1
|
Hakobyan M, Binder H, Arakelyan A. Telomere Maintenance Pathways in Lower-Grade Gliomas: Insights from Genetic Subtypes and Telomere Length Dynamics. Int J Mol Sci 2025; 26:4175. [PMID: 40362411 PMCID: PMC12071676 DOI: 10.3390/ijms26094175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/16/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Telomere maintenance mechanisms (TMMs) play a critical role in cancer biology, particularly in lower-grade gliomas (LGGs), where telomere dynamics and pathway activity remain poorly understood. In this study, we analyzed TCGA-LGG and CGGA datasets, focusing on telomere length variations, pathway activity, and survival data across IDH subtypes. Additional validation was performed using the GEO COPD and GBM datasets, ensuring consistency in data processing and batch effect correction. Our analysis revealed significant differences in TEL pathway activation between Short- and Long-TL groups, emphasizing the central role of TERT in telomere maintenance. In contrast, ALT pathway activation displayed subtype-specific patterns, with IDH-wt tumors exhibiting the highest ALT activity, primarily driven by the RAD51 branch. Validation using CGGA data confirmed these findings, demonstrating consistent TEL and ALT pathway behaviors across datasets. Additionally, genetic subtype analysis revealed substantial telomere length variability associated with ATRX and IDH mutation status. Notably, IDHwt-ATRX WT tumors exhibited the shortest telomere length and the highest ALT pathway activity. These findings highlight distinct telomere regulatory dynamics across genetic subtypes of LGG and provide new insights into potential therapeutic strategies targeting telomere maintenance pathways.
Collapse
Affiliation(s)
- Meline Hakobyan
- Bioinformatics Group, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan 0014, Armenia;
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04103 Leipzig, Germany;
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan 0014, Armenia;
| |
Collapse
|
2
|
Xu F, Yu D, Guo J, Hu J, Zhao Y, Jiang C, Meng X, Cai J, Zhao Y. From pathology to therapy: A comprehensive review of ATRX mutation related molecular functions and disorders. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108537. [PMID: 40250797 DOI: 10.1016/j.mrrev.2025.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
ATRX (alpha-thalassemia/mental retardation, X-linked), a chromatin remodeler, is one of the most commonly mutated genes in human cancer. The ATRX protein functions as a histone chaperone, facilitating the proper folding and assembly of histone proteins into nucleosome cores. Investigations into its molecular mechanisms have significantly advanced our understanding of its roles in diseases associated with chromosomal instability and defective DNA repair. In this comprehensive review, we delineate ATRX's critical function in maintaining heterochromatin integrity and genomic stability under physiological conditions. We further explore the pathogenesis of ATRX-deficient tumors and ATRX syndrome, systematically evaluate current therapeutic strategies for these conditions, and propose novel perspectives on potential targeted therapies for ATRX-mutated malignancies. This review provides useful resource for regarding the etiology and treatment of ATRX deficiency-related diseases.
Collapse
Affiliation(s)
- Fan Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Jiazheng Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Jingze Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Yunlei Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China; The Sixth Affiliated Hospital of Harbin Medical University, #998 AiYing Street, Harbin, Heilongjiang Province 150023, PR China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China.
| | - Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China.
| |
Collapse
|
3
|
Udroiu I, Marinaccio J, Goffi RS, Micheli E, Sgura A. Specificity and sensitivity of ALT-associated markers in cancer cells. FEBS Lett 2025; 599:989-1005. [PMID: 39743493 DOI: 10.1002/1873-3468.15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
Some tumors employ a mechanism called alternative lengthening of telomeres (ALT) to counteract telomere shortening-induced replicative senescence. Several hallmarks are used to identify cell lines and tumors as ALT-positive. Here, we analyzed a panel of ALT-positive and -negative cancer cell lines to investigate the specificity and sensibility of ALT-associated markers. We found that all the markers showed high sensitivity, indicating that cells not showing ALT markers are not ALT cells. Conversely, specificity varied significantly, i.e., many markers yield false positives. Detection of false positives may have influenced previous estimations of ALT incidence among tumors. Moreover, claims on the 'coexistence' of ALT and telomerase perhaps should be reconsidered. The findings prompt further study into the nature of these markers and their roles as either part of the ALT machinery or as by-products.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università degli Studi "Roma Tre", Italy
| | | | | | - Emanuela Micheli
- Dipartimento di Scienze, Università degli Studi "Roma Tre", Italy
| | - Antonella Sgura
- Dipartimento di Scienze, Università degli Studi "Roma Tre", Italy
| |
Collapse
|
4
|
Goncalves T, Cunniffe S, Ma T, Mattis N, Rose A, Kent T, Mole D, Geiller HB, van Bijsterveldt L, Humphrey T, Hammond E, Gibbons R, Clynes D, Rose A. Elevated reactive oxygen species can drive the alternative lengthening of telomeres pathway in ATRX-null cancers. Nucleic Acids Res 2025; 53:gkaf061. [PMID: 39921567 PMCID: PMC11806356 DOI: 10.1093/nar/gkaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
The alternative lengthening of telomeres (ALT) pathway is a telomerase-independent mechanism for immortalization in cancer cells and is commonly activated in low-grade and high-grade glioma, as well as osteosarcoma. The ALT pathway can be activated under various conditions and has often been shown to include mutational loss of ATRX. However, this is insufficient in isolation and so other cellular event must also be implicated. It has been shown that excessive accumulation of DNA:RNA hybrid structures (R-loops) and/or formation of DNA-protein crosslinks (DPCs) can be other important driving factors. The underlying cellular events leading to R-loop and DPC formation in ALT cancer cells to date remain unclear. Here, we demonstrate that excessive cellular reactive oxygen species (ROS) is an important causative factor in the evolution of ALT-telomere maintenance in ATRX-deficient glioma. We identified three sources of elevated ROS in ALT-positive gliomas: co-mutation of SETD2, downregulation of DRG2, and hypoxic tumour microenvironment. We demonstrate that elevated ROS leads to accumulation of R-loops and, crucially, resolution of R-loops by the enzyme RNase H1 prevents ALT pathway activity in cells exposed to elevated ROS. Further, we found a possible causal link between the formation of R-loops and the accumulation of DPCs, in particular, formation of TOP1 complexes covalently linked to DNA (Top1cc). We also demonstrate that elevation of ROS can trigger over-activity of the ALT pathway in osteosarcoma and glioma cell lines, resulting in excessive DNA damage and cell death. This work presents important mechanistic insights into the endogenous origin of excessive R-loops and DPCs in ALT-positive cancers, as well as highlighting potential novel therapeutic approaches in these difficult-to-treat cancer types.
Collapse
Affiliation(s)
- Tomas Goncalves
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Siobhan Cunniffe
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Tiffany S Ma
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Natalie Mattis
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Andrew W Rose
- Department of Physics, Faculty of Natural Sciences, Imperial College, London, SW7 2BW, UK
| | - Thomas Kent
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - David R Mole
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | | | - Ester M Hammond
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - David Clynes
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Anna M Rose
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
5
|
Espejo Valle-Inclan J, De Noon S, Trevers K, Elrick H, van Belzen IAEM, Zumalave S, Sauer CM, Tanguy M, Butters T, Muyas F, Rust AG, Amary F, Tirabosco R, Giess A, Sosinsky A, Elgar G, Flanagan AM, Cortés-Ciriano I. Ongoing chromothripsis underpins osteosarcoma genome complexity and clonal evolution. Cell 2025; 188:352-370.e22. [PMID: 39814020 DOI: 10.1016/j.cell.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/05/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025]
Abstract
Osteosarcoma is the most common primary cancer of the bone, with a peak incidence in children and young adults. Using multi-region whole-genome sequencing, we find that chromothripsis is an ongoing mutational process, occurring subclonally in 74% of osteosarcomas. Chromothripsis generates highly unstable derivative chromosomes, the ongoing evolution of which drives the acquisition of oncogenic mutations, clonal diversification, and intra-tumor heterogeneity across diverse sarcomas and carcinomas. In addition, we characterize a new mechanism, termed loss-translocation-amplification (LTA) chromothripsis, which mediates punctuated evolution in about half of pediatric and adult high-grade osteosarcomas. LTA chromothripsis occurs when a single double-strand break triggers concomitant TP53 inactivation and oncogene amplification through breakage-fusion-bridge cycles. It is particularly prevalent in osteosarcoma and is not detected in other cancers driven by TP53 mutation. Finally, we identify the level of genome-wide loss of heterozygosity as a strong prognostic indicator for high-grade osteosarcoma.
Collapse
Affiliation(s)
| | - Solange De Noon
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Katherine Trevers
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Hillary Elrick
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Ianthe A E M van Belzen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Sonia Zumalave
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Mélanie Tanguy
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | - Thomas Butters
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Alistair G Rust
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Fernanda Amary
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Roberto Tirabosco
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Adam Giess
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | | | - Greg Elgar
- Scientific Research and Development, Genomics England, One Canada Square, London E14 5AB, UK
| | - Adrienne M Flanagan
- Research Department of Pathology, University College London Cancer Institute, London WC1E 6DD, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK.
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
6
|
Abstract
In recent years, significant advances have been made in understanding the intricate details of the mechanisms underlying alternative lengthening of telomeres (ALT). Studies of a specialized DNA strand break repair mechanism, known as break-induced replication, and the advent of telomere-specific DNA damaging strategies and proteomic methodologies to profile the ribonucleoprotein composition of telomeres enabled the discovery of networks of proteins that coordinate the stepwise homology-directed DNA repair and DNA synthesis processes of ALT. These networks couple mediators of homologous recombination, DNA template-switching, long-range template-directed DNA synthesis, and DNA strand resolution with SUMO-dependent liquid condensate formation to create discrete nuclear bodies where telomere extension occurs. This review will discuss the recent findings of how these networks may cooperate to mediate telomere extension by the ALT mechanism and their impact on telomere function and integrity in ALT cancer cells.
Collapse
Affiliation(s)
- Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
7
|
Burrow TA, Koneru B, Macha SJ, Sun W, Barr FG, Triche TJ, Reynolds CP. Prevalence of alternative lengthening of telomeres in pediatric sarcomas determined by the telomeric DNA C-circle assay. Front Oncol 2024; 14:1399442. [PMID: 39224814 PMCID: PMC11366626 DOI: 10.3389/fonc.2024.1399442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Alternative lengthening of telomeres (ALT) occurs in sarcomas and ALT cancers share common mechanisms of therapy resistance or sensitivity. Telomeric DNA C-circles are self-primed circular telomeric repeats detected with a PCR assay that provide a sensitive and specific biomarker exclusive to ALT cancers. We have previously shown that 23% of high-risk neuroblastomas are of the ALT phenotype. Here, we investigate the frequency of ALT in Ewing's family sarcoma (EFS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) by analyzing DNA from fresh frozen primary tumor samples utilizing the real-time PCR C-circle Assay (CCA). Methods We reviewed prior publications on ALT detection in pediatric sarcomas. DNA was extracted from fresh frozen primary tumors, fluorometrically quantified, C-circles were selectively enriched by isothermal rolling cycle amplification and detected by real-time PCR. Results The sample cohort consisted of DNA from 95 EFS, 191 RMS, and 87 OS primary tumors. One EFS and 4 RMS samples were inevaluable. Using C-circle positive (CC+) cutoffs previously defined for high-risk neuroblastoma, we observed 0 of 94 EFS, 5 of 187 RMS, and 62 of 87 OS CC+ tumors. Conclusions Utilizing the ALT-specific CCA we observed ALT in 0% of EFS, 2.7% of RMS, and 71% of OS. These data are comparable to prior studies in EFS and OS using less specific ALT markers. The CCA can provide a robust and sensitive means of identifying ALT in sarcomas and has potential as a companion diagnostic for ALT targeted therapeutics.
Collapse
Affiliation(s)
- Trevor A. Burrow
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
- Department of Translational Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Balakrishna Koneru
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
| | - Shawn J. Macha
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center Graduate School of Biomedical Sciences, Lubbock, TX, United States
| | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, United States
| | - Frederic G. Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, United States
| | - Timothy J. Triche
- Children’s Hospital Los Angles, Department of Pathology and Laboratory Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - C. Patrick Reynolds
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
- Department of Translational Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center Graduate School of Biomedical Sciences, Lubbock, TX, United States
| |
Collapse
|
8
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Muyas F, Rodriguez MJG, Cascão R, Afonso A, Sauer CM, Faria CC, Cortés-Ciriano I, Flores I. The ALT pathway generates telomere fusions that can be detected in the blood of cancer patients. Nat Commun 2024; 15:82. [PMID: 38167290 PMCID: PMC10762111 DOI: 10.1038/s41467-023-44287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Telomere fusions (TFs) can trigger the accumulation of oncogenic alterations leading to malignant transformation and drug resistance. Despite their relevance in tumour evolution, our understanding of the patterns and consequences of TFs in human cancers remains limited. Here, we characterize the rates and spectrum of somatic TFs across >30 cancer types using whole-genome sequencing data. TFs are pervasive in human tumours with rates varying markedly across and within cancer types. In addition to end-to-end fusions, we find patterns of TFs that we mechanistically link to the activity of the alternative lengthening of telomeres (ALT) pathway. We show that TFs can be detected in the blood of cancer patients, which enables cancer detection with high specificity and sensitivity even for early-stage tumours and cancers of high unmet clinical need. Overall, we report a genomic footprint that enables characterization of the telomere maintenance mechanism of tumours and liquid biopsy analysis.
Collapse
Affiliation(s)
- Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Afonso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Claudia C Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK.
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
10
|
Sung S, Kim E, Niida H, Kim C, Lee J. Distinct characteristics of two types of alternative lengthening of telomeres in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:9122-9143. [PMID: 37496110 PMCID: PMC10516625 DOI: 10.1093/nar/gkad617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Telomere length must be maintained in actively dividing cells to avoid cellular arrest or death. In the absence of telomerase activity, activation of alternative lengthening of telomeres (ALT) allows the maintenance of telomeric length and prolongs the cellular lifespan. Our previous studies have established two types of ALT survivors from mouse embryonic stem cells. The key differences between these ALT survivors are telomere-constituting sequences: non-telomeric sequences and canonical telomeric repeats, with each type of ALT survivors being referred to as type I and type II, respectively. We explored how the characteristics of the two types of ALT lines reflect their fates using multi-omics approaches. The most notable gene expression signatures of type I and type II ALT cell lines were chromatin remodelling and DNA repair, respectively. Compared with type II cells, type I ALT cells accumulated more mutations and demonstrated persistent telomere instability. These findings indicate that cells of the same origin have separate routes for survival, thus providing insights into the plasticity of crisis-suffering cells and cancers.
Collapse
Affiliation(s)
- Sanghyun Sung
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| | - Eunkyeong Kim
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Daejeon 34141, Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-ro 1, Seoul 08826, Korea
| |
Collapse
|
11
|
Sharaf R, Jin DX, Grady J, Napier C, Ebot E, Frampton GM, Albacker LA, Thomas DM, Montesion M. A pan-sarcoma landscape of telomeric content shows that alterations in RAD51B and GID4 are associated with higher telomeric content. NPJ Genom Med 2023; 8:26. [PMID: 37709802 PMCID: PMC10502097 DOI: 10.1038/s41525-023-00369-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Tumor cells need to activate a telomere maintenance mechanism, enabling limitless replication. The bulk of evidence supports that sarcomas predominantly use alternative lengthening of telomeres (ALT) mechanism, commonly associated with alterations in ATRX and DAXX. In our dataset, only 12.3% of sarcomas harbored alterations in these genes. Thus, we checked for the presence of other genomic determinants of high telomeric content in sarcomas. Our dataset consisted of 13555 sarcoma samples, sequenced as a part of routine clinical care on the FoundationOne®Heme platform. We observed a median telomeric content of 622.3 telomeric reads per GC-matched million reads (TRPM) across all samples. In agreement with previous studies, telomeric content was significantly higher in ATRX altered and POT1 altered sarcomas. We further observed that sarcomas with alterations in RAD51B or GID4 were enriched in samples with high telomeric content, specifically within uterus leiomyosarcoma for RAD51B and soft tissue sarcoma (not otherwise specified, nos) for GID4, Furthermore, RAD51B and POT1 alterations were mutually exclusive with ATRX and DAXX alterations, suggestive of functional redundancy. Our results propose a role played by RAD51B and GID4 in telomere elongation in sarcomas and open research opportunities for agents aimed at targeting this critical pathway in tumorigenesis.
Collapse
Affiliation(s)
| | | | - John Grady
- Omico Australian Genomic Cancer Medicine, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Christine Napier
- Omico Australian Genomic Cancer Medicine, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Ericka Ebot
- Foundation Medicine Inc., Cambridge, MA, USA
| | | | | | - David M Thomas
- Omico Australian Genomic Cancer Medicine, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
12
|
Stundon JL, Ijaz H, Gaonkar KS, Kaufman RS, Jin R, Karras A, Vaksman Z, Kim J, Corbett RJ, Lueder MR, Miller DP, Guo Y, Santi M, Li M, Lopez G, Storm PB, Resnick AC, Waanders AJ, MacFarland SP, Stewart DR, Diskin SJ, Rokita JL, Cole KA. Alternative lengthening of telomeres (ALT) in pediatric high-grade gliomas can occur without ATRX mutation and is enriched in patients with pathogenic germline mismatch repair (MMR) variants. Neuro Oncol 2023; 25:1331-1342. [PMID: 36541551 PMCID: PMC10326481 DOI: 10.1093/neuonc/noac278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To achieve replicative immortality, most cancers develop a telomere maintenance mechanism, such as reactivation of telomerase or alternative lengthening of telomeres (ALT). There are limited data on the prevalence and clinical significance of ALT in pediatric brain tumors, and ALT-directed therapy is not available. METHODS We performed C-circle analysis (CCA) on 579 pediatric brain tumors that had corresponding tumor/normal whole genome sequencing through the Open Pediatric Brain Tumor Atlas (OpenPBTA). We detected ALT in 6.9% (n = 40/579) of these tumors and completed additional validation by ultrabright telomeric foci in situ on a subset of these tumors. We used CCA to validate TelomereHunter for computational prediction of ALT status and focus subsequent analyses on pediatric high-grade gliomas (pHGGs) Finally, we examined whether ALT is associated with recurrent somatic or germline alterations. RESULTS ALT is common in pHGGs (n = 24/63, 38.1%), but occurs infrequently in other pediatric brain tumors (<3%). Somatic ATRX mutations occur in 50% of ALT+ pHGGs and in 30% of ALT- pHGGs. Rare pathogenic germline variants in mismatch repair (MMR) genes are significantly associated with an increased occurrence of ALT. CONCLUSIONS We demonstrate that ATRX is mutated in only a subset of ALT+ pHGGs, suggesting other mechanisms of ATRX loss of function or alterations in other genes may be associated with the development of ALT in these patients. We show that germline variants in MMR are associated with the development of ALT in patients with pHGG.
Collapse
Affiliation(s)
- Jennifer L Stundon
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
| | - Heba Ijaz
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania,USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Rebecca S Kaufman
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Anastasios Karras
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Zalman Vaksman
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland,USA
| | - Ryan J Corbett
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Matthew R Lueder
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Daniel P Miller
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Marilyn Li
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Gonzalo Lopez
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Angela J Waanders
- Division of Hematology, Oncology, NeuroOncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Illinois,USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,USA
| | - Suzanne P MacFarland
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland,USA
| | - Sharon J Diskin
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Kristina A Cole
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,USA
| |
Collapse
|
13
|
Umaru B, Sengupta S, Senthil Kumar S, Drissi R. Alternative Lengthening of Telomeres in Pediatric High-Grade Glioma and Therapeutic Implications. Cancers (Basel) 2023; 15:3070. [PMID: 37370681 DOI: 10.3390/cancers15123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs), including diffuse intrinsic pontine glioma (DIPG), are highly aggressive tumors with dismal prognoses despite multimodal therapy including surgery, radiation therapy, and chemotherapy. To achieve cellular immortality cancer cells must overcome replicative senescence and apoptosis by activating telomere maintenance mechanisms (TMMs) through the reactivation of telomerase activity or using alternative lengthening of telomere (ALT) pathways. Although the ALT phenotype is more prevalent in pHGGs compared to adult HGGs, the molecular pathway and the prognostic significance of ALT activation are not well understood in pHGGs. Here, we report the heterogeneity of TMM in pHGGs and their association with genetic alterations. Additionally, we show that sensitivity to the protein kinase ataxia telangiectasia- and RAD3-related protein (ATR) inhibitor and the ATR downstream target CHK1 is not specific to pHGG ALT-positive cells. Together, these findings underscore the need for novel therapeutic strategies to target ALT in pHGG tumors.
Collapse
Affiliation(s)
- Banlanjo Umaru
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Satarupa Sengupta
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Carson LM, Flynn RL. Highlighting vulnerabilities in the alternative lengthening of telomeres pathway. Curr Opin Pharmacol 2023; 70:102380. [PMID: 37149932 PMCID: PMC10247456 DOI: 10.1016/j.coph.2023.102380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/03/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
The alternative lengthening of telomeres (ALT) pathway is a telomere elongation mechanism found in a small but often aggressive subset of cancers. Dependent on break-induced replication, telomere extension in ALT-positive cells relies on a baseline level of DNA replication stress to initiate elongation events. This results in an elevated level of DNA damage and presents a possible vulnerability to be exploited in the development of ALT-targeted cancer therapies. Currently, there are no treatment options that target the ALT mechanism or that are specific for ALT-positive tumors. Here, we review recent developments and promising directions in the development of ALT-targeted therapeutics, many of which involve tipping the balance towards inhibition or exacerbation of ALT activity to selectively target these cells.
Collapse
Affiliation(s)
- Lisa M Carson
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Rachel L Flynn
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
15
|
Jones CY, Williams CL, Moreno SP, Morris DK, Mondello C, Karlseder J, Bertuch AA. Hyperextended telomeres promote formation of C-circle DNA in telomerase positive human cells. J Biol Chem 2023; 299:104665. [PMID: 37003504 PMCID: PMC10235436 DOI: 10.1016/j.jbc.2023.104665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/01/2023] Open
Abstract
Telomere length maintenance is crucial to cancer cell immortality. Up to 15% of cancers utilize a telomerase-independent, recombination-based mechanism termed alternative lengthening of telomeres (ALT). Currently, the primary ALT biomarker is the C-circle, a type of circular DNA with extrachromosomal telomere repeats (cECTRs). How C-circles form is not well characterized. We investigated C-circle formation in the human cen3tel cell line, a long-telomere, telomerase+ (LTT+) cell line with progressively hyper-elongated telomeres (up to ∼100 kb). cECTR signal was observed in 2D gels and C-circle assays but not t-circle assays, which also detect circular DNA with extrachromosomal telomere repeats. Telomerase activity and C-circle signal were not separable in the analysis of clonal populations, consistent with C-circle production occurring within telomerase+ cells. We observed similar cECTR results in two other LTT+ cell lines, HeLa1.3 (∼23 kb telomeres) and HeLaE1 (∼50 kb telomeres). In LTT+ cells, telomerase activity did not directly impact C-circle signal; instead, C-circle signal correlated with telomere length. LTT+ cell lines were less sensitive to hydroxyurea than ALT+ cell lines, suggesting that ALT status is a stronger contributor to replication stress levels than telomere length. Additionally, the DNA repair-associated protein FANCM did not suppress C-circles in LTT+ cells as it does in ALT+ cells. Thus, C-circle formation may be driven by telomere length, independently of telomerase and replication stress, highlighting limitations of C-circles as a stand-alone ALT biomarker.
Collapse
Affiliation(s)
- Celina Y Jones
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas, USA
| | - Christopher L Williams
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas, USA
| | - Sara Priego Moreno
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Danna K Morris
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas, USA
| | - Chiara Mondello
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza, National Research Council, Pavia, Italy
| | - Jan Karlseder
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Alison A Bertuch
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas, USA.
| |
Collapse
|
16
|
Aguilera P, Dubarry M, Géli V, Simon MN. NPCs and APBs: two HUBs of non-canonical homology-based recombination at telomeres? Cell Cycle 2023; 22:1163-1168. [PMID: 37128641 PMCID: PMC10193864 DOI: 10.1080/15384101.2023.2206350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/03/2023] Open
Abstract
Apart from a few rare exceptions, the maintenance of functional telomeres by recombination-based mechanisms is restricted to accidental and/or pathological situations. Originally described in the yeast S. cerevisiae, this mode of telomere repair has gained interest with the discovery of telomerase negative cancers that use alternative lengthening of telomeres (ALT cancer) dependent on homologous recombination. In both yeast and humans, it has been shown that recombination at telomeres is spatially regulated and occurs preferentially at the nuclear pore complexes (NPCs) in yeast and at ALT-associated promyelocytic leukemia nuclear bodies (APBs) in human cells. Here, we discuss the potential relationships between these two membrane-less structures and their role in enabling unconventional recombination pathways.
Collapse
Affiliation(s)
- Paula Aguilera
- Centro Andaluz de Biologia Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Cientificas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Marion Dubarry
- MAP Laboratory, INSA Lyon, Claude Bernard University UMR5240, Villeurbanne, France
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Equipe labellisee Ligue, Aix Marseille University, Marseille, France
| | - Marie-Noëlle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Equipe labellisee Ligue, Aix Marseille University, Marseille, France
| |
Collapse
|
17
|
Clatterbuck Soper SF, Meltzer PS. ATRX/DAXX: Guarding the Genome against the Hazards of ALT. Genes (Basel) 2023; 14:genes14040790. [PMID: 37107548 PMCID: PMC10137841 DOI: 10.3390/genes14040790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Proliferating cells must enact a telomere maintenance mechanism to ensure genomic stability. In a subset of tumors, telomeres are maintained not by telomerase, but through a homologous recombination-based mechanism termed Alternative Lengthening of Telomeres or ALT. The ALT process is linked to mutations in the ATRX/DAXX/H3.3 histone chaperone complex. This complex is responsible for depositing non-replicative histone variant H3.3 at pericentric and telomeric heterochromatin but has also been found to have roles in ameliorating replication in repeat sequences and in promoting DNA repair. In this review, we will discuss ways in which ATRX/DAXX helps to protect the genome, and how loss of this complex allows ALT to take hold.
Collapse
|
18
|
Sohn EJ, Goralsky JA, Shay JW, Min J. The Molecular Mechanisms and Therapeutic Prospects of Alternative Lengthening of Telomeres (ALT). Cancers (Basel) 2023; 15:cancers15071945. [PMID: 37046606 PMCID: PMC10093677 DOI: 10.3390/cancers15071945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
As detailed by the end replication problem, the linear ends of a cell's chromosomes, known as telomeres, shorten with each successive round of replication until a cell enters into a state of growth arrest referred to as senescence. To maintain their immortal proliferation capacity, cancer cells must employ a telomere maintenance mechanism, such as telomerase activation or the Alternative Lengthening of Telomeres pathway (ALT). With only 10-15% of cancers utilizing the ALT mechanism, progress towards understanding its molecular components and associated hallmarks has only recently been made. This review analyzes the advances towards understanding the ALT pathway by: (1) detailing the mechanisms associated with engaging the ALT pathway as well as (2) identifying potential therapeutic targets of ALT that may lead to novel cancer therapeutic treatments. Collectively, these studies indicate that the ALT molecular mechanisms involve at least two distinct pathways induced by replication stress and damage at telomeres. We suggest exploiting tumor dependency on ALT is a promising field of study because it suggests new approaches to ALT-specific therapies for cancers with poorer prognosis. While substantial progress has been made in the ALT research field, additional progress will be required to realize these advances into clinical practices to treat ALT cancers and improve patient prognoses.
Collapse
Affiliation(s)
- Eric J Sohn
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia A Goralsky
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
19
|
Robinson NJ, Schiemann WP. Amplification and Quantitation of Telomeric Extrachromosomal Circles. Bio Protoc 2023; 13:e4627. [PMID: 36908640 PMCID: PMC9993076 DOI: 10.21769/bioprotoc.4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
Telomeres are structures that cap the ends of linear chromosomes and play critical roles in maintaining genome integrity and establishing the replicative lifespan of cells. In stem and cancer cells, telomeres are actively elongated by either telomerase or the alternative lengthening of telomeres (ALT) pathway. This pathway is characterized by several hallmark features, including extrachromosomal C-rich circular DNAs that can be probed to assess ALT activity. These so-called C-circles are the product of ALT-associated DNA damage repair processes and simultaneously serve as potential templates for iterative telomere extension. This bifunctional nature makes C-circles highly sensitive and specific markers of ALT. Here, we describe a C-circle assay, adapted from previous reports, that enables the quantitation of C-circle abundance in mammalian cells subjected to a wide range of experimental perturbations. This protocol combines the Quick C-circle Preparation (QCP) method for DNA isolation with fluorometry-based DNA quantification, rolling circle amplification (RCA), and detection of C-circles using quantitative PCR. Moreover, the inclusion of internal standards with well-characterized telomere maintenance mechanisms (TMMs) allows for the reliable benchmarking of cells with unknown TMM status. Overall, our work builds upon existing protocols to create a generalizable workflow for in vitro C-circle quantitation and ascertainment of TMM identity.
Collapse
Affiliation(s)
- Nathaniel J Robinson
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - William P Schiemann
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Jones CY, Williams CL, Moreno SP, Morris DK, Mondello C, Karlseder J, Bertuch AA. Hyperextended telomeres promote C-circle formation in telomerase positive human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525615. [PMID: 36747763 PMCID: PMC9900909 DOI: 10.1101/2023.01.26.525615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Telomere length maintenance is crucial to cancer cell immortality. Up to 15% of cancers utilize a telomerase-independent, recombination-based mechanism termed alternative lengthening of telomeres (ALT). The primary ALT biomarker is the C-circle, a type of circular DNA with extrachromosomal telomere repeats (cECTRs). How C-circles form is not well characterized. To investigate C-circle formation in telomerase+ cells, we studied the human cen3tel cell line, in which telomeres progressively hyper-elongated post TERT -immortalization. cECTR signal was observed in 2D gels and C-circle assays but not t-circle assays, which also detect cECTRs. Telomerase activity and C-circle signal were not separable in the analysis of clonal populations, consistent with C-circle production occurring within telomerase+ cells. Two other long telomere, telomerase+ (LTT+) cell lines, HeLa1.3 (~23 kb telomeres) and HeLaE1 (~50 kb telomeres), had similar cECTR properties. Telomerase activity did not directly impact C-circle signal in LTT+ cells; instead, C-circle signal correlated with telomere length. LTT+ lines were less sensitive to hydroxyurea than an ALT+ cell line, suggesting that ALT status is a stronger contributor to replication stress levels than telomere length. Additionally, FANCM did not suppress C-circles in LTT+ cells as it does in ALT+ cells. Thus, C-circle formation may be driven by telomere length, independently of telomerase and replication stress, highlighting limitations of C-circles as a stand-alone ALT biomarker.
Collapse
Affiliation(s)
- Celina Y. Jones
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Christopher L. Williams
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Sara P. Moreno
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Danna K. Morris
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Chiara Mondello
- Institute of Molecular Genetics, Luigi Luca Cavalli Sforza, National Research Council, Pavia, Italy I-27100
| | - Jan Karlseder
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Alison A. Bertuch
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
21
|
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 2022; 22:515-532. [PMID: 35790854 DOI: 10.1038/s41568-022-00490-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.
Collapse
Affiliation(s)
- Jixuan Gao
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
22
|
Yu EY, Cheung NKV, Lue NF. Connecting telomere maintenance and regulation to the developmental origin and differentiation states of neuroblastoma tumor cells. J Hematol Oncol 2022; 15:117. [PMID: 36030273 PMCID: PMC9420296 DOI: 10.1186/s13045-022-01337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature that distinguishes clinically high-risk neuroblastoma from low-risk tumors is telomere maintenance. Specifically, neuroblastoma tumors with either active telomerase or alternative lengthening of telomeres exhibit aggressive growth characteristics that lead to poor outcomes, whereas tumors without telomere maintenance can be managed with observation or minimal treatment. Even though the need for cancer cells to maintain telomere DNA-in order to sustain cell proliferation-is well established, recent studies suggest that the neural crest origin of neuroblastoma may enforce unique relationships between telomeres and tumor malignancy. Specifically in neuroblastoma, telomere structure and telomerase activity are correlated with the adrenergic/mesenchymal differentiation states, and manipulating telomerase activity can trigger tumor cell differentiation. Both findings may reflect features of normal neural crest development. This review summarizes recent advances in the characterization of telomere structure and telomere maintenance mechanisms in neuroblastoma and discusses the findings in the context of relevant literature on telomeres during embryonic and neural development. Understanding the canonical and non-canonical roles of telomere maintenance in neuroblastoma could reveal vulnerabilities for telomere-directed therapies with potential applications to other pediatric malignancies.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
23
|
de Nonneville A, Salas S, Bertucci F, Sobinoff AP, Adélaïde J, Guille A, Finetti P, Noble JR, Churikov D, Chaffanet M, Lavit E, Pickett HA, Bouvier C, Birnbaum D, Reddel RR, Géli V. TOP3A amplification and ATRX inactivation are mutually exclusive events in pediatric osteosarcomas using ALT. EMBO Mol Med 2022; 14:e15859. [PMID: 35920001 PMCID: PMC9549729 DOI: 10.15252/emmm.202215859] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
In some types of cancer, telomere length is maintained by the alternative lengthening of telomeres (ALT) mechanism. In many ALT cancers, the α-thalassemia/mental retardation syndrome X-linked (ATRX) gene is mutated leading to the conclusion that the ATRX complex represses ALT. Here, we report that most high-grade pediatric osteosarcomas maintain their telomeres by ALT, and that the majority of these ALT tumors are ATRX wild-type (wt) and instead carry an amplified 17p11.2 chromosomal region containing TOP3A. We found that TOP3A was overexpressed in the ALT-positive ATRX-wt tumors consistent with its amplification. We demonstrated the functional significance of these results by showing that TOP3A overexpression in ALT cancer cells countered ATRX-mediated ALT inhibition and that TOP3A knockdown disrupted the ALT phenotype in ATRX-wt cells. Moreover, we report that TOP3A is required for proper BLM localization and promotes ALT DNA synthesis in ALT cell lines. Collectively, our results identify TOP3A as a major ALT player and potential therapeutic target.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance,Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia,Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Sébastien Salas
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - François Bertucci
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - José Adélaïde
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Arnaud Guille
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Pascal Finetti
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Jane R Noble
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Dimitri Churikov
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| | - Max Chaffanet
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Elise Lavit
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Corinne Bouvier
- Department of PathologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Roger R Reddel
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| |
Collapse
|
24
|
Frank L, Rademacher A, Mücke N, Tirier SM, Koeleman E, Knotz C, Schumacher S, Stainczyk S, Westermann F, Fröhling S, Chudasama P, Rippe K. ALT-FISH quantifies alternative lengthening of telomeres activity by imaging of single-stranded repeats. Nucleic Acids Res 2022; 50:e61. [PMID: 35188570 PMCID: PMC9226501 DOI: 10.1093/nar/gkac113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/14/2022] Open
Abstract
Alternative lengthening of telomeres (ALT) occurs in ∼10% of cancer entities. However, little is known about the heterogeneity of ALT activity since robust ALT detection assays with high-throughput in situ readouts are lacking. Here, we introduce ALT-FISH, a method to quantitate ALT activity in single cells from the accumulation of single-stranded telomeric DNA and RNA. It involves a one-step fluorescent in situ hybridization approach followed by fluorescence microscopy imaging. Our method reliably identified ALT in cancer cell lines from different tumor entities and was validated in three established models of ALT induction and suppression. Furthermore, we successfully applied ALT-FISH to spatially resolve ALT activity in primary tissue sections from leiomyosarcoma and neuroblastoma tumors. Thus, our assay provides insights into the heterogeneity of ALT tumors and is suited for high-throughput applications, which will facilitate screening for ALT-specific drugs.
Collapse
Affiliation(s)
- Lukas Frank
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Anne Rademacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Norbert Mücke
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Stephan M Tirier
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Emma Koeleman
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Caroline Knotz
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Sabine A Stainczyk
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Priya Chudasama
- Precision Sarcoma Research Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| |
Collapse
|
25
|
Bhargava R, Lynskey ML, O’Sullivan RJ. New twists to the ALTernative endings at telomeres. DNA Repair (Amst) 2022; 115:103342. [DOI: 10.1016/j.dnarep.2022.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
|
26
|
Barroso-González J, García-Expósito L, Galaviz P, Lynskey ML, Allen JAM, Hoang S, Watkins SC, Pickett HA, O'Sullivan RJ. Anti-recombination function of MutSα restricts telomere extension by ALT-associated homology-directed repair. Cell Rep 2021; 37:110088. [PMID: 34879271 PMCID: PMC8724847 DOI: 10.1016/j.celrep.2021.110088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 11/10/2021] [Indexed: 01/02/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) is a telomere-elongation mechanism observed in ~15% of cancer subtypes. Current models indicate that ALT is mediated by homology-directed repair mechanisms. By disrupting MSH6 gene expression, we show that the deficiency of MutSα (MSH2/MSH6) DNA mismatch repair complex causes striking telomere hyperextension. Mechanistically, we show MutSα is specifically recruited to telomeres in ALT cells by associating with the proliferating-cell nuclear antigen (PCNA) subunit of the ALT telomere replisome. We also provide evidence that MutSα counteracts Bloom (BLM) helicase, which adopts a crucial role in stabilizing hyper-extended telomeres and maintaining the survival of MutSα-deficient ALT cancer cells. Lastly, we propose a model in which MutSα deficiency impairs heteroduplex rejection, leading to premature initiation of telomere DNA synthesis that coincides with an accumulation of telomere variant repeats (TVRs). These findings provide evidence that the MutSα DNA mismatch repair complex acts to restrain unwarranted ALT. Barroso-Gonzalez et al. show that the mismatch repair complex MutSα restricts the alternative lengthening of telomeres (ALT) pathway in cancer cells. MutSα has an anti-recombination function and limits recombination between heteroduplex sequences at telomeres, in part by counteracting the Bloom helicase (BLM).
Collapse
Affiliation(s)
- Jonathan Barroso-González
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Laura García-Expósito
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Pablo Galaviz
- Bioinformatics Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Michelle Lee Lynskey
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - SongMy Hoang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
27
|
Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma. Cancers (Basel) 2021; 13:cancers13194758. [PMID: 34638246 PMCID: PMC8507560 DOI: 10.3390/cancers13194758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Telomere maintenance involving TERT and ATRX genes has been recently described in metastatic pheochromocytoma and paraganglioma, reinforcing the importance of immortalization mechanisms in the progression of these tumors. Thus, the aim of this study was to analyze additional telomere-related genes to uncover potential new markers capable of identifying metastatic-risk patients more accurately. After analyzing 29 telomere-related genes, we were able to validate the predictive value of TERT and ATRX in mPPGL progression. In addition, we were able to identify NOP10 as a novel prognostic risk marker of mPPGLs, which also facilitates telomerase-dependent telomere length maintenance in these tumors. Interestingly, NOP10 overexpression assessment by IHC could be easily included within the current battery of markers for stratifying PPGL patients to fine-tune their clinical diagnoses. Abstract One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients.
Collapse
|
28
|
Churikov D, Géli V. RAP1 moonlights to activate NF-κB and Notch in ALT. Sci Signal 2021; 14:eabj1166. [PMID: 34187904 DOI: 10.1126/scisignal.abj1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cancer cells activate either telomerase or telomere recombination (ALT) to maintain telomere length and achieve immortalization. In this issue of Science Signaling, Robinson et al. reveal an unanticipated role of the protein SLX4IP in the SUMOylation of RAP1, which enhances its extratelomeric function in activating an NF-κB-Notch signaling axis that favors ALT.
Collapse
Affiliation(s)
- Dmitri Churikov
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, 13273 Marseille, France
- Ligue Nationale Contre le Cancer (Equipe labellisée), 75103 Paris, France
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, 13273 Marseille, France.
- Ligue Nationale Contre le Cancer (Equipe labellisée), 75103 Paris, France
| |
Collapse
|
29
|
Imran SAM, Yazid MD, Idrus RBH, Maarof M, Nordin A, Razali RA, Lokanathan Y. Is There an Interconnection between Epithelial-Mesenchymal Transition (EMT) and Telomere Shortening in Aging? Int J Mol Sci 2021; 22:ijms22083888. [PMID: 33918710 PMCID: PMC8070110 DOI: 10.3390/ijms22083888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks. It was later discovered that EMT holds greater potential in areas other than the early development of cells and tissues since it also plays a vital role in wound healing and cancer development. EMT can be classified into three types based on physiological functions. EMT type 3, which involves neoplastic development and metastasis, has been the most thoroughly explored. As EMT is often found in cancer stem cells, most research has focused on its association with other factors involving cancer progression, including telomeres. However, as telomeres are also mainly involved in aging, any possible interaction between the two would be worth noting, especially as telomere dysfunction also contributes to cancer and other age-related diseases. Ascertaining the balance between degeneration and cancer development is crucial in cell biology, in which telomeres function as a key regulator between the two extremes. The essential roles that EMT and telomere protection have in aging reveal a potential mutual interaction that has not yet been explored, and which could be used in disease therapy. In this review, the known functions of EMT and telomeres in aging are discussed and their potential interaction in age-related diseases is highlighted.
Collapse
Affiliation(s)
- Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Abid Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Rabiatul Adawiyah Razali
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Correspondence: ; Tel.: +60-391457704
| |
Collapse
|