. [PMID: 38075046 PMCID: PMC10710157 DOI: 10.3389/fendo.2023.1268865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Anxiety disorder is a prevalent neuropsychiatric disorder that afflicts 7.3%~28.0% of the world's population. Bile acids are synthesized by hepatocytes and modulate metabolism via farnesoid X receptor (FXR), G protein-coupled receptor (TGR5), etc. These effects are not limited to the gastrointestinal tract but also extend to tissues and organs such as the brain, where they regulate emotional centers and nerves. A rise in serum bile acid levels can promote the interaction between central FXR and TGR5 across the blood-brain barrier or activate intestinal FXR and TGR5 to release fibroblast growth factor 19 (FGF19) and glucagon-like peptide-1 (GLP-1), respectively, which in turn, transmit signals to the brain via these indirect pathways. This review aimed to summarize advancements in the metabolism of bile acids and the physiological functions of their receptors in various tissues, with a specific focus on their regulatory roles in brain function. The contribution of bile acids to anxiety via sending signals to the brain via direct or indirect pathways was also discussed. Different bile acid ligands trigger distinct bile acid signaling cascades, producing diverse downstream effects, and these pathways may be involved in anxiety regulation. Future investigations from the perspective of bile acids are anticipated to lead to novel mechanistic insights and potential therapeutic targets for anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Qin J, Wei X, Cao M, Shi B. Non-12α-Hydroxylated Bile Acids Improve Piglet Growth Performance by Improving Intestinal Flora, Promoting Intestinal Development and Bile Acid Synthesis. Animals (Basel) 2023; 13:3380. [PMID: 37958135 PMCID: PMC10650152 DOI: 10.3390/ani13213380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
As an emulsifier and bioactive substance, bile acids (BAs) participate in the absorption of nutrients and in various physiological processes. The objective of this experiment was to investigate the effects of non-12α-hydroxylated BAs (including hyocholic acid, hyodeoxycholic acid and chenodeoxycholic acid, from now on referred to as NBAs) on growth performance, BAs metabolism and the intestinal flora of piglets. The experiment included four groups, with eight piglets per group. The four groups of pigs were fed 0, 60, 120 and 180 mg/kg of NBAs, respectively. The results show that adding NBAs significantly increased the final weight (FW), average daily feed intake (ADFI), average daily gain (ADG), and digestibility of crude fat (EE) and organic matter (OM) in piglets (p < 0.05). Adding NBAs significantly increased the villus height (VH) of the jejunum and ileum (p < 0.05). In addition, NBAs supplementation increased the content of urea nitrogen (BUN) and creatinine (CREA) as well as the ratio of urea nitrogen to creatinine (BUN/CREA) in serum (p < 0.05). Adding NBAs can affect the genes related to BAs enterohepatic circulation. Specifically, adding NBAs significantly decreased the relative mRNA abundance of FXR in the liver (p < 0.05), significantly increased the relative mRNA abundance of CYP27A1 (p < 0.05), and significantly increased the relative mRNA abundance of NTCP (p < 0.05). Adding NBAs also significantly decreased the relative mRNA abundance of FXR in the ileum (p < 0.05). In the full-length 16S rDNA sequencing analysis, ten biomarkers were found from the gate to the species level. NBAs mainly enriched Lactobacillus_Johnsonii and decreased the abundance of Streptococcus_alactolyticus. Short-chain fatty acids (SCFAs) content in the colon was significantly increased (p < 0.05). These results indicate that NBAs supplementation can improve the growth performance of piglets, promote the development of the bile acid replacement pathway and improve intestinal flora.
Collapse
Affiliation(s)
| | | | | | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (J.Q.); (X.W.); (M.C.)
| |
Collapse
|
40
|
Hu Y, He D, Yu B, Chen D. Effects of Different Types of Dietary Fibers on Lipid Metabolism and Bile Acids in Weaned Piglets. Animals (Basel) 2023; 13:3266. [PMID: 37893990 PMCID: PMC10603699 DOI: 10.3390/ani13203266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to investigate the effects of dietary fiber on the serum biochemistry, bile acid profile, and gut microbiota in piglets. Twenty-four pigs (initial body weight: 10.53 ± 1.23 kg) were randomly divided into three treatments with eight replicate pens of one pig per pen for 21 d. The dietary treatments consisted of the following: (1) a fiber-free diet (NS); (2) a fiber-free diet + 3% fructooligosaccharides (SI); (3) a fiber-free diet + 3% dietary fiber mixture (fructooligosaccharides, long-chain inulin, and microcrystalline cellulose at the ratio 1:1:1; MIX). The results showed that compared with the NS group, the 3% SI diet reduced the serum total cholesterol (TC) concentration of the piglets (p < 0.05). The metabolomics results showed that the 3% SI diet increased the level of taurohyocholic acid (THCA) and α-muricholic acid, and the 3% MIX diet increased the level of THCA and cholic acid (p < 0.05). The use of 3% SI or MIX decreased the glycodeoxycholic acid (GDCA) level in the bile of the piglets (p < 0.05). The correlation analysis shows that the GDCA was positively related to the TC. The 16S rRNA gene sequencing results showed that UCG-002 and Holdemanella were enriched in the SI group, while Bacteroides was enriched in the MIX group. The microbial function prediction indicated that SI supplementation tended to elevate the relative abundance of gut bacteria capable of expressing bile acid-metabolizing enzymes. To sum up, the regulatory effect of dietary fiber on lipid metabolism is related to bile acids in piglets. Compared with MIX, SI is more likely to regulate bile acids through the gut microbiota.
Collapse
Affiliation(s)
| | | | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an 625014, China; (Y.H.)
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya’an 625014, China; (Y.H.)
| |
Collapse
|
41
|
Kuang J, Wang J, Li Y, Li M, Zhao M, Ge K, Zheng D, Cheung KCP, Liao B, Wang S, Chen T, Zhang Y, Wang C, Ji G, Chen P, Zhou H, Xie C, Zhao A, Jia W, Zheng X, Jia W. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab 2023; 35:1752-1766.e8. [PMID: 37591244 DOI: 10.1016/j.cmet.2023.07.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is regarded as a pandemic that affects about a quarter of the global population. Recently, host-gut microbiota metabolic interactions have emerged as distinct mechanistic pathways implicated in the development of NAFLD. Here, we report that a group of gut microbiota-modified bile acids (BAs), hyodeoxycholic acid (HDCA) species, are negatively correlated with the presence and severity of NAFLD. HDCA treatment has been shown to alleviate NAFLD in multiple mouse models by inhibiting intestinal farnesoid X receptor (FXR) and upregulating hepatic CYP7B1. Additionally, HDCA significantly increased abundances of probiotic species such as Parabacteroides distasonis, which enhances lipid catabolism through fatty acid-hepatic peroxisome proliferator-activated receptor alpha (PPARα) signaling, which in turn upregulates hepatic FXR. These findings suggest that HDCA has therapeutic potential for treating NAFLD, with a unique mechanism of simultaneously activating hepatic CYP7B1 and PPARα.
Collapse
Affiliation(s)
- Junliang Kuang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jieyi Wang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yitao Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Mengci Li
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mingliang Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kun Ge
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dan Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kenneth C P Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Boya Liao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Shouli Wang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tianlu Chen
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yinan Zhang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510655, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Weiping Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
42
|
Zhong J, He X, Gao X, Liu Q, Zhao Y, Hong Y, Zhu W, Yan J, Li Y, Li Y, Zheng N, Bao Y, Wang H, Ma J, Huang W, Liu Z, Lyu Y, Ke X, Jia W, Xie C, Hu Y, Sheng L, Li H. Hyodeoxycholic acid ameliorates nonalcoholic fatty liver disease by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling. Nat Commun 2023; 14:5451. [PMID: 37673856 PMCID: PMC10482907 DOI: 10.1038/s41467-023-41061-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is usually characterized with disrupted bile acid (BA) homeostasis. However, the exact role of certain BA in NAFLD is poorly understood. Here we show levels of serum hyodeoxycholic acid (HDCA) decrease in both NAFLD patients and mice, as well as in liver and intestinal contents of NAFLD mice compared to their healthy counterparts. Serum HDCA is also inversely correlated with NAFLD severity. Dietary HDCA supplementation ameliorates diet-induced NAFLD in male wild type mice by activating fatty acid oxidation in hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent way because the anti-NAFLD effect of HDCA is abolished in hepatocyte-specific Pparα knockout mice. Mechanistically, HDCA facilitates nuclear localization of PPARα by directly interacting with RAN protein. This interaction disrupts the formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer. Our results demonstrate the therapeutic potential of HDCA for NAFLD and provide new insights of BAs on regulating fatty acid metabolism.
Collapse
Affiliation(s)
- Jing Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiaohong Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Juan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yifan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanzhi Lyu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Xisong Ke
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
43
|
Yin C, Zhong R, Zhang W, Liu L, Chen L, Zhang H. The Potential of Bile Acids as Biomarkers for Metabolic Disorders. Int J Mol Sci 2023; 24:12123. [PMID: 37569498 PMCID: PMC10418921 DOI: 10.3390/ijms241512123] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Bile acids (BAs) are well known to facilitate the absorption of dietary fat and fat-soluble molecules. These unique steroids also function by binding to the ubiquitous cell membranes and nuclear receptors. As chemical signals in gut-liver axis, the presence of metabolic disorders such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and even tumors have been reported to be closely related to abnormal levels of BAs in the blood and fecal metabolites of patients. Thus, the gut microbiota interacting with BAs and altering BA metabolism are critical in the pathogenesis of numerous chronic diseases. This review intends to summarize the mechanistic links between metabolic disorders and BAs in gut-liver axis, and such stage-specific BA perturbation patterns may provide clues for developing new auxiliary diagnostic means.
Collapse
Affiliation(s)
| | | | | | | | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (R.Z.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (R.Z.)
| |
Collapse
|
44
|
Oteng AB, Liu L. GPCR-mediated effects of fatty acids and bile acids on glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1206063. [PMID: 37484954 PMCID: PMC10360933 DOI: 10.3389/fendo.2023.1206063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Fatty acids and glucose are key biomolecules that share several commonalities including serving as energy substrates and as signaling molecules. Fatty acids can be synthesized endogenously from intermediates of glucose catabolism via de-novo lipogenesis. Bile acids are synthesized endogenously in the liver from the biologically important lipid molecule, cholesterol. Evidence abounds that fatty acids and bile acids play direct and indirect roles in systemic glucose homeostasis. The tight control of plasma glucose levels during postprandial and fasted states is principally mediated by two pancreatic hormones, insulin and glucagon. Here, we summarize experimental studies on the endocrine effects of fatty acids and bile acids, with emphasis on their ability to regulate the release of key hormones that regulate glucose metabolism. We categorize the heterogenous family of fatty acids into short chain fatty acids (SCFAs), unsaturated, and saturated fatty acids, and highlight that along with bile acids, these biomolecules regulate glucose homeostasis by serving as endogenous ligands for specific G-protein coupled receptors (GPCRs). Activation of these GPCRs affects the release of incretin hormones by enteroendocrine cells and/or the secretion of insulin, glucagon, and somatostatin by pancreatic islets, all of which regulate systemic glucose homeostasis. We deduce that signaling induced by fatty acids and bile acids is necessary to maintain euglycemia to prevent metabolic diseases such as type-2 diabetes and related metabolic disorders.
Collapse
|
45
|
Ho TM, Arman HD, Yoshimoto FK. Synthesis of Hyocholic Acid and Its Derivatization with Sodium Periodate to Distinguish It from Cholic Acid by Mass Spectrometry. Steroids 2023:109260. [PMID: 37336340 DOI: 10.1016/j.steroids.2023.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Low concentrations of hyocholic acid in human serum has been linked to diabetes. Due to its important role in human health, we were interested in synthesizing hyocholic acid to explore potential biochemical properties of this bile acid. Here, a synthesis of hyocholic acid is reported from chenodeoxycholic acid. The key step was a Rubottom oxidation of a silyl enol ether intermediate to directly incorporate the oxygen at C6. Furthermore, the synthesized hyocholic acid product was treated with NaIO4 to cleave the C6-C7 bond to yield a hemiacetal at C6. This C-C bond cleavage reaction using NaIO4 was used to develop an ultra-performance liquid chromatography mass spectrometry method to distinguish between a 1 to 1 mixture of hyocholic acid and cholic acid (a 12α-hydroxylated bile acid), two bile acid regioisomers with identical masses. Upon treatment of the mixture with NaIO4, hyocholic acid was selectively cleaved in the B ring (C6-C7 bond) to yield the hemiacetal that formed between the C3-hydroxy and the C6-aldehyde moiety with an m/z 405 while cholic acid remained intact with an m/z 407 in the negative electrospray ionization mode. Subsequently, a commercially available ox bile extract was treated with NaIO4 to detect bile acid derivatives by mass spectrometry. Two possible hyocholic acid derivatives conjugated to serine and gamma-glutamic semialdehyde were detected in electrospray ionization positive mode, which oxidatively cleaved with NaIO4 (m/z 496 and 522 to m/z 494 and 520, respectively).
Collapse
Affiliation(s)
- Tu M Ho
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249
| | - Francis K Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249
| |
Collapse
|
46
|
Lai X, Zhang Z, Zhang Z, Liu S, Bai C, Chen Z, Qadri QR, Fang Y, Wang Z, Pan Y, Wang Q. Integrated microbiome-metabolome-genome axis data of Laiwu and Lulai pigs. Sci Data 2023; 10:280. [PMID: 37179393 PMCID: PMC10183000 DOI: 10.1038/s41597-023-02191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Excessive fat deposition can trigger metabolic diseases, and it is crucial to identify factors that can break the link between fat deposition and metabolic diseases. Healthy obese Laiwu pigs (LW) are high in fat content but resistant to metabolic diseases. In this study, we compared the fecal microbiome, fecal and blood metabolome, and genome of LW and Lulai pigs (LU) to identify factors that can block the link between fat deposition and metabolic diseases. Our results show significant differences in Spirochetes and Treponema, which are involved in carbohydrate metabolism, between LW and LU. The fecal and blood metabolome composition was similar, and some anti-metabolic disease components of blood metabolites were different between the two breeds of pigs. The predicted differential RNA is mainly enriched in lipid metabolism and glucose metabolism, which is consistent with the functions of differential microbiota and metabolites. The down-regulated gene RGP1 is strongly negatively correlated with Treponema. Our omics data would provide valuable resources for further scientific research on healthy obesity in both human and porcine.
Collapse
Affiliation(s)
- Xueshuang Lai
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Zhenyang Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Shengqiang Liu
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
- Hainan institute, Zhejiang University, Sanya, 310014, PR China
| | - Chunyan Bai
- Department of Animal Science, College of Animal Sciences, Jilin University, Changchui, 130015, PR China
| | - Zitao Chen
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Qamar Raza Qadri
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yifei Fang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Zhen Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China.
- Hainan institute, Zhejiang University, Sanya, 310014, PR China.
| | - Qishan Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China.
- Hainan institute, Zhejiang University, Sanya, 310014, PR China.
| |
Collapse
|
47
|
Fu J, Zhu F, Xu CJ, Li Y. Metabolomics meets systems immunology. EMBO Rep 2023; 24:e55747. [PMID: 36916532 PMCID: PMC10074123 DOI: 10.15252/embr.202255747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/24/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic processes play a critical role in immune regulation. Metabolomics is the systematic analysis of small molecules (metabolites) in organisms or biological samples, providing an opportunity to comprehensively study interactions between metabolism and immunity in physiology and disease. Integrating metabolomics into systems immunology allows the exploration of the interactions of multilayered features in the biological system and the molecular regulatory mechanism of these features. Here, we provide an overview on recent technological developments of metabolomic applications in immunological research. To begin, two widely used metabolomics approaches are compared: targeted and untargeted metabolomics. Then, we provide a comprehensive overview of the analysis workflow and the computational tools available, including sample preparation, raw spectra data preprocessing, data processing, statistical analysis, and interpretation. Third, we describe how to integrate metabolomics with other omics approaches in immunological studies using available tools. Finally, we discuss new developments in metabolomics and its prospects for immunology research. This review provides guidance to researchers using metabolomics and multiomics in immunity research, thus facilitating the application of systems immunology to disease research.
Collapse
Affiliation(s)
- Jianbo Fu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Hu M, Gou T, Chen Y, Xu M, Chen R, Zhou T, Liu J, Peng C, Ye Q. A Novel Drug Delivery System: Hyodeoxycholic Acid-Modified Metformin Liposomes for Type 2 Diabetes Treatment. Molecules 2023; 28:molecules28062471. [PMID: 36985444 PMCID: PMC10055618 DOI: 10.3390/molecules28062471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Metformin is a first-line drug for the clinical treatment of type 2 diabetes; however, it always leads to gastrointestinal tolerance, low bioavailability, short half-life, etc. Liposome acts as an excellent delivery system that could reduce drug side effects and promote bioavailability. Hyodeoxycholic acid, a cholesterol-like structure, can regulate glucose homeostasis and reduce the blood glucose levels. As an anti-diabetic active ingredient, hyodeoxycholic acid modifies liposomes to make it overcome the disadvantages of metformin as well as enhance the hypoglycemic effect. By adapting the thin-film dispersion method, three types of liposomes with different proportions of hyodeoxycholic acid and metformin were prepared (HDCA:ME-(0.5:1)-Lips, HDCA:ME-(1:1)-Lips, and HDCA:ME-(2:1)-Lips). Further, the liposomes were characterized, and the anti-type 2 diabetes activity of liposomes was evaluated. The results from this study indicated that three types of liposomes exhibited different characteristics—Excessive hyodeoxycholic acid decreased encapsulation efficiency and drug loading. In the in vivo experiments, liposomes could reduce the fasting blood glucose levels, improve glucose tolerance, regulate oxidative stress markers and protect liver tissue in type 2 diabetic mice. These results indicated that HDCA:ME-(1:1)-Lips was the most effective among the three types of liposomes prepared and showed better effects than metformin. Hyodeoxycholic acid can enhance the hypoglycemic effect of metformin and play a suitable role as an excipient in the liposome.
Collapse
Affiliation(s)
- Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuchen Chen
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Xu
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Chen
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhou
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junjing Liu
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.P.); (Q.Y.); Tel.: +86-139-8057-0716 (Q.Y.)
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.P.); (Q.Y.); Tel.: +86-139-8057-0716 (Q.Y.)
| |
Collapse
|
49
|
Yan T, Liu T, Shi L, Yan L, Li Z, Zhang X, Dai X, Sun X, Yang X. Integration of microbial metabolomics and microbiomics uncovers a novel mechanism underlying the antidiabetic property of stachyose. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
50
|
Effect of lotus seed resistant starch on small intestinal flora and bile acids in hyperlipidemic rats. Food Chem 2023; 404:134599. [DOI: 10.1016/j.foodchem.2022.134599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|