1
|
Trendel J, Trendel S, Sha S, Greulich F, Goll S, Wudy SI, Kleigrewe K, Kubicek S, Uhlenhaut NH, Kuster B. The human proteome with direct physical access to DNA. Cell 2025:S0092-8674(25)00507-0. [PMID: 40409270 DOI: 10.1016/j.cell.2025.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/10/2025] [Accepted: 04/27/2025] [Indexed: 05/25/2025]
Abstract
In a human cell, DNA is packed with histones, RNA, and chromatin-associated proteins, forming a cohesive gel. At any given moment, only a subset of the proteome has physical access to the DNA and organizes its structure, transcription, replication, repair, and other essential molecular functions. We have developed a "zero-distance" photo-crosslinking approach to quantify proteins in direct contact with DNA in living cells. Collecting DNA interactomes from human breast cancer cells, we present an atlas of over one thousand proteins with physical access to DNA and hundreds of peptide-nucleotide crosslinks pinpointing protein-DNA interfaces with single-amino-acid resolution. Quantitative comparisons of DNA interactomes from differentially treated cells recapitulate the recruitment of key transcription factors as well as DNA repair proteins and uncover fast-acting restrictors of chromatin accessibility on a timescale of minutes. This opens a direct way to explore genomic regulation in a hypothesis-free manner, applicable to many organisms and systems.
Collapse
Affiliation(s)
- Jakob Trendel
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | | | - Shuyao Sha
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Franziska Greulich
- Metabolic Programming, TUM School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich (TUM), Freising, Germany
| | - Sandra Goll
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Susanne I Wudy
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - N Henriette Uhlenhaut
- Metabolic Programming, TUM School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich (TUM), Freising, Germany; Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
2
|
Chang JW, O’Brian AK, Thomas AJ, Hardin MR, Latham BD, Ngabonziza D, Simpson LG, Wade BD, Kühnhenrich L, Thompson NM, Endsley CE, Deweese JE. Mutagenesis of Intrinsically Disordered Domain Impacts Topoisomerase IIα Catalytic Activity. Int J Mol Sci 2025; 26:3604. [PMID: 40332112 PMCID: PMC12026768 DOI: 10.3390/ijms26083604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Human topoisomerase IIα and IIβ regulate DNA topology and knots in chromosomes during crucial cellular processes, making these enzymes common targets for anticancer drugs. However, selective inhibition of topoisomerase IIα (TOP2A) is desired to decrease adverse effects, which may be mediated by topoisomerase IIβ (TOP2B). The main region of difference between the two isoforms is the intrinsically disordered C-terminal domain (CTD), which is being studied as a target for selective inhibition. Our previous work examined several regions within the CTD to determine whether those regions impact biochemical function. In this current study, we designed and constructed four TOP2A mutants with amino acid substitutions in the CTD, which were then assessed for impact on biochemical activity. V1482D exhibited increased levels of relaxation, while both V1482D and K1520I exhibited increased levels of decatenation. No major impact on DNA cleavage or binding were observed with any of the mutants. The isolated impact of the changes on relaxation and decatenation supports the concept that the CTD can affect one aspect of the enzyme's function in an isolated manner, which was seen in our previous study. Taken together, these results suggest that modification of specific positions within the CTD affects substrate selection. These results are mapped onto the CTD for consideration of potential regions to target for inhibition of TOP2A.
Collapse
Affiliation(s)
- Jeong Won Chang
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Addison K. O’Brian
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Allison J. Thomas
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Mattalyn R. Hardin
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Brooke D. Latham
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Daniel Ngabonziza
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Lily G. Simpson
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Benjamin D. Wade
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Laura Kühnhenrich
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Nina M. Thompson
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Clark E. Endsley
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Joseph E. Deweese
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| |
Collapse
|
3
|
Sappati S, Kondaka K, Gabriel I, Baginski M. Structural insights into fungal and human topoisomerase II with implications for in silico antifungal drug design. Sci Rep 2025; 15:9467. [PMID: 40108235 PMCID: PMC11923201 DOI: 10.1038/s41598-025-93122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Topoisomerases are essential enzymes regulating DNA supercoiling and disentanglement, critical for genomic integrity. While topoisomerase inhibitors are well-established in anticancer and antibacterial chemotherapy, their potential as antifungal agents remains underexplored or even not proofed. This study investigates structural distinctions between Saccharomyces cerevisiae topoisomerase II (ScTopoII) and human topoisomerase IIα (hTopoIIα), aiming to identify if ScTopoII can be a selective target for antifungal drug development. A comprehensive sequence analysis, extending to various fungal strains and evolutionary ancient organisms, reveals dissimilarities in the transducer and transducer linker domains of these proteins, as well as in the lysine-rich K-loop region. Molecular dynamics simulations emphasize structural differences in the K-loop, α-helix (or helix-like region), and helix supporting loop region, as well as show unique patterns in hydrophilic and hydrophobic intramolecular interactions in ScTopoII. Moreover, phylogenetic comparisons support the importance of specific regions studied. The study includes topos from different organisms, highlighting discrepancies in helix stability near the K-loop and the role of helix supporting loop region. This broad analysis provides insights into the structural basis of human and fungal enzymes presenting potential pharmacophore "hot spots" in ScTopoII which may give hope for developing selective antifungal agents.
Collapse
Affiliation(s)
- Subrahmanyam Sappati
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, Poland
| | - Kavya Kondaka
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, Poland
| | - Iwona Gabriel
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, Poland.
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
4
|
Wei Q, Lin N, Wang L. Targeting DNA Topoisomerase IIα in Retinoblastoma: Implications in EMT and Therapeutic Strategies. Biologics 2025; 19:113-123. [PMID: 40123578 PMCID: PMC11929414 DOI: 10.2147/btt.s499314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Background This study investigates the role of DNA topoisomerase IIα (TOP2A) in retinoblastoma (RB), focusing on its involvement in epithelial-mesenchymal transition (EMT) and the potential of TOP2A inhibition as a therapeutic strategy. Methods We analyzed TOP2A expression in RB tissues using public gene expression databases (GSE97508, GSE110811, and GSE172170) and conducted functional assays in human RB cell lines (Y79 and WERI-Rb-1) modified to knock down or overexpress TOP2A. Assessments included cell proliferation, migration, invasion, and EMT marker expression via RT-PCR and Western blot. Additionally, we evaluated the effects of TOP2A modulation in subcutaneous and liver metastasis mouse xenograft models. Results TOP2A was significantly overexpressed in RB tissues (p < 0.0001). In vitro, TOP2A knockdown inhibited RB cell proliferation, migration, and invasion, and reversed EMT marker expression (p < 0.05), while TOP2A overexpression enhanced these oncogenic processes. In vivo, TOP2A knockdown or inhibition significantly reduced tumor growth and metastasis in both subcutaneous and liver metastasis models (p < 0.05). Combination therapy with TOP2A and EMT inhibitors further enhanced anti-tumor effects, significantly reducing tumor burden and metastatic lesions (p < 0.01). Conclusion TOP2A is pivotal in RB pathogenesis and progression, primarily by regulating EMT. Its inhibition not only curtails RB cell proliferation and metastasis but also reverses EMT, underscoring its potential as a therapeutic target. This study lays the groundwork for further exploration of TOP2A-targeted therapies in RB.
Collapse
Affiliation(s)
- Qingquan Wei
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Nan Lin
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Li Wang
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Flor AC, Wolfgeher DJ, Kron SJ. Noncanonical inhibition of topoisomerase II alpha by oxidative stress metabolites. Redox Biol 2025; 80:103504. [PMID: 39879737 PMCID: PMC11810846 DOI: 10.1016/j.redox.2025.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
During its catalytic cycle, the homodimeric ATPase topoisomerase II alpha (TOP2A) cleaves double stranded DNA and remains covalently bound to 5' ends via tyrosine phosphodiester bonds. After passing a second, intact duplex through, TOP2A rejoins the break and releases from the DNA. Thereby, TOP2A can relieve strain accumulated during transcription, replication and chromatin remodeling and disentangle sister chromatids for mitosis. Chemotherapy agents such as etoposide are poisons that trap TOP2A mid-cycle, covalently bound to cleaved DNA, leaving behind DNA double strand breaks and activating DNA damage response. While etoposide has been proposed to stabilize the TOP2A-DNA cleavage complex (TOP2Acc) via interfacial inhibition, we have elucidated a complementary mechanism mediated by the ability of etoposide and other TOP2A poisons to induce oxidative stress. Consequently, lipid peroxidation and accumulation of lipid-derived electrophiles such as 4-hydroxynonenal (HNE) results in covalent modification of TOP2A, both blocking ATPase activity and trapping TOP2Acc. HNE modifies multiple sites on human TOP2A in vitro, including alkylating Cys216 in the ATPase domain in a DNA-dependent fashion. Taken together, our data suggest an underappreciated role for TOP2A as a redox sensor in tumor cells, connecting oxidative stress to DNA damage signaling and thereby creating a target for redox-active drugs.
Collapse
Affiliation(s)
- Amy C Flor
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Donald J Wolfgeher
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Stephen J Kron
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
McCoy MN, Adhikari M, Nitiss KC, Nitiss JL. Yeast Tools for Studying Type II Topoisomerases in Budding Yeast. Methods Mol Biol 2025; 2928:123-150. [PMID: 40372643 DOI: 10.1007/978-1-0716-4550-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
DNA topoisomerases perform diverse functions in DNA metabolism. Type II topoisomerases, which carry out their reaction through a double-strand break intermediate, are absolutely required to separate replicated chromosomes prior to mitosis and play key roles in replication, transcription, and chromosome stability. The yeast Saccharomyces cerevisiae has been a premier system for exploring the biological roles of topoisomerases, and since type II enzymes are required for viability, the availability of conditional mutants greatly enhances the ability to dissect their biological roles. This chapter provides a critical discussion of yeast top2 mutants and plasmids for expressing and genetically manipulating the gene encoding the enzyme. An additional advantage of the yeast is the ability to functionally express human Top2α and Top2β in yeast to determine whether the human enzymes have unique characteristics that impact their biological functions. Therefore, this chapter also discusses plasmids that are available to express human Top2 enzymes in yeast. Finally, yeast has been particularly valuable in studying anti-cancer drugs that target Top2. This chapter discusses novel and powerful approaches for enhancing drug accumulation, allowing detailed examination of various topoisomerase inhibitors and poisons.
Collapse
Affiliation(s)
- Maureen Nie McCoy
- Pharmaceutical Sciences Department, Retzky College of Pharmacy, University of Illinois Chicago, Rockford, IL, USA
| | - Myna Adhikari
- Pharmaceutical Sciences Department, Retzky College of Pharmacy, University of Illinois Chicago, Rockford, IL, USA
- Biomedical Sciences Department, University of Illinois College of Medicine, Rockford, IL, USA
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, Retzky College of Pharmacy, University of Illinois Chicago, Rockford, IL, USA
- Biomedical Sciences Department, University of Illinois College of Medicine, Rockford, IL, USA
| | - John L Nitiss
- Pharmaceutical Sciences Department, Retzky College of Pharmacy, University of Illinois Chicago, Rockford, IL, USA.
| |
Collapse
|
7
|
Michalczyk E, Pakosz-Stępień Z, Liston JD, Gittins O, Pabis M, Heddle JG, Ghilarov D. Structural basis of chiral wrap and T-segment capture by Escherichia coli DNA gyrase. Proc Natl Acad Sci U S A 2024; 121:e2407398121. [PMID: 39589884 PMCID: PMC11626157 DOI: 10.1073/pnas.2407398121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Type II topoisomerase DNA gyrase transduces the energy of ATP hydrolysis into the negative supercoiling of DNA. The postulated catalytic mechanism involves stabilization of a chiral DNA loop followed by the passage of the T-segment through the temporarily cleaved G-segment resulting in sign inversion. The molecular basis for this is poorly understood as the chiral loop has never been directly observed. We have obtained high-resolution cryoEM structures of Escherichia coli gyrase with chirally wrapped 217 bp DNA with and without the fluoroquinolone moxifloxacin (MFX). Each structure constrains a positively supercoiled figure-of-eight DNA loop stabilized by a GyrA β-pinwheel domain which has the structure of a flat disc. By comparing the catalytic site of the native drug-free and MFX-bound gyrase structures both of which contain a single metal ion, we demonstrate that the enzyme is observed in a native precatalytic state. Our data imply that T-segment trapping is not dependent on the dimerization of the ATPase domains which appears to only be possible after strand passage has taken place.
Collapse
Affiliation(s)
- Elizabeth Michalczyk
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków30-348, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków30-387, Poland
| | - Zuzanna Pakosz-Stępień
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Jonathon D. Liston
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Olivia Gittins
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Marta Pabis
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków30-387, Poland
| | - Jonathan G. Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków30-387, Poland
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Dmitry Ghilarov
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
8
|
Herlah B, Goričan T, Benedik NS, Grdadolnik SG, Sosič I, Perdih A. Simulation- and AI-directed optimization of 4,6-substituted 1,3,5-triazin-2(1 H)-ones as inhibitors of human DNA topoisomerase IIα. Comput Struct Biotechnol J 2024; 23:2995-3018. [PMID: 39135887 PMCID: PMC11318567 DOI: 10.1016/j.csbj.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/15/2024] Open
Abstract
The 4,6-substituted-1,3,5-triazin-2(1H)-ones are promising inhibitors of human DNA topoisomerase IIα. To further develop this chemical class targeting the enzyme´s ATP binding site, the triazin-2(1H)-one substitution position 6 was optimized. Inspired by binding of preclinical substituted 9H-purine derivative, bicyclic substituents were incorporated at position 6 and the utility of this modification was validated by a combination of molecular simulations, dynamic pharmacophores, and free energy calculations. Considering also predictions of Deepfrag, a software developed for structure-based lead optimization based on deep learning, compounds with both bicyclic and monocyclic substitutions were synthesized and investigated for their inhibitory activity. The SAR data showed that the bicyclic substituted compounds exhibited good inhibition of topo IIα, comparable to their mono-substituted counterparts. Further evaluation on a panel of human protein kinases showed selectivity for the inhibition of topo IIα. Mechanistic studies indicated that the compounds acted predominantly as catalytic inhibitors, with some exhibiting topo IIα poison effects at higher concentrations. Integration of STD NMR experiments and molecular simulations, provided insights into the binding model and highlighted the importance of the Asn120 interaction and hydrophobic interactions with substituents at positions 4 and 6. In addition, NCI-60 screening demonstrated cytotoxicity of the compounds with bicyclic substituents and identified sensitive human cancer cell lines, underlining the translational relevance of our findings for further preclinical development of this class of compounds. The study highlights the synergy between simulation and AI-based approaches in efficiently guiding molecular design for drug optimization, which has implications for further preclinical development of this class of compounds.
Collapse
Affiliation(s)
- Barbara Herlah
- National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000 Ljubljana, Slovenia
| | - Tjaša Goričan
- National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana, Slovenia
| | - Nika Strašek Benedik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000 Ljubljana, Slovenia
| | | | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Liu R, Sun J, Li LF, Cheng Y, Li M, Fu L, Li S, Peng G, Wang Y, Liu S, Qu X, Ran J, Li X, Pang E, Qiu HJ, Wang Y, Qi J, Wang H, Gao GF. Structural basis for difunctional mechanism of m-AMSA against African swine fever virus pP1192R. Nucleic Acids Res 2024; 52:11301-11316. [PMID: 39166497 PMCID: PMC11472052 DOI: 10.1093/nar/gkae703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
The African swine fever virus (ASFV) type II topoisomerase (Topo II), pP1192R, is the only known Topo II expressed by mammalian viruses and is essential for ASFV replication in the host cytoplasm. Herein, we report the structures of pP1192R in various enzymatic stages using both X-ray crystallography and single-particle cryo-electron microscopy. Our data structurally define the pP1192R-modulated DNA topology changes. By presenting the A2+-like metal ion at the pre-cleavage site, the pP1192R-DNA-m-AMSA complex structure provides support for the classical two-metal mechanism in Topo II-mediated DNA cleavage and a better explanation for nucleophile formation. The unique inhibitor selectivity of pP1192R and the difunctional mechanism of pP1192R inhibition by m-AMSA highlight the specificity of viral Topo II in the poison binding site. Altogether, this study provides the information applicable to the development of a pP1192R-targeting anti-ASFV strategy.
Collapse
Affiliation(s)
- Ruili Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450046, China
- Beijing Life Science Academy, Beijing 102200, China
| | - Junqing Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi Province 030801, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Yingxian Cheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450046, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Guorui Peng
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Sheng Liu
- SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Ran
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, Liaoning Province 110030, China
| | - Xiaomei Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi Province 030032, China
| | - Erqi Pang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi Province 030032, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Yanli Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Han Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Xin Y, Xian R, Yang Y, Cong J, Rao Z, Li X, Chen Y. Structural and functional insights into the T-even type bacteriophage topoisomerase II. Nat Commun 2024; 15:8719. [PMID: 39379365 PMCID: PMC11461880 DOI: 10.1038/s41467-024-53037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
T-even type bacteriophages are virulent phages commonly used as model organisms, playing a crucial role in understanding various biological processes. One such process involves the regulation of DNA topology during phage replication upon host infection, governed by type IIA DNA topoisomerases. In spite of various studies on prokaryotic and eukaryotic counterparts, viral topoisomerase II remains insufficiently understood, especially the unique domain composition of T4 phage. In this study, we determine the cryo-EM structures of topoisomerase II from T4 and T6 phages, including full-length structures of both apo and DNA-binding states which have never been determined before. Together with other conformational states, these structures provide an explicit blueprint of mechanisms of phage topoisomerase II. Particularly, the asymmetric dimeric interactions observed in cryo-EM structures of T6 phage topoisomerase II ATPase domain and central domain bound with DNA shed light on the asynchronous ATP usage and asynchronous cleavage of the G-segment DNA, respectively. The elucidation of phage topoisomerase II's structures and functions not only enhances our understanding of mechanisms and evolutionary parallels with prokaryotic and eukaryotic homologs but also highlights its potential as a model for developing type IIA topoisomerase inhibitors.
Collapse
Affiliation(s)
- Yuhui Xin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Runqi Xian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunge Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyuan Cong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Liu KT, Chen SF, Chan NL. Structural insights into the assembly of type IIA topoisomerase DNA cleavage-religation center. Nucleic Acids Res 2024; 52:9788-9802. [PMID: 39077950 PMCID: PMC11381327 DOI: 10.1093/nar/gkae657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
The ability to catalyze reversible DNA cleavage and religation is central to topoisomerases' role in regulating DNA topology. In type IIA topoisomerases (Top2), the formation of its DNA cleavage-religation center is driven by DNA-binding-induced structural rearrangements. These changes optimally position key catalytic modules, such as the active site tyrosine of the WHD domain and metal ion(s) chelated by the TOPRIM domain, around the scissile phosphodiester bond to perform reversible transesterification. To understand this assembly process in detail, we report the catalytic core structures of human Top2α and Top2β in an on-pathway conformational state. This state features an in trans formation of an interface between the Tower and opposing TOPRIM domain, revealing a groove for accommodating incoming G-segment DNA. Structural superimposition further unveils how subsequent DNA-binding-induced disengagement of the TOPRIM and Tower domains allows a firm grasp of the bound DNA for cleavage/religation. Notably, we identified a previously undocumented protein-DNA interaction, formed between an arginine-capped C-terminus of an α-helix in the TOPRIM domain and the DNA backbone, significantly contributing to Top2 function. This work uncovers a previously unrecognized role of the Tower domain, highlighting its involvement in anchoring and releasing the TOPRIM domain, thus priming Top2 for DNA binding and cleavage.
Collapse
Affiliation(s)
- Ko-Ting Liu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shin-Fu Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
12
|
Evoli S, Kariyawasam NL, Nitiss KC, Nitiss JL, Wereszczynski J. Modeling allosteric mechanisms of eukaryotic type II topoisomerases. Biophys J 2024; 123:1620-1634. [PMID: 38720465 PMCID: PMC11213992 DOI: 10.1016/j.bpj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Type II topoisomerases (TopoIIs) are ubiquitous enzymes that are involved in crucial nuclear processes such as genome organization, chromosome segregation, and other DNA metabolic processes. These enzymes function as large, homodimeric complexes that undergo a complex cycle of binding and hydrolysis of two ATP molecules in their ATPase domains, which regulates the capture and passage of one DNA double-helix through a second, cleaved DNA molecule. This process requires the transmission of information about the state of the bound nucleotide over vast ranges in the TopoII complex. How this information is transmitted at the molecular level to regulate TopoII functions and how protein substitutions disrupt these mechanisms remains largely unknown. Here, we employed extensive microsecond-scale molecular dynamics simulations of the yeast TopoII enzyme in multiple nucleotide-bound states and with amino acid substitutions near both the N and C termini of the complex. Simulation results indicate that the ATPase domains are remarkably flexible on the sub-microsecond timescale and that these dynamics are modulated by the identity of the bound nucleotides and both local and distant amino acid substitutions. Network analyses point toward specific allosteric networks that transmit information about the hydrolysis cycle throughout the complex, which include residues in both the protein and the bound DNA molecule. Amino acid substitutions weaken many of these pathways. Together, our results provide molecular level details on how the TopoII catalytic cycle is controlled through nucleotide binding and hydrolysis and how mutations may disrupt this process.
Collapse
Affiliation(s)
- Stefania Evoli
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois; Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Nilusha L Kariyawasam
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois; Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, University of Illinois at Chicago, Rockford, Illinois
| | - John L Nitiss
- Pharmaceutical Sciences Department, University of Illinois at Chicago, Rockford, Illinois
| | - Jeff Wereszczynski
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois; Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois; Department of Biology, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
13
|
Herlah B, Janežič M, Ogris I, Grdadolnik SG, Kološa K, Žabkar S, Žegura B, Perdih A. Nature-inspired substituted 3-(imidazol-2-yl) morpholines targeting human topoisomerase IIα: Dynophore-derived discovery. Biomed Pharmacother 2024; 175:116676. [PMID: 38772152 DOI: 10.1016/j.biopha.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024] Open
Abstract
The molecular nanomachine, human DNA topoisomerase IIα, plays a crucial role in replication, transcription, and recombination by catalyzing topological changes in the DNA, rendering it an optimal target for cancer chemotherapy. Current clinical topoisomerase II poisons often cause secondary tumors as side effects due to the accumulation of double-strand breaks in the DNA, spurring the development of catalytic inhibitors. Here, we used a dynamic pharmacophore approach to develop catalytic inhibitors targeting the ATP binding site of human DNA topoisomerase IIα. Our screening of a library of nature-inspired compounds led to the discovery of a class of 3-(imidazol-2-yl) morpholines as potent catalytic inhibitors that bind to the ATPase domain. Further experimental and computational studies identified hit compound 17, which exhibited selectivity against the human DNA topoisomerase IIα versus human protein kinases, cytotoxicity against several human cancer cells, and did not induce DNA double-strand breaks, making it distinct from clinical topoisomerase II poisons. This study integrates an innovative natural product-inspired chemistry and successful implementation of a molecular design strategy that incorporates a dynamic component of ligand-target molecular recognition, with comprehensive experimental characterization leading to hit compounds with potential impact on the development of more efficient chemotherapies.
Collapse
Affiliation(s)
- Barbara Herlah
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI 1000, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana SI 1000, Slovenia
| | - Matej Janežič
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI 1000, Slovenia
| | - Iza Ogris
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI 1000, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, Ljubljana SI 1000, Slovenia
| | | | - Katja Kološa
- National institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana SI 1000, Slovenia
| | - Sonja Žabkar
- National institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana SI 1000, Slovenia
| | - Bojana Žegura
- National institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana SI 1000, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI 1000, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana SI 1000, Slovenia.
| |
Collapse
|
14
|
Herlah B, Pavlin M, Perdih A. Molecular choreography: Unveiling the dynamic landscape of type IIA DNA topoisomerases before T-segment passage through all-atom simulations. Int J Biol Macromol 2024; 269:131991. [PMID: 38714283 DOI: 10.1016/j.ijbiomac.2024.131991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
Type IIA DNA topoisomerases are molecular nanomachines responsible for controlling topological states of DNA molecules. Here, we explore the dynamic landscape of yeast topoisomerase IIA during key stages of its catalytic cycle, focusing in particular on the events preceding the passage of the T-segment. To this end, we generated six configurations of fully catalytic yeast topo IIA, strategically inserted a T-segment into the N-gate in relevant configurations, and performed all-atom simulations. The essential motion of topo IIA protein dimer was characterized by rotational gyrating-like movement together with sliding motion within the DNA-gate. Both appear to be inherent properties of the enzyme and an inbuilt feature that allows passage of the T-segment through the cleaved G-segment. Coupled dynamics of the N-gate and DNA-gate residues may be particularly important for controlled and smooth passage of the T-segment and consequently the prevention of DNA double-strand breaks. QTK loop residue Lys367, which interacts with ATP and ADP molecules, is involved in regulating the size and stability of the N-gate. The unveiled features of the simulated configurations provide insights into the catalytic cycle of type IIA topoisomerases and elucidate the molecular choreography governing their ability to modulate the topological states of DNA topology.
Collapse
Affiliation(s)
- Barbara Herlah
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Matic Pavlin
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Cong J, Xin Y, Kang H, Yang Y, Wang C, Zhao D, Li X, Rao Z, Chen Y. Structural insights into the DNA topoisomerase II of the African swine fever virus. Nat Commun 2024; 15:4607. [PMID: 38816407 PMCID: PMC11139879 DOI: 10.1038/s41467-024-49047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Type II topoisomerases are ubiquitous enzymes that play a pivotal role in modulating the topological configuration of double-stranded DNA. These topoisomerases are required for DNA metabolism and have been extensively studied in both prokaryotic and eukaryotic organisms. However, our understanding of virus-encoded type II topoisomerases remains limited. One intriguing example is the African swine fever virus, which stands as the sole mammalian-infecting virus encoding a type II topoisomerase. In this work, we use several approaches including cryo-EM, X-ray crystallography, and biochemical assays to investigate the structure and function of the African swine fever virus type II topoisomerase, pP1192R. We determine the structures of pP1192R in different conformational states and confirm its enzymatic activity in vitro. Collectively, our results illustrate the basic mechanisms of viral type II topoisomerases, increasing our understanding of these enzymes and presenting a potential avenue for intervention strategies to mitigate the impact of the African swine fever virus.
Collapse
Affiliation(s)
- Jingyuan Cong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhui Xin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiling Kang
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Yunge Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenlong Wang
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Endsley CE, Moore KA, Townsley TD, Durston KK, Deweese JE. Bioinformatic Analysis of Topoisomerase IIα Reveals Interdomain Interdependencies and Critical C-Terminal Domain Residues. Int J Mol Sci 2024; 25:5674. [PMID: 38891861 PMCID: PMC11172036 DOI: 10.3390/ijms25115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
DNA Topoisomerase IIα (Top2A) is a nuclear enzyme that is a cancer drug target, and there is interest in identifying novel sites on the enzyme to inhibit cancer cells more selectively and to reduce off-target toxicity. The C-terminal domain (CTD) is one potential target, but it is an intrinsically disordered domain, which prevents structural analysis. Therefore, we set out to analyze the sequence of Top2A from 105 species using bioinformatic analysis, including the PSICalc algorithm, Shannon entropy analysis, and other approaches. Our results demonstrate that large (10th-order) interdependent clusters are found including non-proximal positions across the major domains of Top2A. Further, CTD-specific clusters of the third, fourth, and fifth order, including positions that had been previously analyzed via mutation and biochemical assays, were identified. Some of these clusters coincided with positions that, when mutated, either increased or decreased relaxation activity. Finally, sites of low Shannon entropy (i.e., low variation in amino acids at a given site) were identified and mapped as key positions in the CTD. Included in the low-entropy sites are phosphorylation sites and charged positions. Together, these results help to build a clearer picture of the critical positions in the CTD and provide potential sites/regions for further analysis.
Collapse
Affiliation(s)
- Clark E. Endsley
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Kori A. Moore
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | | | - Kirk K. Durston
- Department of Research and Publications, Digital Strategies, Langley, BC V2Y 1N5, Canada
| | - Joseph E. Deweese
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
17
|
Takihira S, Yamada D, Osone T, Takao T, Sakaguchi M, Hakozaki M, Itano T, Nakata E, Fujiwara T, Kunisada T, Ozaki T, Takarada T. PRRX1-TOP2A interaction is a malignancy-promoting factor in human malignant peripheral nerve sheath tumours. Br J Cancer 2024; 130:1493-1504. [PMID: 38448751 PMCID: PMC11058259 DOI: 10.1038/s41416-024-02632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Paired related-homeobox 1 (PRRX1) is a transcription factor in the regulation of developmental morphogenetic processes. There is growing evidence that PRRX1 is highly expressed in certain cancers and is critically involved in human survival prognosis. However, the molecular mechanism of PRRX1 in cancer malignancy remains to be elucidated. METHODS PRRX1 expression in human Malignant peripheral nerve sheath tumours (MPNSTs) samples was detected immunohistochemically to evaluate survival prognosis. MPNST models with PRRX1 gene knockdown or overexpression were constructed in vitro and the phenotype of MPNST cells was evaluated. Bioinformatics analysis combined with co-immunoprecipitation, mass spectrometry, RNA-seq and structural prediction were used to identify proteins interacting with PRRX1. RESULTS High expression of PRRX1 was associated with a poor prognosis for MPNST. PRRX1 knockdown suppressed the tumorigenic potential. PRRX1 overexpressed in MPNSTs directly interacts with topoisomerase 2 A (TOP2A) to cooperatively promote epithelial-mesenchymal transition and increase expression of tumour malignancy-related gene sets including mTORC1, KRAS and SRC signalling pathways. Etoposide, a TOP2A inhibitor used in the treatment of MPNST, may exhibit one of its anticancer effects by inhibiting the PRRX1-TOP2A interaction. CONCLUSION Targeting the PRRX1-TOP2A interaction in malignant tumours with high PRRX1 expression might provide a novel tumour-selective therapeutic strategy.
Collapse
Affiliation(s)
- Shota Takihira
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tatsunori Osone
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Michiyuki Hakozaki
- Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Takuto Itano
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Eiji Nakata
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tomohiro Fujiwara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyuki Kunisada
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| |
Collapse
|
18
|
Al-Zahrani AA. The Potential Role of Phytochemicals of Juniperus procera in the Treatment of Ovarian Cancer and the Inhibition of Human Topoisomerase II Alpha Activity. Bioinform Biol Insights 2024; 18:11779322241248904. [PMID: 38681095 PMCID: PMC11047251 DOI: 10.1177/11779322241248904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
A variety of active chemicals found in medicinal plants can be used to develop new medications with few adverse effects. In vitro and in silico analyses were used to evaluate the anticancer properties of Juniperus procera fruit and leaf extracts. Here, we show that the methanolic extract from J procera fruit and leaf extracts inhibits 2 human ovarian cancer cell lines, A2780CP and SKOV-3. The leaf extract demonstrated strong cytotoxicity against A2780CP with an IC50 of 1.2 μg/mL, almost matching the IC50 of the anticancer medication doxorubicin (0.9 μg/mL). Higher antioxidant activity was observed in the fruit than leaf extract. The molecular docking results showed that the active component, podocarpusflavone A, was the best-docked chemical with the human topoisomerase II alpha enzyme. According to our knowledge, this is the first in vitro study to show the cytotoxicity of J procera extracts against the 2 previously described human ovarian cancer cell lines. The fact that the podocarpusflavone A molecule may have an inhibitory effect on the human topoisomerase II alpha enzyme was also revealed by this first in silico analysis. Our findings imply that the J procera fruit and leaf methanolic extract has anticancer characteristics that may guide future in vivo studies.
Collapse
Affiliation(s)
- Ateeq A Al-Zahrani
- Chemistry Department, University College at Al-Qunfudhah, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
19
|
Vayssières M, Marechal N, Yun L, Lopez Duran B, Murugasamy NK, Fogg JM, Zechiedrich L, Nadal M, Lamour V. Structural basis of DNA crossover capture by Escherichia coli DNA gyrase. Science 2024; 384:227-232. [PMID: 38603484 PMCID: PMC11108255 DOI: 10.1126/science.adl5899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
DNA supercoiling must be precisely regulated by topoisomerases to prevent DNA entanglement. The interaction of type IIA DNA topoisomerases with two DNA molecules, enabling the transport of one duplex through the transient double-stranded break of the other, remains elusive owing to structures derived solely from single linear duplex DNAs lacking topological constraints. Using cryo-electron microscopy, we solved the structure of Escherichia coli DNA gyrase bound to a negatively supercoiled minicircle DNA. We show how DNA gyrase captures a DNA crossover, revealing both conserved molecular grooves that accommodate the DNA helices. Together with molecular tweezer experiments, the structure shows that the DNA crossover is of positive chirality, reconciling the binding step of gyrase-mediated DNA relaxation and supercoiling in a single structure.
Collapse
Affiliation(s)
- Marlène Vayssières
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Nils Marechal
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Long Yun
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Brian Lopez Duran
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Naveen Kumar Murugasamy
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Jonathan M. Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Marc Nadal
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Life Sciences, Université Paris Cité, Paris, France
| | - Valérie Lamour
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Kuang W, Zhao Y, Li J, Deng Z. Structure-function analysis of the ATPase domain of African swine fever virus topoisomerase. mBio 2024; 15:e0308623. [PMID: 38411066 PMCID: PMC11005426 DOI: 10.1128/mbio.03086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Type II topoisomerase utilizes the energy from ATP hydrolysis to alter DNA topology during genome replication and transcription. The ATPase domain of this enzyme is required for ATP hydrolysis and plays a crucial role in coupling DNA binding and ATP turnover with the DNA strand passage reaction. The African swine fever virus (ASFV) specifically encodes a topoisomerase II (topo II), which is critical for viral replication and an attractive target for antiviral development. Here, we present a high-resolution crystal structure of the ASFV topo II ATPase domain complexed with the substrate analog AMPPNP. Structural comparison reveals that the ASFV topo II ATPase domain shares a conserved overall structure with its homologs from eukaryotes and prokaryotes but also has three characteristic regions, including the intra-molecular interface formed by the ATP-lid and QTK loop as well as helix α9, the K-loop in the transducer domain, and the antennae-like α-helix at the ATP binding domain. Mutating the key residues within these three regions impairs or abolishes the basal and DNA-stimulated ATPase activities and reduces or eliminates the relaxation activity of the holoenzyme. Our data indicate that all three regions are functionally important for the ATPase and relaxation activities and strongly suggest that ATP hydrolysis, DNA binding, and strand passage are highly coupled and managed by the allosteric coordination of multiple domains of the type II topoisomerase. Moreover, we find a promising druggable pocket in the dimeric interface of the ASFV topo II ATPase domain, which will benefit future anti-ASFV drug development. IMPORTANCE The ATPase domain of type II topoisomerase provides energy by hydrolyzing ATP and coordinates with the DNA-binding/cleavage domain to drive and control DNA transport. The precise molecular mechanisms of how these domains respond to DNA binding and ATP hydrolysis signals and communicate with each other remain elusive. We determine the first high-resolution crystal structure of the ATPase domain of African swine fever virus (ASFV) topo II in complex with AMPPNP and biochemically investigate its function in ATPase and DNA relaxation activities. Importantly, we find that mutations at three characteristic regions of the ASFV ATPase domain produce parallel effects on the basal/DNA-stimulated ATPase and relaxation activities, implying the tight coupling of the ATP hydrolysis and strand passage process. Therefore, our data provide important implications for understanding the strand passage mechanism of the type II topoisomerase and the structural basis for developing ATPase domain-targeting antivirals against ASFV.
Collapse
Affiliation(s)
- Wenhua Kuang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyue Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zengqin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
21
|
Maiuolo L, Tallarida MA, Meduri A, Fiorani G, Jiritano A, De Nino A, Algieri V, Costanzo P. 1,2,3-Triazole Hybrids Containing Isatins and Phenolic Moieties: Regioselective Synthesis and Molecular Docking Studies. Molecules 2024; 29:1556. [PMID: 38611835 PMCID: PMC11013233 DOI: 10.3390/molecules29071556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The synthesis of hybrid molecules is one of the current strategies of drug discovery for the development of new lead compounds. The 1,2,3-triazole moiety represents an important building block in Medicinal Chemistry, extensively present in recent years. In this paper, we presented the design and the synthesis of new 1,2,3-triazole hybrids, containing both an isatine and a phenolic core. Firstly, the non-commercial azide and the alkyne synthons were prepared by different isatines and phenolic acids, respectively. Then, the highly regioselective synthesis of 1,4-disubstituted triazoles was obtained in excellent yields by a click chemistry approach, catalyzed by Cu(I). Finally, a molecular docking study was performed on the hybrid library, finding four different therapeutic targets. Among them, the most promising results were obtained on 5-lipoxygenase, an enzyme involved in the inflammatory processes.
Collapse
Affiliation(s)
- Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | | | - Angelo Meduri
- RINA Consulting—Centro Sviluppo Materiali SpA, Zona Industriale San Pietro Lametino, Comparto 1, 88046 Lamezia Terme, CZ, Italy;
| | - Giulia Fiorani
- Department Molecular Sciences and Nanosystems, University Ca’ Foscari Venezia, 30172 Mestre, VE, Italy;
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | - Vincenzo Algieri
- IRCCS NEUROMED—Istituto Neurologico Mediterraneo, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| |
Collapse
|
22
|
Evoli S, Kariyawasam NL, Nitiss KC, Nitiss JL, Wereszczynski J. Modeling Allosteric Mechanisms of Eukaryotic Type II Topoisomerases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551689. [PMID: 37577673 PMCID: PMC10418245 DOI: 10.1101/2023.08.02.551689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Type II topoisomerases (TopoIIs) are ubiquitous enzymes that are involved in crucial nuclear processes such as genome organization, chromosome segregation, and other DNA metabolic processes. These enzymes function as large, homodimeric complexes that undergo a complex cycle of binding and hydrolysis of two ATP molecules in their ATPase domains, which regulates the capture and passage of one DNA double-helix through a second, cleaved DNA molecule. This process requires the transmission of information about the state of the bound nucleotide over vast ranges in the TopoII complex. How this information is transmitted at the molecular level to regulate TopoII functions and how protein substitutions disrupt these mechanisms remains largely unknown. Here, we employed extensive microsecond scale molecular dynamics simulations of the yeast TopoII enzyme in multiple nucleotide-bound states and with amino acid substitutions near both the N- and C-terminals of the complex. Simulation results indicate that the ATPase domains are remarkably flexible on the sub-microsecond timescale and that these dynamics are modulated by the identity of the bound nucleotides and both local and distant amino acid substitutions. Network analyses point towards specific allosteric networks that transmit information about the hydrolysis cycle throughout the complex, which include residues in both the protein and the bound DNA molecule. Amino acid substitutions weaken many of these pathways. Together, our results provide molecular-level details on how the TopoII catalytic cycle is controlled through nucleotide binding and hydrolysis and how mutations may disrupt this process.
Collapse
Affiliation(s)
- Stefania Evoli
- Department of Physics, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
- these authors contributed equally to this work
| | - Nilusha L. Kariyawasam
- Department of Physics, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
- these authors contributed equally to this work
| | - Karin C. Nitiss
- Pharmaceutical Sciences Department, University of Illinois at Chicago, Rockford, IL
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois at Chicago, Rockford, IL
| | - Jeff Wereszczynski
- Department of Physics, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
- Department of Biology, Illinois Institute of Technology, Chicago, USA
| |
Collapse
|
23
|
Chang CWM, Wang SC, Wang CH, Pang AH, Yang CH, Chang YK, Wu WJ, Tsai MD. A unified view on enzyme catalysis by cryo-EM study of a DNA topoisomerase. Commun Chem 2024; 7:45. [PMID: 38418525 PMCID: PMC10901890 DOI: 10.1038/s42004-024-01129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
The theories for substrate recognition in enzyme catalysis have evolved from lock-key to induced fit, then conformational selection, and conformational selection followed by induced fit. However, the prevalence and consensus of these theories require further examination. Here we use cryogenic electron microscopy and African swine fever virus type 2 topoisomerase (AsfvTop2) to demonstrate substrate binding theories in a joint and ordered manner: catalytic selection by the enzyme, conformational selection by the substrates, then induced fit. The apo-AsfvTop2 pre-exists in six conformers that comply with the two-gate mechanism directing DNA passage and release in the Top2 catalytic cycle. The structures of AsfvTop2-DNA-inhibitor complexes show that substantial induced-fit changes occur locally from the closed apo-conformer that however is too far-fetched for the open apo-conformer. Furthermore, the ATPase domain of AsfvTop2 in the MgAMP-PNP-bound crystal structures coexist in reduced and oxidized forms involving a disulfide bond, which can regulate the AsfvTop2 function.
Collapse
Affiliation(s)
- Chiung-Wen Mary Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
| | - Shun-Chang Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Allan H Pang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
24
|
Cybulski M, Sidoryk K, Zaremba-Czogalla M, Trzaskowski B, Kubiszewski M, Tobiasz J, Jaromin A, Michalak O. The Conjugates of Indolo[2,3- b]quinoline as Anti-Pancreatic Cancer Agents: Design, Synthesis, Molecular Docking and Biological Evaluations. Int J Mol Sci 2024; 25:2573. [PMID: 38473820 DOI: 10.3390/ijms25052573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
New amide conjugates of hydroxycinnamic acids (HCAs) and the known antineoplastic 5,11-dimethyl-5H-indolo[2,3-b]quinoline (DiMIQ), an analog of the natural alkaloid neocryptolepine, were synthesized and tested in vitro for anticancer activity. The compound 9-[((2-hydroxy)cinnamoyl)amino]-5,11-dimethyl-5H-indolo[2,3-b]quinoline (2), which contains the ortho-coumaric acid fragment, demonstrated dose-dependent effectiveness against both normal BxPC-3 and metastatic AsPC-1 pancreatic cancer cells. The IC50 values for AsPC-1 and BxPC-3 were 336.5 nM and 347.5 nM, respectively, with a selectivity index of approximately 5 for both pancreatic cancer cells compared to normal dermal fibroblasts. Conjugate 2 did not exhibit any hemolytic activity against human erythrocytes at the tested concentration. Computational studies were performed to predict the pharmacokinetic profile and potential mechanism of action of the synthesized conjugates. These studies focused on the ADME properties of the conjugates and their interactions with DNA, as well as DNA-topoisomerase alpha and beta complexes. All of the conjugates studied showed approximately one order of magnitude stronger binding to DNA compared to the reference DiMIQ, and approximately two orders of magnitude stronger binding to the topoisomerase II-DNA complex compared to DiMIQ. Conjugate 2 was predicted to have the strongest binding to the enzyme-DNA complex, with a Ki value of 2.8 nM.
Collapse
Affiliation(s)
- Marcin Cybulski
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Katarzyna Sidoryk
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marek Kubiszewski
- Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Joanna Tobiasz
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Olga Michalak
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| |
Collapse
|
25
|
Bandak AF, Blower TR, Nitiss KC, Shah V, Nitiss J, Berger J. Using energy to go downhill-a genoprotective role for ATPase activity in DNA topoisomerase II. Nucleic Acids Res 2024; 52:1313-1324. [PMID: 38038260 PMCID: PMC10853770 DOI: 10.1093/nar/gkad1157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction cycle. Curiously, most type II topoisomerases (topos II, IV and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase IIβ (hTOP2β) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss elevates the enzyme's propensity for DNA damage. The unstructured C-terminal domains (CTDs) of hTOP2β strongly potentiate strand passage activity in ATPase-less enzymes, as do cleavage-prone mutations that confer hypersensitivity to the chemotherapeutic agent etoposide. The presence of either the CTD or the mutations lead ATPase-less enzymes to promote even greater levels of DNA cleavage in vitro, as well as in vivo. By contrast, aberrant cleavage phenotypes of these topo II variants is significantly repressed when the ATPase domains are present. Our findings are consistent with the proposal that type II topoisomerases acquired ATPase function to maintain high levels of catalytic activity while minimizing inappropriate DNA damage.
Collapse
Affiliation(s)
- Afif F Bandak
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| | - Tim R Blower
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
- Biomedical Sciences Department, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - Viraj Shah
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
- Biomedical Sciences Department, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - John L Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - James M Berger
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Bunch H, Kim D, Naganuma M, Nakagawa R, Cong A, Jeong J, Ehara H, Vu H, Chang JH, Schellenberg MJ, Sekine SI. ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat Commun 2023; 14:8341. [PMID: 38097570 PMCID: PMC10721843 DOI: 10.1038/s41467-023-44089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Masahiro Naganuma
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN BDR Laboratory for Phyloinformatics, Hyogo, 650-0047, Japan
| | - Anh Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hongha Vu
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
27
|
Soliman TN, Keifenheim D, Parker PJ, Clarke DJ. Cell cycle responses to Topoisomerase II inhibition: Molecular mechanisms and clinical implications. J Cell Biol 2023; 222:e202209125. [PMID: 37955972 PMCID: PMC10641588 DOI: 10.1083/jcb.202209125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
DNA Topoisomerase IIA (Topo IIA) is an enzyme that alters the topological state of DNA and is essential for the separation of replicated sister chromatids and the integrity of cell division. Topo IIA dysfunction activates cell cycle checkpoints, resulting in arrest in either the G2-phase or metaphase of mitosis, ultimately triggering the abscission checkpoint if non-disjunction persists. These events, which directly or indirectly monitor the activity of Topo IIA, have become of major interest as many cancers have deficiencies in Topoisomerase checkpoints, leading to genome instability. Recent studies into how cells sense Topo IIA dysfunction and respond by regulating cell cycle progression demonstrate that the Topo IIA G2 checkpoint is distinct from the G2-DNA damage checkpoint. Likewise, in mitosis, the metaphase Topo IIA checkpoint is separate from the spindle assembly checkpoint. Here, we integrate mechanistic knowledge of Topo IIA checkpoints with the current understanding of how cells regulate progression through the cell cycle to accomplish faithful genome transmission and discuss the opportunities this offers for therapy.
Collapse
Affiliation(s)
- Tanya N. Soliman
- Barts Cancer Institute, Queen Mary University London, London, UK
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | | | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Yu S, Zheng J, Zhang Y, Meng D, Wang Y, Xu X, Liang N, Shabiti S, Zhang X, Wang Z, Yang Z, Mi P, Zheng X, Li W, Chen H. The mechanisms of multidrug resistance of breast cancer and research progress on related reversal agents. Bioorg Med Chem 2023; 95:117486. [PMID: 37847948 DOI: 10.1016/j.bmc.2023.117486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Chemotherapy is the mainstay in the treatment of breast cancer. However, many drugs that are commonly used in clinical practice have a high incidence of side effects and multidrug resistance (MDR), which is mainly caused by overexpression of drug transporters and related enzymes in breast cancer cells. In recent years, researchers have been working hard to find newer and safer drugs to overcome MDR in breast cancer. In this review, we provide the molecule mechanism of MDR in breast cancer, categorize potential lead compounds that inhibit single or multiple drug transporter proteins, as well as related enzymes. Additionally, we have summarized the structure-activity relationship (SAR) based on potential breast cancer MDR modulators with lower side effects. The development of novel approaches to suppress MDR is also addressed. These lead compounds hold great promise for exploring effective chemotherapy agents to overcome MDR, providing opportunities for curing breast cancer in the future.
Collapse
Affiliation(s)
- Shiwen Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yujue Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xiaoyu Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Shayibai Shabiti
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zixi Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Pengbing Mi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan Province 425101, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China.
| |
Collapse
|
29
|
Pavlin M, Herlah B, Valjavec K, Perdih A. Unveiling the interdomain dynamics of type II DNA topoisomerase through all-atom simulations: Implications for understanding its catalytic cycle. Comput Struct Biotechnol J 2023; 21:3746-3759. [PMID: 37602233 PMCID: PMC10436251 DOI: 10.1016/j.csbj.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/01/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Type IIA DNA topoisomerases are complex molecular nanomachines that manage topological states of the DNA molecule in the cell and play a crucial role in cellular processes such as cell division and transcription. They are also established targets of cancer chemotherapy. Starting from the available crystal structure of a fully catalytic topoisomerase IIA homodimer from Saccharomyces cerevisiae, we constructed three states of this molecular motor primarily changing the configurations of the DNA segment bound in the DNA gate and performed μs-long all-atom molecular simulations. A comprehensive analysis revealed a sliding motion within the DNA gate and a teamwork between the N-gate and DNA gate that may be associated with the necessary molecular events that allow passage of the T-segment of DNA. The observed movement of the ATPase dimer relative to the DNA domain was reflected in different interaction patterns between the K-loops of the transducer domain and the B-A-B form of the bound DNA. Based on the obtained results, we mapped simulated configurations to the structures in the proposed catalytic cycle through which type IIA topoisomerases exert their function and discussed the possible transition events. The results extend our understanding of the mechanism of action of type IIA topoisomerases and provide an atomistic interpretation of some of the observed features of these molecular motors.
Collapse
Affiliation(s)
- Matic Pavlin
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Barbara Herlah
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Katja Valjavec
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Jian JY, Osheroff N. Telling Your Right Hand from Your Left: The Effects of DNA Supercoil Handedness on the Actions of Type II Topoisomerases. Int J Mol Sci 2023; 24:11199. [PMID: 37446377 PMCID: PMC10342825 DOI: 10.3390/ijms241311199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Type II topoisomerases are essential enzymes that modulate the topological state of DNA supercoiling in all living organisms. These enzymes alter DNA topology by performing double-stranded passage reactions on over- or underwound DNA substrates. This strand passage reaction generates a transient covalent enzyme-cleaved DNA structure known as the cleavage complex. Al-though the cleavage complex is a requisite catalytic intermediate, it is also intrinsically dangerous to genomic stability in biological systems. The potential threat of type II topoisomerase function can also vary based on the nature of the supercoiled DNA substrate. During essential processes such as DNA replication and transcription, cleavage complex formation can be inherently more dangerous on overwound versus underwound DNA substrates. As such, it is important to understand the profound effects that DNA topology can have on the cellular functions of type II topoisomerases. This review will provide a broad assessment of how human and bacterial type II topoisomerases recognize and act on their substrates of various topological states.
Collapse
Affiliation(s)
- Jeffrey Y. Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
31
|
Rao SPS, Gould MK, Noeske J, Saldivia M, Jumani RS, Ng PS, René O, Chen YL, Kaiser M, Ritchie R, Francisco AF, Johnson N, Patra D, Cheung H, Deniston C, Schenk AD, Cortopassi WA, Schmidt RS, Wiedemar N, Thomas B, Palkar R, Ghafar NA, Manoharan V, Luu C, Gable JE, Wan KF, Myburgh E, Mottram JC, Barnes W, Walker J, Wartchow C, Aziz N, Osborne C, Wagner J, Sarko C, Kelly JM, Manjunatha UH, Mäser P, Jiricek J, Lakshminarayana SB, Barrett MP, Diagana TT. Cyanotriazoles are selective topoisomerase II poisons that rapidly cure trypanosome infections. Science 2023; 380:1349-1356. [PMID: 37384702 DOI: 10.1126/science.adh0614] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT. Cryo-electron microscopy approaches confirmed that CT compounds acted through selective, irreversible inhibition of trypanosomal topoisomerase II by stabilizing double-stranded DNA:enzyme cleavage complexes. These findings suggest a potential approach toward successful therapeutics for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Srinivasa P S Rao
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Matthew K Gould
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jonas Noeske
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Manuel Saldivia
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Rajiv S Jumani
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Pearly S Ng
- Novartis Institute for Tropical Diseases, Singapore
| | - Olivier René
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Yen-Liang Chen
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Ryan Ritchie
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Nila Johnson
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | - Debjani Patra
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Harry Cheung
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Colin Deniston
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | | | | | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Natalie Wiedemar
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Bryanna Thomas
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Rima Palkar
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | | | | | - Catherine Luu
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Jonathan E Gable
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, Singapore
| | - Elmarie Myburgh
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Whitney Barnes
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - John Walker
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Charles Wartchow
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Natasha Aziz
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Colin Osborne
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Juergen Wagner
- Novartis Institute for Tropical Diseases, Singapore
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christopher Sarko
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - John M Kelly
- London School of Hygiene and Tropical Medicine, London, UK
| | - Ujjini H Manjunatha
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Jan Jiricek
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Suresh B Lakshminarayana
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Michael P Barrett
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Thierry T Diagana
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| |
Collapse
|
32
|
Bartas M, Slychko K, Červeň J, Pečinka P, Arndt-Jovin DJ, Jovin TM. Extensive Bioinformatics Analyses Reveal a Phylogenetically Conserved Winged Helix (WH) Domain (Zτ) of Topoisomerase IIα, Elucidating Its Very High Affinity for Left-Handed Z-DNA and Suggesting Novel Putative Functions. Int J Mol Sci 2023; 24:10740. [PMID: 37445918 DOI: 10.3390/ijms241310740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The dynamic processes operating on genomic DNA, such as gene expression and cellular division, lead inexorably to topological challenges in the form of entanglements, catenanes, knots, "bubbles", R-loops, and other outcomes of supercoiling and helical disruption. The resolution of toxic topological stress is the function attributed to DNA topoisomerases. A prominent example is the negative supercoiling (nsc) trailing processive enzymes such as DNA and RNA polymerases. The multiple equilibrium states that nscDNA can adopt by redistribution of helical twist and writhe include the left-handed double-helical conformation known as Z-DNA. Thirty years ago, one of our labs isolated a protein from Drosophila cells and embryos with a 100-fold greater affinity for Z-DNA than for B-DNA, and identified it as topoisomerase II (gene Top2, orthologous to the human UniProt proteins TOP2A and TOP2B). GTP increased the affinity and selectivity for Z-DNA even further and also led to inhibition of the isomerase enzymatic activity. An allosteric mechanism was proposed, in which topoII acts as a Z-DNA-binding protein (ZBP) to stabilize given states of topological (sub)domains and associated multiprotein complexes. We have now explored this possibility by comprehensive bioinformatic analyses of the available protein sequences of topoII representing organisms covering the whole tree of life. Multiple alignment of these sequences revealed an extremely high level of evolutionary conservation, including a winged-helix protein segment, here denoted as Zτ, constituting the putative structural homolog of Zα, the canonical Z-DNA/Z-RNA binding domain previously identified in the interferon-inducible RNA Adenosine-to-Inosine-editing deaminase, ADAR1p150. In contrast to Zα, which is separate from the protein segment responsible for catalysis, Zτ encompasses the active site tyrosine of topoII; a GTP-binding site and a GxxG sequence motif are in close proximity. Quantitative Zτ-Zα similarity comparisons and molecular docking with interaction scoring further supported the "B-Z-topoII hypothesis" and has led to an expanded mechanism for topoII function incorporating the recognition of Z-DNA segments ("Z-flipons") as an inherent and essential element. We further propose that the two Zτ domains of the topoII homodimer exhibit a single-turnover "conformase" activity on given G(ate) B-DNA segments ("Z-flipins"), inducing their transition to the left-handed Z-conformation. Inasmuch as the topoII-Z-DNA complexes are isomerase inactive, we infer that they fulfill important structural roles in key processes such as mitosis. Topoisomerases are preeminent targets of anti-cancer drug discovery, and we anticipate that detailed elucidation of their structural-functional interactions with Z-DNA and GTP will facilitate the design of novel, more potent and selective anti-cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Kristyna Slychko
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Donna J Arndt-Jovin
- Emeritus Laboratory of Cellular Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Thomas M Jovin
- Emeritus Laboratory of Cellular Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Le TT, Wu M, Lee JH, Bhatt N, Inman JT, Berger JM, Wang MD. Etoposide promotes DNA loop trapping and barrier formation by topoisomerase II. Nat Chem Biol 2023; 19:641-650. [PMID: 36717711 PMCID: PMC10154222 DOI: 10.1038/s41589-022-01235-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/22/2022] [Indexed: 01/31/2023]
Abstract
Etoposide is a broadly employed chemotherapeutic and eukaryotic topoisomerase II poison that stabilizes cleaved DNA intermediates to promote DNA breakage and cytotoxicity. How etoposide perturbs topoisomerase dynamics is not known. Here we investigated the action of etoposide on yeast topoisomerase II, human topoisomerase IIα and human topoisomerase IIβ using several sensitive single-molecule detection methods. Unexpectedly, we found that etoposide induces topoisomerase to trap DNA loops, compacting DNA and restructuring DNA topology. Loop trapping occurs after ATP hydrolysis but before strand ejection from the enzyme. Although etoposide decreases the innate stability of topoisomerase dimers, it increases the ability of the enzyme to act as a stable roadblock. Interestingly, the three topoisomerases show similar etoposide-mediated resistance to dimer separation and sliding along DNA but different abilities to compact DNA and chirally relax DNA supercoils. These data provide unique mechanistic insights into the functional consequences of etoposide on topoisomerase II dynamics.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - Meiling Wu
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neti Bhatt
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
34
|
Elanany MA, Osman EEA, Gedawy EM, Abou-Seri SM. Design and synthesis of novel cytotoxic fluoroquinolone analogs through topoisomerase inhibition, cell cycle arrest, and apoptosis. Sci Rep 2023; 13:4144. [PMID: 36914702 PMCID: PMC10011602 DOI: 10.1038/s41598-023-30885-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
To exploit the advantageous properties of approved drugs to hasten anticancer drug discovery, we designed and synthesized a series of fluoroquinolone (FQ) analogs via functionalization of the acid hydrazides of moxifloxacin, ofloxacin, and ciprofloxacin. Under the NCI-60 Human Tumor Cell Line Screening Assay, (IIIf) was the most potent among moxifloxacin derivatives, whereas (VIb) was the only ofloxacin derivative with significant effects and ciprofloxacin derivatives were devoid of activity. (IIIf) and (VIb) were further selected for five-dose evaluation, where they showed potent growth inhibition with a mean GI50 of 1.78 and 1.45 µM, respectively. (VIb) elicited a more potent effect reaching sub-micromolar level on many cell lines, including MDA-MB-468 and MCF-7 breast cancer cell lines (GI50 = 0.41 and 0.42 µM, respectively), NSCLC cell line HOP-92 (GI50 = 0.50 µM) and CNS cell lines SNB-19 and U-251 (GI50 = 0.51 and 0.61 µM, respectively). (IIIf) and (VIb) arrested MCF-7 cells at G1/S and G1, respectively, and induced apoptosis mainly through the intrinsic pathway as shown by the increased ratio of Bax/Bcl-2 and caspase-9 with a lesser activation of the extrinsic pathway through caspase-8. Both compounds inhibited topoisomerase (Topo) with preferential activity on type II over type I and (VIb) was marginally more potent than (IIIf). Docking study suggests that (IIIf) and (VIb) bind differently to Topo II compared to etoposide. (IIIf) and (VIb) possess high potential for oral absorption, low CNS permeability and low binding to plasma proteins as suggested by in silico ADME calculations. Collectively, (IIIf) and (VIb) represent excellent lead molecules for the development of cytotoxic agents from quinolone scaffolds.
Collapse
Affiliation(s)
- Mohamed A Elanany
- Department of Pharmaceutical Chemistry, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| | - Essam Eldin A Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ehab Mohamed Gedawy
- Department of Pharmaceutical Chemistry, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
35
|
Skok Ž, Durcik M, Zajec Ž, Gramec Skledar D, Bozovičar K, Pišlar A, Tomašič T, Zega A, Peterlin Mašič L, Kikelj D, Zidar N, Ilaš J. ATP-competitive inhibitors of human DNA topoisomerase IIα with improved antiproliferative activity based on N-phenylpyrrolamide scaffold. Eur J Med Chem 2023; 249:115116. [PMID: 36689894 DOI: 10.1016/j.ejmech.2023.115116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
ATP-competitive inhibitors of human DNA topoisomerase II show potential for becoming the successors of topoisomerase II poisons, the clinically successful anticancer drugs. Based on our recent screening hits, we designed, synthesized and biologically evaluated new, improved series of N-phenylpyrrolamide DNA topoisomerase II inhibitors. Six structural classes were prepared to systematically explore the chemical space of N-phenylpyrrolamide based inhibitors. The most potent inhibitor, 47d, had an IC50 value of 0.67 μM against DNA topoisomerase IIα. Compound 53b showed exceptional activity on cancer cell lines with IC50 values of 130 nM against HepG2 and 140 nM against MCF-7 cancer cell lines. The reported compounds have no structurally similarity to published structures, they are metabolically stable, have reasonable solubility and thus can serve as promising leads in the development of anticancer ATP-competitive inhibitors of human DNA topoisomerase IIα.
Collapse
Affiliation(s)
- Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Živa Zajec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Darja Gramec Skledar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Krištof Bozovičar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Anja Pišlar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
36
|
Vidmar V, Vayssières M, Lamour V. What's on the Other Side of the Gate: A Structural Perspective on DNA Gate Opening of Type IA and IIA DNA Topoisomerases. Int J Mol Sci 2023; 24:ijms24043986. [PMID: 36835394 PMCID: PMC9960139 DOI: 10.3390/ijms24043986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
DNA topoisomerases have an essential role in resolving topological problems that arise due to the double-helical structure of DNA. They can recognise DNA topology and catalyse diverse topological reactions by cutting and re-joining DNA ends. Type IA and IIA topoisomerases, which work by strand passage mechanisms, share catalytic domains for DNA binding and cleavage. Structural information has accumulated over the past decades, shedding light on the mechanisms of DNA cleavage and re-ligation. However, the structural rearrangements required for DNA-gate opening and strand transfer remain elusive, in particular for the type IA topoisomerases. In this review, we compare the structural similarities between the type IIA and type IA topoisomerases. The conformational changes that lead to the opening of the DNA-gate and strand passage, as well as allosteric regulation, are discussed, with a focus on the remaining questions about the mechanism of type IA topoisomerases.
Collapse
Affiliation(s)
- Vita Vidmar
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Marlène Vayssières
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Valérie Lamour
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
- Hôpitaux Universitaires de Strasbourg, 67098 Strasbourg, France
- Correspondence:
| |
Collapse
|
37
|
Chemical and Biological Review of Endophytic Fungi Associated with Morus sp. (Moraceae) and In Silico Study of Their Antidiabetic Potential. Molecules 2023; 28:molecules28041718. [PMID: 36838706 PMCID: PMC9968060 DOI: 10.3390/molecules28041718] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The chronic nature of diabetes mellitus motivates the quest for novel agents to improve its management. The scarcity and prior uncontrolled utilization of medicinal plants have encouraged researchers to seek new sources of promising compounds. Recently, endophytes have presented as eco-friendly leading sources for bioactive metabolites. This article reviewed the endophytic fungi associated with Morus species and their isolated compounds, in addition to the biological activities tested on their extracts and chemical constituents. The relevant literature was collected from the years 2008-2022 from PubMed and Web of Science databases. Notably, no antidiabetic activity was reported for any of the Morus-associated endophytic fungal extracts or their twenty-one previously isolated compounds. This encouraged us to perform an in silico study on the previously isolated compounds to explore their possible antidiabetic potential. Furthermore, pharmacokinetic and dynamic stability studies were performed on these compounds. Upon molecular docking, Colletotrichalactone A (14) showed a promising antidiabetic activity due to the inhibition of the α-amylase local target and the human sodium-glucose cotransporter 2 (hSGT2) systemic target with safe pharmacokinetic features. These results provide an in silico interpretation of the possible anti-diabetic potential of Morus endophytic metabolites, yet further study is required.
Collapse
|
38
|
Zhang J, Liu P, Chen J, Yao D, Liu Q, Zhang J, Zhang HW, Leung ELH, Yao XJ, Liu L. Upgrade of chrysomycin A as a novel topoisomerase II inhibitor to curb KRAS-mutant lung adenocarcinoma progression. Pharmacol Res 2023; 187:106565. [PMID: 36414124 DOI: 10.1016/j.phrs.2022.106565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/20/2022]
Abstract
A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Jianwei Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Dahong Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Juanhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau.
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| |
Collapse
|
39
|
Drillien R, Pradeau-Aubreton K, Batisse J, Mezher J, Schenckbecher E, Marguin J, Ennifar E, Ruff M. Efficient production of protein complexes in mammalian cells using a poxvirus vector. PLoS One 2022; 17:e0279038. [PMID: 36520869 PMCID: PMC9754296 DOI: 10.1371/journal.pone.0279038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The production of full length, biologically active proteins in mammalian cells is critical for a wide variety of purposes ranging from structural studies to preparation of subunit vaccines. Prior research has shown that Modified vaccinia virus Ankara encoding the bacteriophage T7 RNA polymerase (MVA-T7) is particularly suitable for high level expression of proteins upon infection of mammalian cells. The expression system is safe for users and 10-50 mg of full length, biologically active proteins may be obtained in their native state, from a few litres of infected cell cultures. Here we report further improvements which allow an increase in the ease and speed of recombinant virus isolation, the scale-up of protein production and the simultaneous synthesis of several polypeptides belonging to a protein complex using a single virus vector. Isolation of MVA-T7 viruses encoding foreign proteins was simplified by combining positive selection for virus recombinants and negative selection against parental virus, a process which eliminated the need for tedious plaque purification. Scale-up of protein production was achieved by infecting a BHK 21 suspension cell line and inducing protein expression with previously infected cells instead of virus, thus saving time and effort in handling virus stocks. Protein complexes were produced from infected cells by concatenating the Tobacco Etch Virus (TEV) N1A protease sequence with each of the genes of the complex into a single ORF, each gene being separated from the other by twin TEV protease cleavage sites. We report the application of these methods to the production of a complex formed on the one hand between the HIV-1 integrase and its cell partner LEDGF and on the other between the HIV-1 VIF protein and its cell partners APOBEC3G, CBFβ, Elo B and Elo C. The strategies developed in this study should be valuable for the overexpression and subsequent purification of numerous protein complexes.
Collapse
Affiliation(s)
- Robert Drillien
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
- * E-mail: (RD); (MR)
| | - Karine Pradeau-Aubreton
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
| | - Julien Batisse
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
| | - Joëlle Mezher
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Emma Schenckbecher
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Justine Marguin
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Eric Ennifar
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Marc Ruff
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
- * E-mail: (RD); (MR)
| |
Collapse
|
40
|
Morotomi-Yano K, Hiromoto Y, Higaki T, Yano KI. Disease-associated H58Y mutation affects the nuclear dynamics of human DNA topoisomerase IIβ. Sci Rep 2022; 12:20627. [PMID: 36450898 PMCID: PMC9712534 DOI: 10.1038/s41598-022-24883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
DNA topoisomerase II (TOP2) is an enzyme that resolves DNA topological problems and plays critical roles in various nuclear processes. Recently, a heterozygous H58Y substitution in the ATPase domain of human TOP2B was identified from patients with autism spectrum disorder, but its biological significance remains unclear. In this study, we analyzed the nuclear dynamics of TOP2B with H58Y (TOP2B H58Y). Although wild-type TOP2B was highly mobile in the nucleus of a living cell, the nuclear mobility of TOP2B H58Y was markedly reduced, suggesting that the impact of H58Y manifests as low protein mobility. We found that TOP2B H58Y is insensitive to ICRF-187, a TOP2 inhibitor that halts TOP2 as a closed clamp on DNA. When the ATPase activity of TOP2B was compromised, the nuclear mobility of TOP2B H58Y was restored to wild-type levels, indicating the contribution of the ATPase activity to the low nuclear mobility. Analysis of genome-edited cells harboring TOP2B H58Y showed that TOP2B H58Y retains sensitivity to the TOP2 poison etoposide, implying that TOP2B H58Y can undergo at least a part of its catalytic reactions. Collectively, TOP2 H58Y represents a unique example of the relationship between a disease-associated mutation and perturbed protein dynamics.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- grid.274841.c0000 0001 0660 6749Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan
| | - Yukiko Hiromoto
- grid.274841.c0000 0001 0660 6749Faculty of Science, Kumamoto University, Kumamoto, Japan
| | - Takumi Higaki
- grid.274841.c0000 0001 0660 6749Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Ken-ichi Yano
- grid.274841.c0000 0001 0660 6749Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
41
|
Uusküla-Reimand L, Wilson MD. Untangling the roles of TOP2A and TOP2B in transcription and cancer. SCIENCE ADVANCES 2022; 8:eadd4920. [PMID: 36322662 PMCID: PMC9629710 DOI: 10.1126/sciadv.add4920] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 06/09/2023]
Abstract
Type II topoisomerases (TOP2) are conserved regulators of chromatin topology that catalyze reversible DNA double-strand breaks (DSBs) and are essential for maintaining genomic integrity in diverse dynamic processes such as transcription, replication, and cell division. While controlled TOP2-mediated DSBs are an elegant solution to topological constraints of DNA, DSBs also contribute to the emergence of chromosomal translocations and mutations that drive cancer. The central importance of TOP2 enzymes as frontline chemotherapeutic targets is well known; however, their precise biological functions and impact in cancer development are still poorly understood. In this review, we provide an updated overview of TOP2A and TOP2B in the regulation of chromatin topology and transcription, and discuss the recent discoveries linking TOP2 activities with cancer pathogenesis.
Collapse
Affiliation(s)
- Liis Uusküla-Reimand
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Daiß JL, Pilsl M, Straub K, Bleckmann A, Höcherl M, Heiss FB, Abascal-Palacios G, Ramsay EP, Tlučková K, Mars JC, Fürtges T, Bruckmann A, Rudack T, Bernecky C, Lamour V, Panov K, Vannini A, Moss T, Engel C. The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans. Life Sci Alliance 2022; 5:5/11/e202201568. [PMID: 36271492 PMCID: PMC9438803 DOI: 10.26508/lsa.202201568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
We characterize the human RNA polymerase I by evolutionary biochemistry and cryo-EM revealing a built-in structural domain that apparently serves as transcription factor–binding platform in metazoans. Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth, and dysregulation is observed in many cancer types. Here, we present the purification of human Pol I from cells carrying a genomic GFP fusion on the largest subunit allowing the structural and functional analysis of the enzyme across species. In contrast to yeast, human Pol I carries a single-subunit stalk, and in vitro transcription indicates a reduced proofreading activity. Determination of the human Pol I cryo-EM reconstruction in a close-to-native state rationalizes the effects of disease-associated mutations and uncovers an additional domain that is built into the sequence of Pol I subunit RPA1. This “dock II” domain resembles a truncated HMG box incapable of DNA binding which may serve as a downstream transcription factor–binding platform in metazoans. Biochemical analysis, in situ modelling, and ChIP data indicate that Topoisomerase 2a can be recruited to Pol I via the domain and cooperates with the HMG box domain–containing factor UBF. These adaptations of the metazoan Pol I transcription system may allow efficient release of positive DNA supercoils accumulating downstream of the transcription bubble.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Michael Pilsl
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Kristina Straub
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andrea Bleckmann
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Mona Höcherl
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Florian B Heiss
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Guillermo Abascal-Palacios
- Division of Structural Biology, The Institute of Cancer Research, London, UK
- Biofisika Institute (CSIC, UPV/EHU), Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ewan P Ramsay
- Division of Structural Biology, The Institute of Cancer Research, London, UK
- Fondazione Human Technopole, Structural Biology Research Centre, Milan, Italy
| | | | - Jean-Clement Mars
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Borden Laboratory, IRIC, Université de Montréal, Montréal, Québec, Canada
| | - Torben Fürtges
- Protein Crystallography, Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Till Rudack
- Protein Crystallography, Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Carrie Bernecky
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Valérie Lamour
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Integrated Structural Biology, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Konstantin Panov
- School of Biological Sciences and PGJCCR, Queen’s University Belfast, Belfast, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, UK
- Fondazione Human Technopole, Structural Biology Research Centre, Milan, Italy
| | - Tom Moss
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
43
|
Regulation of the mitotic chromosome folding machines. Biochem J 2022; 479:2153-2173. [PMID: 36268993 DOI: 10.1042/bcj20210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
Over the last several years enormous progress has been made in identifying the molecular machines, including condensins and topoisomerases that fold mitotic chromosomes. The discovery that condensins generate chromatin loops through loop extrusion has revolutionized, and energized, the field of chromosome folding. To understand how these machines fold chromosomes with the appropriate dimensions, while disentangling sister chromatids, it needs to be determined how they are regulated and deployed. Here, we outline the current understanding of how these machines and factors are regulated through cell cycle dependent expression, chromatin localization, activation and inactivation through post-translational modifications, and through associations with each other, with other factors and with the chromatin template itself. There are still many open questions about how condensins and topoisomerases are regulated but given the pace of progress in the chromosome folding field, it seems likely that many of these will be answered in the years ahead.
Collapse
|
44
|
Delint-Ramirez I, Konada L, Heady L, Rueda R, Jacome ASV, Marlin E, Marchioni C, Segev A, Kritskiy O, Yamakawa S, Reiter AH, Tsai LH, Madabhushi R. Calcineurin dephosphorylates topoisomerase IIβ and regulates the formation of neuronal-activity-induced DNA breaks. Mol Cell 2022; 82:3794-3809.e8. [PMID: 36206766 PMCID: PMC9990814 DOI: 10.1016/j.molcel.2022.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022]
Abstract
Neuronal activity induces topoisomerase IIβ (Top2B) to generate DNA double-strand breaks (DSBs) within the promoters of neuronal early response genes (ERGs) and facilitate their transcription, and yet, the mechanisms that control Top2B-mediated DSB formation are unknown. Here, we report that stimulus-dependent calcium influx through NMDA receptors activates the phosphatase calcineurin to dephosphorylate Top2B at residues S1509 and S1511, which stimulates its DNA cleavage activity and induces it to form DSBs. Exposing mice to a fear conditioning paradigm also triggers Top2B dephosphorylation at S1509 and S1511 in the hippocampus, indicating that calcineurin also regulates Top2B-mediated DSB formation following physiological neuronal activity. Furthermore, calcineurin-Top2B interactions following neuronal activity and sites that incur activity-induced DSBs are preferentially localized at the nuclear periphery in neurons. Together, these results reveal how radial gene positioning and the compartmentalization of activity-dependent signaling govern the position and timing of activity-induced DSBs and regulate gene expression patterns in neurons.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lahiri Konada
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lance Heady
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard Rueda
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Eric Marlin
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Marchioni
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amir Segev
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Satoko Yamakawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Ogrizek M, Janežič M, Valjavec K, Perdih A. Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα. J Chem Inf Model 2022; 62:3896-3909. [PMID: 35948041 PMCID: PMC9400105 DOI: 10.1021/acs.jcim.2c00303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Human DNA topoisomerase IIα is a biological nanomachine
that
regulates the topological changes of the DNA molecule and is considered
a prime target for anticancer drugs. Despite intensive research, many
atomic details about its mechanism of action remain unknown. We investigated
the ATPase domain, a segment of the human DNA topoisomerase IIα,
using all-atom molecular simulations, multiscale quantum mechanics/molecular
mechanics (QM/MM) calculations, and a point mutation study. The results
suggested that the binding of ATP affects the overall dynamics of
the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors
the dissociative substrate-assisted reaction mechanism with the catalytic
Glu87 serving to properly position and polarize the lytic water molecule.
The point mutation study complemented our computational results, demonstrating
that Lys378, part of the important QTK loop, acts as a stabilizing
residue. The work aims to pave the way to a deeper understanding of
these important molecular motors and to advance the development of
new therapeutics.
Collapse
Affiliation(s)
- Mitja Ogrizek
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Matej Janežič
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Katja Valjavec
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI 1000 Ljubljana, Slovenia
| |
Collapse
|
46
|
Structural and Biochemical Basis of Etoposide-Resistant Mutations in Topoisomerase IIα. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Etoposide is a widely used anticancer drug that targets type II topoisomerases, including topoisomerase IIα (TOP2A). TOP2A is a nuclear enzyme involved in regulating DNA topology through a double-strand passage mechanism. TOP2A is a homodimeric enzyme with two symmetrical active sites formed by residues from either half of the dimer. Both active sites cleave DNA, forming an enzyme-bound, double-stranded DNA break. Etoposide acts by binding in the active site between the ends of cleaved DNA, preventing the enzyme from ligating the DNA. In the present study, biochemical and structural data are used to examine the mechanism of etoposide resistance found with specific point mutations in TOP2A. Mutations near the active site (D463A, G534R, R487K), along with some outside of the active site (ΔA429 and P716L), are examined. We hypothesize that changes in the coordination of DNA cleavage results from mutations that impact symmetrical relationships in the active site and surrounding regions. In some cases, we report the first data on purified versions of these enzymes. Based upon our results, both local and long-distance factors can impact etoposide action and may indicate interdependent relationships in structure and function.
Collapse
|
47
|
Ling EM, Baslé A, Cowell IG, van den Berg B, Blower TR, Austin CA. A comprehensive structural analysis of the ATPase domain of human DNA topoisomerase II beta bound to AMPPNP, ADP, and the bisdioxopiperazine, ICRF193. Structure 2022; 30:1129-1145.e3. [PMID: 35660158 PMCID: PMC9592559 DOI: 10.1016/j.str.2022.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Human topoisomerase II beta (TOP2B) modulates DNA topology using energy from ATP hydrolysis. To investigate the conformational changes that occur during ATP hydrolysis, we determined the X-ray crystallographic structures of the human TOP2B ATPase domain bound to AMPPNP or ADP at 1.9 Å and 2.6 Å resolution, respectively. The GHKL domains of both structures are similar, whereas the QTK loop within the transducer domain can move for product release. As TOP2B is the clinical target of bisdioxopiperazines, we also determined the structure of a TOP2B:ADP:ICRF193 complex to 2.3 Å resolution and identified key drug-binding residues. Biochemical characterization revealed the N-terminal strap reduces the rate of ATP hydrolysis. Mutagenesis demonstrated residue E103 as essential for ATP hydrolysis in TOP2B. Our data provide fundamental insights into the tertiary structure of the human TOP2B ATPase domain and a potential regulatory mechanism for ATP hydrolysis. Three structures of the TOP2B ATPase domain bound to AMPPNP, ADP, or ICRF193 The QTK loop in the ADP complex is further from the active site An SO4 ion is in place of the ATP hydrolysis product, Pi Biochemical data show the N-terminal strap reduces the ATPase hydrolysis activity
Collapse
Affiliation(s)
- Elise M Ling
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ian G Cowell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Bert van den Berg
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
48
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
49
|
Hameed Y, Khan M. Discovery of novel six genes-based cervical cancer-associated biomarkers that are capable to break the heterogeneity barrier and applicable at the global level. J Cancer Res Ther 2022. [DOI: 10.4103/jcrt.jcrt_1588_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
50
|
Morovicz AP, Mazloumi Gavgani F, Jacobsen RG, Skuseth Slinning M, Turcu DC, Lewis AE. Phosphoinositide 3-kinase signalling in the nucleolus. Adv Biol Regul 2021; 83:100843. [PMID: 34920983 DOI: 10.1016/j.jbior.2021.100843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/26/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) signalling pathway plays key roles in many cellular processes and is altered in many diseases. The function and mode of action of the pathway have mostly been elucidated in the cytoplasm. However, many of the components of the PI3K pathway are also present in the nucleus at specific sub-nuclear sites including nuclear speckles, nuclear lipid islets and the nucleolus. Nucleoli are membrane-less subnuclear structures where ribosome biogenesis occurs. Processes leading to ribosome biogenesis are tightly regulated to maintain protein translation capacity of cells. This review focuses on nucleolar PI3K signalling and how it regulates rRNA synthesis, as well as on the identification of downstream phosphatidylinositol (3,4,5)trisphosphate effector proteins.
Collapse
Affiliation(s)
| | | | - Rhîan G Jacobsen
- Department of Biological Sciences, University of Bergen, 5008, Bergen, Norway
| | | | - Diana C Turcu
- Department of Biological Sciences, University of Bergen, 5008, Bergen, Norway
| | - Aurélia E Lewis
- Department of Biological Sciences, University of Bergen, 5008, Bergen, Norway.
| |
Collapse
|