1
|
Singh P, Korevaar PA. Predator-Prey Behavior of Droplets Propelling Through Self-Generated Channels in Crystalline Surfactant Layers. Angew Chem Int Ed Engl 2025:e202502352. [PMID: 40197766 DOI: 10.1002/anie.202502352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/10/2025]
Abstract
Motile droplets provide an attractive platform for liquid matter-based applications and protocell analogues displaying life-like features. The functionality of collectively operating droplets increases by the advance of well-designed (physico)chemical systems directing droplet-droplet interactions. Here, we report a strategy based on crystalline surfactant layers at air/water interfaces, which sustain the propulsion of floating droplets and at the same time shape the paths for other droplets attracted by them. First, we show how decylamine forms a closed, crystalline layer that remains at the air/water interface. Second, we demonstrate how aldehyde-based oil droplets react to decylamine in the crystalline layer by forming an imine, causing the droplets to move through the layer while leaving behind an open channel (comparable to "Pac-Man"). Third, we introduce tri(ethylene glycol) monododecylether (C12E3) droplets in the crystalline layer. The crystalline layer suppresses the motion of the C12E3 droplets, however, the aldehyde droplets create surface tension gradients upon depletion of surfactants from the air/water interface, thereby driving Marangoni flows that attract the C12E3 droplets as well as the myelin filaments they grow: Causing the C12E3 droplets to chase, and ultimately catch, the aldehyde droplets along the channels they have created, featuring a predator-prey analogy established at an air/water interface.
Collapse
Affiliation(s)
- Priyanshu Singh
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
2
|
Ramesh P, Chen Y, Räder P, Morsbach S, Jalaal M, Maass CC. Frozen by Heating: Temperature Controlled Dynamic States in Droplet Microswimmers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416813. [PMID: 40040287 PMCID: PMC12004900 DOI: 10.1002/adma.202416813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/15/2025] [Indexed: 03/06/2025]
Abstract
Self-propelling active matter relies on the conversion of energy from the undirected, nanoscopic scale to directed, macroscopic motion. One of the challenges in the design of synthetic active matter lies in the control of dynamic states, or motility gaits. Here, an experimental system of self-propelling droplets with thermally controllable and reversible dynamic states is presented, from unsteady over meandering to persistent to arrested motion. These states are known to depend on the Péclet number of the molecular process powering the motion, which can now be tuned by using a temperature sensitive mixture of surfactants as propulsion fuel. The droplet dynamics are quantified by analyzing flow and chemical fields for the individual states, comparing them to canonical models for autophoretic particles. In the context of these models, in situ, the fundamental first broken symmetry that translates an isotropic, immotile base state to self-propelled motility, is experimentally demonstrated.
Collapse
Affiliation(s)
- Prashanth Ramesh
- Physics of Fluids GroupMax Planck Center for Complex Fluid Dynamics and J. M. Burgers Center for Fluid DynamicsUniversity of TwentePO Box 217Enschede7500AENetherlands
- Max Planck Institute for Dynamics and Self‐OrganizationAm Faßberg 1737077GöttingenGermany
| | - Yibo Chen
- Physics of Fluids GroupMax Planck Center for Complex Fluid Dynamics and J. M. Burgers Center for Fluid DynamicsUniversity of TwentePO Box 217Enschede7500AENetherlands
- Max Planck Institute for Dynamics and Self‐OrganizationAm Faßberg 1737077GöttingenGermany
| | - Petra Räder
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Svenja Morsbach
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Maziyar Jalaal
- University of AmsterdamScience Park 904Amsterdam1098 XHNetherlands
| | - Corinna C. Maass
- Physics of Fluids GroupMax Planck Center for Complex Fluid Dynamics and J. M. Burgers Center for Fluid DynamicsUniversity of TwentePO Box 217Enschede7500AENetherlands
- Max Planck Institute for Dynamics and Self‐OrganizationAm Faßberg 1737077GöttingenGermany
| |
Collapse
|
3
|
Banno T. Toward Self-Propelled Microrobots: A Systems Chemistry that Induces Non-Linear Phenomena of Oil Droplets in Surfactant Solution. J Oleo Sci 2025; 74:123-130. [PMID: 39880632 DOI: 10.5650/jos.ess24246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Biological activities observed in living systems occur as the output of which nanometer-, submicrometer-, and micrometer-sized structures and tissues non-linearly and dynamically behave through chemical reaction networks, including the generation of various molecules and their assembly and disassembly. To understand the essence of the dynamic behavior in living systems, simpler artificial objects that exhibit cell-like non-linear phenomena have been recently constructed. However, most objects exhibiting cell-like dynamics have been found through trial-and-error experiments, and there are no strategies for designing them as molecular systems. This review describes how cell-like dynamics of oil droplets in surfactant solution, such as self-propelled motion, chemotaxis, division, and deformation, are induced by combining molecular properties of system components toward self-propelled microrobots.
Collapse
|
4
|
Liu K, Blokhuis AWP, Dijt SJ, Wu J, Hamed S, Kiani A, Matysiak BM, Otto S. Molecular-scale dissipative chemistry drives the formation of nanoscale assemblies and their macroscale transport. Nat Chem 2024:10.1038/s41557-024-01665-z. [PMID: 39516669 DOI: 10.1038/s41557-024-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Fuelled chemical systems have considerable functional potential that remains largely unexplored. Here we report an approach to transient amide bond formation and use it to harness chemical energy and convert it to mechanical motion by integrating dissipative self-assembly and the Marangoni effect in a source-sink system. Droplets are formed through dissipative self-assembly following the reaction of octylamine with 2,3-dimethylmaleic anhydride. The resulting amides are hydrolytically labile, making the droplets transient, which enables them to act as a source of octylamine. A sink for octylamine was created by placing a drop of oleic acid at the air-water interface. This source-sink system sets up a gradient in surface tension, which gives rise to a macroscopic Marangoni flow that can transport the droplets in solution with tunable speed. Carbodiimides can fuel this motion by converting diacid waste back to anhydride. This study shows how fuelling at the molecular level can, via assembly at the supramolecular level, lead to liquid flow at the macroscopic level.
Collapse
Affiliation(s)
- Kai Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Alex W P Blokhuis
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Sietse J Dijt
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Juntian Wu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Shana Hamed
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Armin Kiani
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Bartosz M Matysiak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
de Visser PJ, Karagrigoriou D, Nguindjel AC, Korevaar PA. Quorum Sensing in Emulsion Droplet Swarms Driven by a Surfactant Competition System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307919. [PMID: 38887869 PMCID: PMC11321703 DOI: 10.1002/advs.202307919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Quorum sensing enables unicellular organisms to probe their population density and perform behavior that exclusively occurs above a critical density. Quorum sensing is established in emulsion droplet swarms that float at a water surface and cluster above a critical density. The design involves competition between 1) a surface tension gradient that is generated upon release of a surfactant from the oil droplets, and thereby drives their mutual repulsion, and 2) the release of a surfactant precursor from the droplets, that forms a strong imine surfactant which suppresses the surface tension gradient and thereby causes droplet clustering upon capillary (Cheerios) attraction. The production of the imine-surfactant depends on the population density of the droplets releasing the precursor so that the clustering only occurs above a critical population density. The pH-dependence of the imine-surfactant formation is exploited to trigger quorum sensing upon a base stimulus: dynamic droplet swarms are generated that cluster and spread upon spatiotemporally varying acid and base conditions. Next, the clustering of two droplet subpopulations is coupled to a chemical reaction that generates a fluorescent signal. It is foreseen that quorum sensing enables control mechanisms in droplet-based systems that display collective responses in contexts of, e.g., sensing, optics, or dynamically controlled droplet-reactors.
Collapse
Affiliation(s)
- Pieter J. de Visser
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Dimitrios Karagrigoriou
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Anne‐Déborah C. Nguindjel
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
6
|
Rieu T, Osypenko A, Lehn JM. Triple Adaptation of Constitutional Dynamic Networks of Imines in Response to Micellar Agents: Internal Uptake-Interfacial Localization-Shape Transition. J Am Chem Soc 2024; 146:9096-9111. [PMID: 38526415 DOI: 10.1021/jacs.3c14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Understanding the behavior of complex chemical reaction networks and how environmental conditions can modulate their organization as well as the associated outcomes may take advantage of the design of related artificial systems. Microenvironments with defined boundaries are of particular interest for their unique properties and prebiotic significance. Dynamic covalent libraries (DCvLs) and their underlying constitutional dynamic networks (CDNs) have been shown to be appropriate for studying adaptation to several processes, including compartmentalization. However, microcompartments (e.g., micelles) provide specific environments for the selective protection from interfering reactions such as hydrolysis and an enhanced chemical promiscuity due to the interface, governing different processes of network modulation. Different interactions between the micelles and the library constituents lead to dynamic sensing, resulting in different expressions of the network through pattern generation. The constituents integrated into the micelles are protected from hydrolysis and hence preferentially expressed in the network composition at the cost of constitutionally linked members. In the present work, micellar integration was observed for two processes: internal uptake based on hydrophobic forces and interfacial localization relying on attractive electrostatic interactions. The latter drives a complex triple adaptation of the network with feedback on the shape of the self-assembled entity. Our results demonstrate how microcompartments can enforce the expression of constituents of CDNs by reducing the hydrolysis of uptaken members, unravelling processes that govern the response of reactions networks. Such studies open the way toward using DCvLs and CDNs to understand the emergence of complexity within reaction networks by their interactions with microenvironments.
Collapse
Affiliation(s)
- Tanguy Rieu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Artem Osypenko
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
7
|
Sato K, Nakagawa Y, Mori M, Takinoue M, Kinbara K. Transient control of lytic activity via a non-equilibrium chemical reaction system. NANOSCALE 2024. [PMID: 38465880 DOI: 10.1039/d3nr06626f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The development of artificial non-equilibrium chemical reaction systems has recently attracted considerable attention as a new type of biomimetic. However, due to the lack of bioorthogonality, such reaction systems could not be linked to the regulation of any biological phenomena. Here, we have newly designed a non-equilibrium reaction system based on olefin metathesis to produce the Triton X-mimetic non-ionic amphiphile as a kinetic product. Using phospholipid vesicles encapsulating fluorescent dyes and red blood cells as cell models, we demonstrate that the developed chemical reaction system is applicable for transient control of the resulting lytic activity.
Collapse
Affiliation(s)
- Kohei Sato
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Yume Nakagawa
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Miki Mori
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Masahiro Takinoue
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
- Department of Computer Science, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
8
|
Nguindjel AD, Franssen SCM, Korevaar PA. Reconfigurable Droplet-Droplet Communication Mediated by Photochemical Marangoni Flows. J Am Chem Soc 2024; 146:6006-6015. [PMID: 38391388 PMCID: PMC10921405 DOI: 10.1021/jacs.3c12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Droplets are attractive building blocks for dynamic matter that organizes into adaptive structures. Communication among collectively operating droplets opens untapped potential in settings that vary from sensing, optics, protocells, computing, or adaptive matter. Inspired by the transmission of signals among decentralized units in slime mold Physarum polycephalum, we introduce a combination of surfactants, self-assembly, and photochemistry to establish chemical signal transfer among droplets. To connect droplets that float at an air-water interface, surfactant triethylene glycol monododecylether (C12E3) is used for its ability to self-assemble into wires called myelins. We show how the trajectory of these myelins can be directed toward selected photoactive droplets upon UV exposure. To this end, we developed a strategy for photocontrolled Marangoni flow, which comprises (1) the liquid crystalline coating formed at the surface of an oleic acid/sodium oleate (OA/NaO) droplet when in contact with water, (2) a photoacid generator that protonates sodium oleate upon UV exposure and therefore disintegrates the coating, and (3) the surface tension gradient that is generated upon depletion of the surfactant from the air-water interface by the uncoated droplet. Therefore, localized UV exposure of selected OA/NaO droplets results in attraction of the myelins such that they establish reconfigurable connections that self-organize among the C12E3 and OA/NaO droplets. As an example of communication, we demonstrate how the myelins transfer fluorescent dyes, which are selectively delivered in the droplet interior upon photochemical regulation of the liquid crystalline coating.
Collapse
Affiliation(s)
- Anne-Déborah
C. Nguindjel
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Stan C. M. Franssen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
9
|
Howlett MG, Fletcher SP. From autocatalysis to survival of the fittest in self-reproducing lipid systems. Nat Rev Chem 2023; 7:673-691. [PMID: 37612460 DOI: 10.1038/s41570-023-00524-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/25/2023]
Abstract
Studying autocatalysis - in which molecules catalyse their own formation - might help to explain the emergence of chemical systems that exhibit traits normally associated with biology. When coupled to other processes, autocatalysis can lead to complex systems-level behaviour in apparently simple mixtures. Lipids are an important class of chemicals that appear simple in isolation, but collectively show complex supramolecular and mesoscale dynamics. Here we discuss autocatalytic lipids as a source of extraordinary behaviour such as primitive chemical evolution, chemotaxis, temporally controllable materials and even as supramolecular catalysts for continuous synthesis. We survey the literature since the first examples of lipid autocatalysis and highlight state-of-the-art synthetic systems that emulate life, displaying behaviour such as metabolism and homeostasis, with special consideration for generating structural complexity and out-of-equilibrium models of life. Autocatalytic lipid systems have enormous potential for building complexity from simple components, and connections between physical effects and molecular reactivity are only just beginning to be discovered.
Collapse
Affiliation(s)
- Michael G Howlett
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Stephen P Fletcher
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Hamano Y, Ikeda K, Odagiri K, Suematsu NJ. Reproduction of bacterial chemotaxis by a non-living self-propelled object. Sci Rep 2023; 13:8173. [PMID: 37210558 DOI: 10.1038/s41598-023-34788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023] Open
Abstract
Taxic behavior as a response to an external stimulus is a fundamental function of living organisms. Some bacteria successfully implement chemotaxis without directly controlling the direction of movement. They periodically alternate between run and tumble, i.e., straight movement and change in direction, respectively. They tune their running period depending on the concentration gradient of attractants around them. Consequently, they respond to a gentle concentration gradient stochastically, which is called "bacterial chemotaxis." In this study, such a stochastic response was reproduced by a non-living self-propelled object. We used a phenanthroline disk floating on an aqueous solution of Fe[Formula: see text]. The disk spontaneously alternated between rapid motion and rest, similar to the run-and-tumble motion of bacteria. The movement direction of the disk was isotropic independent of the concentration gradient. However, the existing probability of the self-propelled object was higher at the low-concentration region, where the run length was longer. To explain the mechanism underlying this phenomenon, we proposed a simple mathematical model that considers random walkers whose run length depends on the local concentration and direction of movement against the gradient. Our model adopts deterministic functions to reproduce the both effects, which is instead of stochastic tuning the period of operation used in the previous reports. This allows us to analyze the proposed model mathematically, which indicated that our model reproduces both positive and negative chemotaxis depending on the competition between the local concentration effect and it's gradient effect. Owing to the newly introduced directional bias, the experimental observations were reproduced numerically and analytically. The results indicate that the directional bias response to the concentration gradient is an essential parameter for determining bacterial chemotaxis. This rule might be universal for the stochastic response of self-propelled particles in living and non-living systems.
Collapse
Affiliation(s)
- Yuko Hamano
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan
| | - Kota Ikeda
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan
- Graduate School of Advanced Mathematical Sciences, Meiji University, Tokyo, Japan
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, Tokyo, Japan
| | - Kenta Odagiri
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, Tokyo, Japan
- School of Network and Information, Senshu University, Kanagawa, Japan
| | - Nobuhiko J Suematsu
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan.
- Graduate School of Advanced Mathematical Sciences, Meiji University, Tokyo, Japan.
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, Tokyo, Japan.
| |
Collapse
|
11
|
Nguindjel ADC, de Visser PJ, Winkens M, Korevaar PA. Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Phys Chem Chem Phys 2022; 24:23980-24001. [PMID: 36172850 PMCID: PMC9554936 DOI: 10.1039/d2cp02542f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Living organisms employ chemical self-organization to build structures, and inspire new strategies to design synthetic systems that spontaneously take a particular form, via a combination of integrated chemical reactions, assembly pathways and physicochemical processes. However, spatial programmability that is required to direct such self-organization is a challenge to control. Thermodynamic equilibrium typically brings about a homogeneous solution, or equilibrium structures such as supramolecular complexes and crystals. This perspective addresses out-of-equilibrium gradients that can be driven by coupling chemical reaction, diffusion and hydrodynamics, and provide spatial differentiation in the self-organization of molecular, ionic or colloidal building blocks in solution. These physicochemical gradients are required to (1) direct the organization from the starting conditions (e.g. a homogeneous solution), and (2) sustain the organization, to prevent it from decaying towards thermodynamic equilibrium. We highlight four different concepts that can be used as a design principle to establish such self-organization, using chemical reactions as a driving force to sustain the gradient and, ultimately, program the characteristics of the gradient: (1) reaction-diffusion coupling; (2) reaction-convection; (3) the Marangoni effect and (4) diffusiophoresis. Furthermore, we outline their potential as attractive pathways to translate chemical reactions and molecular/colloidal assembly into organization of patterns in solution, (dynamic) self-assembled architectures and collectively moving swarms at the micro-, meso- and macroscale, exemplified by recent demonstrations in the literature.
Collapse
Affiliation(s)
| | - Pieter J de Visser
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Winkens M, Korevaar PA. Self-Organization Emerging from Marangoni and Elastocapillary Effects Directed by Amphiphile Filament Connections. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10799-10809. [PMID: 36005886 PMCID: PMC9454263 DOI: 10.1021/acs.langmuir.2c01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/06/2022] [Indexed: 05/29/2023]
Abstract
Self-organization of meso- and macroscale structures is a highly active research field that exploits a wide variety of physicochemical phenomena, including surface tension, Marangoni flow, and (elasto)capillary effects. The release of surface-active compounds generates Marangoni flows that cause repulsion, whereas capillary forces attract floating particles via the Cheerios effect. Typically, the interactions resulting from these effects are nonselective because the gradients involved are uniform. In this work, we unravel the mechanisms involved in the self-organization of amphiphile filaments that connect and attract droplets floating at the air-water interface, and we demonstrate their potential for directional gradient formation and thereby selective interaction. We simulate Marangoni flow patterns resulting from the release and depletion of amphiphile molecules by source and drain droplets, respectively, and we predict that these flow patterns direct the growth of filaments from the source droplets toward specific drain droplets, based on their amphiphile depletion rate. The interaction between such droplets is then investigated experimentally by charting the flow patterns in their surroundings, while the role of filaments in source-drain attraction is studied using microscopy. Based on these observations, we attribute attraction of drain droplets and even solid objects toward the source to elastocapillary effects. Finally, the insights from our simulations and experiments are combined to construct a droplet-based system in which the composition of drain droplets regulates their ability to attract filaments and as a consequence be attracted toward the source. Thereby, we provide a novel method through which directional attraction can be established in synthetic self-organizing systems and advance our understanding of how complexity arises from simple building blocks.
Collapse
Affiliation(s)
- Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
13
|
We the Droplets: A Constitutional Approach to Active and Self-Propelled Emulsions. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Watanabe C, Tanaka S, Löffler RJG, Hanczyc MM, Górecki J. Dynamic ordering caused by a source-sink relation between two droplets. SOFT MATTER 2022; 18:6465-6474. [PMID: 35993153 DOI: 10.1039/d2sm00497f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two droplets composed of different chemicals, 1-decanol and liquid paraffin, floating on the water surface show characteristic co-responsive behavior. The presence of two different types of droplets in the system imposes an asymmetry that would not be possible with single droplets alone. The self-propulsion and interactions between droplets appear because surface active 1-decanol molecules provided by the source are absorbed by the paraffin sink thus generating an asymmetric surface tension gradient. This source-sink relation between droplets stabilizes and enhances the self-propulsion, and leads to a variety of dynamic structures including oscillations in the inter-droplet distance. We found that the character of time evolution also depends on the concentration of dye, Sudan Black B, initially used just to stain the decanol droplet. A simple mathematical model explains the transition between the stationary state and the oscillations as a Hopf bifurcation.
Collapse
Affiliation(s)
- Chiho Watanabe
- Graduate School of Integrated Sciences for life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan.
| | - Shinpei Tanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Richard J G Löffler
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, Povo, 38123, Trentino Alto-Adige, Italy
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, Povo, 38123, Trentino Alto-Adige, Italy
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Jerzy Górecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
15
|
Ryabchun A, Babu D, Movilli J, Plamont R, Stuart MC, Katsonis N. Run-and-halt motility of droplets in response to light. Chem 2022; 8:2290-2300. [PMID: 36003886 PMCID: PMC9387750 DOI: 10.1016/j.chempr.2022.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Microscopic motility is a property that emerges from systems of interacting molecules. Unraveling the mechanisms underlying such motion requires coupling the chemistry of molecules with physical processes that operate at larger length scales. Here, we show that photoactive micelles composed of molecular switches gate the autonomous motion of oil droplets in water. These micelles switch from large trans-micelles to smaller cis-micelles in response to light, and only the trans-micelles are effective fuel for the motion. Ultimately, it is this light that controls the movement of the droplets via the photochemistry of the molecules composing the micelles used as fuel. Notably, the droplets evolve positive photokinetic movement, and in patchy light environments, they preferentially move toward peripheral areas as a result of the difference in illumination conditions at the periphery. Our findings demonstrate that engineering the interplay between molecular photo-chemistry and microscopic motility allows designing motile systems rationally.
Collapse
Affiliation(s)
- Alexander Ryabchun
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Dhanya Babu
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Jacopo Movilli
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Rémi Plamont
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Marc C.A. Stuart
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Nathalie Katsonis
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
16
|
Wentworth CM, Castonguay AC, Moerman PG, Meredith CH, Balaj RV, Cheon SI, Zarzar LD. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets. Angew Chem Int Ed Engl 2022; 61:e202204510. [PMID: 35678216 DOI: 10.1002/anie.202204510] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/09/2022]
Abstract
Micellar solubilization is a transport process occurring in surfactant-stabilized emulsions that can lead to Marangoni flow and droplet motility. Active droplets exhibit self-propulsion and pairwise repulsion due to solubilization processes and/or solubilization products raising the droplet's interfacial tension. Here, we report emulsions with the opposite behavior, wherein solubilization decreases the interfacial tension and causes droplets to attract. We characterize the influence of oil chemical structure, nonionic surfactant structure, and surfactant concentration on the interfacial tensions and Marangoni flows of solubilizing oil-in-water drops. Three regimes corresponding to droplet "attraction", "repulsion" or "inactivity" are identified. We believe these studies contribute to a fundamental understanding of solubilization processes in emulsions and provide guidance as to how chemical parameters can influence the dynamics and chemotactic interactions between active droplets.
Collapse
Affiliation(s)
- Ciera M Wentworth
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander C Castonguay
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Pepijn G Moerman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caleb H Meredith
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rebecca V Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Seong Ik Cheon
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.,Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Gardin A, Perego C, Doni G, Pavan GM. Classifying soft self-assembled materials via unsupervised machine learning of defects. Commun Chem 2022; 5:82. [PMID: 36697761 PMCID: PMC9814741 DOI: 10.1038/s42004-022-00699-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/29/2022] [Indexed: 01/28/2023] Open
Abstract
Unlike molecular crystals, soft self-assembled fibers, micelles, vesicles, etc., exhibit a certain order in the arrangement of their constitutive monomers but also high structural dynamicity and variability. Defects and disordered local domains that continuously form-and-repair in their structures impart to such materials unique adaptive and dynamical properties, which make them, e.g., capable to communicate with each other. However, objective criteria to compare such complex dynamical features and to classify soft supramolecular materials are non-trivial to attain. Here we show a data-driven workflow allowing us to achieve this goal. Building on unsupervised clustering of Smooth Overlap of Atomic Position (SOAP) data obtained from equilibrium molecular dynamics simulations, we can compare a variety of soft supramolecular assemblies via a robust SOAP metric. This provides us with a data-driven "defectometer" to classify different types of supramolecular materials based on the structural dynamics of the ordered/disordered local molecular environments that statistically emerge within them.
Collapse
Affiliation(s)
- Andrea Gardin
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
| | - Giovanni Doni
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy. .,Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland.
| |
Collapse
|
18
|
Wentworth CM, Castonguay AC, Moerman PG, Meredith CH, Balaj RV, Cheon SI, Zarzar LD. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ciera M. Wentworth
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | | | - Pepijn G. Moerman
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Caleb H. Meredith
- Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Rebecca V. Balaj
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Seong Ik Cheon
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Lauren D. Zarzar
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
- Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
- Materials Research Institute The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
19
|
Natsume Y. Thermo-Statistical Effects of Inclusions on Vesicles: Division into Multispheres and Polyhedral Deformation. MEMBRANES 2022; 12:608. [PMID: 35736315 PMCID: PMC9229943 DOI: 10.3390/membranes12060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022]
Abstract
The construction of simple cellular models has attracted much attention as a way to explore the origin of life or elucidate the mechanisms of cell division. In the absence of complex regulatory systems, some bacteria spontaneously divide through thermostatistically elucidated mechanisms, and incorporating these simple physical principles could help to construct primitive or artificial cells. Because thermodynamic interactions play an essential role in such mechanisms, this review discusses the thermodynamic aspects of spontaneous division models of vesicles that contain a high density of inclusions, with their membrane serving as a boundary. Vesicles with highly dense inclusions are deformed according to the volume-to-area ratio. The phase separation of beads at specific intermediate volume fractions and the associated polyhedral deformation of the membrane are considered in relation to the Alder transition. Current advances in the development of a membrane-growth vesicular model are summarized. The thermostatistical understanding of these mechanisms could become a cornerstone for the construction of vesicular models that display spontaneous cell division.
Collapse
Affiliation(s)
- Yuno Natsume
- Schoolteacher Training Course/Natural Sciences, Cooperative Faculty of Education, Utsunomiya University, Mine-machi 350, Utsunomiya 321-8505, Japan;
- Institute for Promotion of Research Center for Bioscience Research and Education, Utsunomiya University, Mine-machi 350, Utsunomiya 321-8505, Japan
| |
Collapse
|
20
|
Babu D, Katsonis N, Lancia F, Plamont R, Ryabchun A. Motile behaviour of droplets in lipid systems. Nat Rev Chem 2022; 6:377-388. [PMID: 37117430 DOI: 10.1038/s41570-022-00392-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 01/08/2023]
Abstract
Motility is the capacity for living organisms to move autonomously and with purpose, and is essential to life. The transition from abiotic chemistry into motile cellular compartments has yet to be understood, but motile behaviour likely followed chemical evolution because primeval cell survival depended on scouting for resources effectively. Minimalistic motile systems provide an experimental framework to delineate the emergence mechanisms of such an evolutionary asset. In this Review, we discuss frontier developments in controlling the movement of droplets in lipid systems, in particular, chemotactic behaviours driven by fluctuations in interfacial tension, because of its simple mechanism and prebiotic relevance. Although most efforts have focused on designing oil droplet motility in lipid-rich aqueous solutions, we highlight that water droplets can also move in lipid-enriched oils. First, we describe how droplets evolve chemotactic motility in lipid systems. Next, we review how these oil droplets can adapt their movement to illumination conditions. Finally, we discuss examples where chemical reactivity brings complexity to motility. This work contributes to systems chemistry, where chemical reactions combined with physicochemical phenomena can yield new functions, such that a limited set of molecules can promote complex movement at larger functional scales by following the rules of molecular chemistry.
Collapse
Affiliation(s)
- Dhanya Babu
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Nathalie Katsonis
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands.
| | - Federico Lancia
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Remi Plamont
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Alexander Ryabchun
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Li S, Lerch MM, Waters JT, Deng B, Martens RS, Yao Y, Kim DY, Bertoldi K, Grinthal A, Balazs AC, Aizenberg J. Self-regulated non-reciprocal motions in single-material microstructures. Nature 2022; 605:76-83. [PMID: 35508775 DOI: 10.1038/s41586-022-04561-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/17/2022] [Indexed: 12/29/2022]
Abstract
Living cilia stir, sweep and steer via swirling strokes of complex bending and twisting, paired with distinct reverse arcs1,2. Efforts to mimic such dynamics synthetically rely on multimaterial designs but face limits to programming arbitrary motions or diverse behaviours in one structure3-8. Here we show how diverse, complex, non-reciprocal, stroke-like trajectories emerge in a single-material system through self-regulation. When a micropost composed of photoresponsive liquid crystal elastomer with mesogens aligned oblique to the structure axis is exposed to a static light source, dynamic dances evolve as light initiates a travelling order-to-disorder transition front, transiently turning the structure into a complex evolving bimorph that twists and bends via multilevel opto-chemo-mechanical feedback. As captured by our theoretical model, the travelling front continuously reorients the molecular, geometric and illumination axes relative to each other, yielding pathways composed from series of twisting, bending, photophobic and phototropic motions. Guided by the model, here we choreograph a wide range of trajectories by tailoring parameters, including illumination angle, light intensity, molecular anisotropy, microstructure geometry, temperature and irradiation intervals and duration. We further show how this opto-chemo-mechanical self-regulation serves as a foundation for creating self-organizing deformation patterns in closely spaced microstructure arrays via light-mediated interpost communication, as well as complex motions of jointed microstructures, with broad implications for autonomous multimodal actuators in areas such as soft robotics7,9,10, biomedical devices11,12 and energy transduction materials13, and for fundamental understanding of self-regulated systems14,15.
Collapse
Affiliation(s)
- Shucong Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Michael M Lerch
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - James T Waters
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bolei Deng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Reese S Martens
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Yuxing Yao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Do Yoon Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Katia Bertoldi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Alison Grinthal
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Anna C Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
22
|
Banno T, Sawada D, Toyota T. Construction of Supramolecular Systems That Achieve Lifelike Functions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2391. [PMID: 35407724 PMCID: PMC8999524 DOI: 10.3390/ma15072391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022]
Abstract
The Nobel Prize in Chemistry was awarded in 1987 and 2016 for research in supramolecular chemistry on the "development and use of molecules with structure-specific interactions of high selectivity" and the "design and production of molecular machines", respectively. This confirmed the explosive development of supramolecular chemistry. In addition, attempts have been made in systems chemistry to embody the complex functions of living organisms as artificial non-equilibrium chemical systems, which have not received much attention in supramolecular chemistry. In this review, we explain recent developments in supramolecular chemistry through four categories: stimuli-responsiveness, time evolution, dissipative self-assembly, and hierarchical expression of functions. We discuss the development of non-equilibrium supramolecular systems, including the use of molecules with precisely designed properties, to achieve functions found in life as a hierarchical chemical system.
Collapse
Affiliation(s)
- Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (T.B.); (D.S.)
| | - Daichi Sawada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (T.B.); (D.S.)
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
23
|
Tian G, Liu Y, Yu M, Liang C, Yang D, Huang J, Zhao Q, Zhang W, Chen J, Wang Y, Xu P, Liu Z, Qi D. Electrostatic Interaction-Based High Tissue Adhesive, Stretchable Microelectrode Arrays for the Electrophysiological Interface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4852-4861. [PMID: 35051334 DOI: 10.1021/acsami.1c18983] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The drift or fall of stretchable neural microelectrodes from the surface of wet and dynamic tissues severely hampers the adoption of microelectrodes for electrophysiological signal monitoring. Endowing the stretchable electrodes with adhesive ability is an effective way to overcome these problems. Current adhesives form tough adhesion to tissues by covalent interaction, which decreases the biocompatibility of the adhesives. Here, we fabricate a strong electrostatic adhesive (noncovalent interaction), highly conformal, stretchable microelectrode arrays (MEAs) for the electrophysiological interface. This MEA was composed of polypyrrole (PPy) as the electrode material and hydrogel as the stretchable substrate [the cross-linked and copolymerized hydrogel of 2-acrylamido-2-methylpropane sulfonic acid (AMPS), gelatin, chitosan, 2-methoxyethyl acrylate, and acrylic acid is named PAGMA]. Strong and stable electrostatic adhesion (85 kPa) and high stretchability (100%) allow for the integration of PPy MEAs based on the PAGMA hydrogel substrate (PPy-PAGMA MEAs) on diverse wet dynamic tissues. Additionally, by adjusting the concentration of AMPS in PAGMA, the hydrogel (PAGMA-1) can produce tough adhesion to many inorganic and elastomer materials. Finally, the PPy-PAGMA MEAs were toughly and conformally adhered on the rat's subcutaneous muscle and beating heart, and the rat's electrophysiological signals were successfully recorded. The development of these adhesive MEAs offers a promising strategy to establish stable and compliant electrode-tissue interfaces.
Collapse
Affiliation(s)
- Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Mei Yu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dan Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jianping Huang
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Wei Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yu Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Zhiyuan Liu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
- State Key Laboratory of Urban Water Resource and Environments, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
24
|
Verhille G, Inoue C, Villermaux E. Architecture of a self-fragmenting droplets cascade. Phys Rev E 2021; 104:L053101. [PMID: 34942737 DOI: 10.1103/physreve.104.l053101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
We report quantitative imaging experiments describing the three-dimensional (3D) bursting cascade of droplets from a liquid melt reacting with the oxygen of air which explode sequentially to produce ever smaller fragments. The 3D space-time resolved trajectories of the fragmenting drops reveal an arborescent structure of branchings defining the cascade steps, each random in direction and shortening along the cascade, in a way we determine. The phenomenon is a unique and prototypical illustration of the so-called Richardson regime, namely, an accelerated cascade towards smaller scales. The phenomenon, which coincides with the early time dispersion period of a Brownian motion, featuring here ever shrinking steps, is well captured by a Langevin dynamics.
Collapse
Affiliation(s)
- Gautier Verhille
- Aix Marseille Université, CNRS, and Centrale Marseille, IRPHE Marseille, Marseille, France
| | - Chihiro Inoue
- Kyushu University, Department of Aeronautics and Astronautics, Fukuoka, Japan
| | - Emmanuel Villermaux
- Aix Marseille Université, CNRS, and Centrale Marseille, IRPHE Marseille, Marseille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
25
|
Song S, Mason AF, Post RAJ, De Corato M, Mestre R, Yewdall NA, Cao S, van der Hofstad RW, Sanchez S, Abdelmohsen LKEA, van Hest JCM. Engineering transient dynamics of artificial cells by stochastic distribution of enzymes. Nat Commun 2021; 12:6897. [PMID: 34824231 PMCID: PMC8617035 DOI: 10.1038/s41467-021-27229-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Random fluctuations are inherent to all complex molecular systems. Although nature has evolved mechanisms to control stochastic events to achieve the desired biological output, reproducing this in synthetic systems represents a significant challenge. Here we present an artificial platform that enables us to exploit stochasticity to direct motile behavior. We found that enzymes, when confined to the fluidic polymer membrane of a core-shell coacervate, were distributed stochastically in time and space. This resulted in a transient, asymmetric configuration of propulsive units, which imparted motility to such coacervates in presence of substrate. This mechanism was confirmed by stochastic modelling and simulations in silico. Furthermore, we showed that a deeper understanding of the mechanism of stochasticity could be utilized to modulate the motion output. Conceptually, this work represents a leap in design philosophy in the construction of synthetic systems with life-like behaviors. Here the authors develop a coacervate micromotor that can display autonomous motion as a result of stochastic distribution of propelling units. This stochastic-induced mobility is validated and explained through experiments and theory.
Collapse
Affiliation(s)
- Shidong Song
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Alexander F Mason
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Richard A J Post
- Department of Mathematics and Computer Science, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Marco De Corato
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50009, Zaragoza, Spain
| | - Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - N Amy Yewdall
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Shoupeng Cao
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Remco W van der Hofstad
- Department of Mathematics and Computer Science, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Samuel Sanchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| | - Loai K E A Abdelmohsen
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|