1
|
Chen HH, Highland HM, Frankel EG, Scartozzi AC, Zhang X, Roshani R, Sharma P, Kar A, Buchanan VL, Polikowsky HG, Petty LE, Seo J, Anwar MY, Kim D, Graff M, Young KL, Zhu W, Karastergiou K, Shaw DM, Justice AE, Fernández-Rhodes L, Krishnan M, Gutierrez A, McCormick PJ, Aguilar-Salinas CA, Tusié-Luna MT, Muñoz-Hernandez LL, Herrera-Hernandez M, Lee M, Gamazon ER, Cox NJ, Pajukanta P, Fried SK, Gordon-Larsen P, Shah RV, Fisher-Hoch SP, McCormick JB, North KE, Below JE. Multiomics reveal key inflammatory drivers of severe obesity: IL4R, LILRA5, and OSM. CELL GENOMICS 2025; 5:100784. [PMID: 40043711 PMCID: PMC11960538 DOI: 10.1016/j.xgen.2025.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/08/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Polygenic severe obesity (body mass index [BMI] ≥40 kg/m2) has increased, especially in Hispanic/Latino populations, yet we know little about the underlying mechanistic pathways. We analyzed whole-blood multiomics data to identify genes differentially regulated in severe obesity in Mexican Americans from the Cameron County Hispanic Cohort. Our RNA sequencing analysis identified 124 genes significantly differentially expressed between severe obesity cases (BMI ≥40 kg/m2) and controls (BMI <25 kg/m2); 33% replicated in an independent sample from the same population. Our integrative approach identified inflammatory genes, including IL4R, ZNF438, and LILRA5. Several genes displayed transcriptomic effects on severe obesity in subcutaneous adipose tissue. We further showed that the genetic regulation of these genes is associated with several traits in a large biobank, including bone fractures, obstructive sleep apnea, and hyperaldosteronism, illuminating potential risk mechanisms. Our findings furnish a molecular architecture of the severe obesity phenotype across multiple molecular domains.
Collapse
Affiliation(s)
- Hung-Hsin Chen
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Academia Sinica, Institute of Biomedical Sciences, Taipei, Taiwan
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth G Frankel
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyssa C Scartozzi
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinruo Zhang
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rashedeh Roshani
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Priya Sharma
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Asha Kar
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Victoria L Buchanan
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah G Polikowsky
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren E Petty
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jungkyun Seo
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of MetaBiohealth, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mohammad Yaser Anwar
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daeeun Kim
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wanying Zhu
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kalypso Karastergiou
- Obesity Research Center, Boston University School of Medicine, Boston, MA, USA; Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas M Shaw
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anne E Justice
- Department of Population Health Services, Geisinger Health, Danville, PA, USA
| | | | - Mohanraj Krishnan
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Absalon Gutierrez
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, Houston, TX, USA
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas and Research Direction of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México; Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, México
| | - Maria Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas UNAM Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Linda Liliana Muñoz-Hernandez
- Unidad de Investigación de Enfermedades Metabólicas del Instituto Nacional de Ciencias, Médicas, y Nutrición Salvador Zubirán, México City, México
| | - Miguel Herrera-Hernandez
- Surgery Direction of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Miryoung Lee
- Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Brownsville Regional Campus, Brownsville, TX, USA
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nancy J Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health at University of California, Los Angeles, Los Angeles, CA, USA
| | - Susan K Fried
- Obesity Research Center, Boston University School of Medicine, Boston, MA, USA; Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Research Center, Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan P Fisher-Hoch
- Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Brownsville Regional Campus, Brownsville, TX, USA
| | - Joseph B McCormick
- Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Brownsville Regional Campus, Brownsville, TX, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jennifer E Below
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Liu L, Rashid M, Wess J. Regulation of GLP-1 and Glucagon Receptor Function by β-Arrestins in Metabolically Important Cell Types. Biochemistry 2025; 64:978-986. [PMID: 39983043 DOI: 10.1021/acs.biochem.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) and glucagon (GCG) are polypeptides derived from a common precursor (preproglucagon) that modulates the activity of numerous cell types involved in regulating glucose and energy homeostasis. GLP-1 and GCG exert their biological functions via binding to specific G protein-coupled receptors (GLP-1Rs and GCGRs). Ligand-activated GLP-1Rs and GCGRs preferentially activate the heterotrimeric G protein Gs, resulting in increased cytosolic cAMP levels. However, activation of the two receptors also leads to the recruitment of β-arrestin-1 and -2 (βarr1 and βarr2, respectively) to the intracellular surface of the receptor proteins. The binding of β-arrestins to the activated receptors contributes to the termination of receptor-stimulated G protein coupling. In addition, receptor-β-arrestin complexes can act as signaling nodes in their own right by modulating the activity of many intracellular signaling pathways. In this Review, we will discuss the roles of βarr1 and βarr2 in regulating key metabolic functions mediated by activated GLP-1Rs and GCGRs. During the past decade, GLP-1R agonists have emerged as highly efficacious antidiabetic and antiobesity drugs. Moreover, dual agonists that stimulate both GLP-1Rs and GCGRs are predicted to offer additional therapeutic benefits as compared to GLP-1R agonist monotherapy. We will summarize and try to synthesize a series of studies suggesting that the development of G protein-biased GLP-1R and/or GCGR agonists, which do not lead to the recruitment of β-arrestins, may lead to even more efficacious therapeutic agents.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Misbah Rashid
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Filipowska J, Cisneros Z, Varghese SS, Leon-Rivera N, Wang P, Kang R, Lu G, Yuan YC, Shih HP, Bhattacharya S, Dhawan S, Garcia-Ocaña A, Kondegowda NG, Vasavada RC. LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK. Mol Metab 2025; 92:102097. [PMID: 39788290 PMCID: PMC11788739 DOI: 10.1016/j.molmet.2025.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVE Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The Leucine-rich repeat-containing G-protein-coupled receptor (GPCR) 4 (LGR4) is expressed in β-cells and is the fourth most abundant GPCR in human islets. Although LGR4 has regenerative, anti-inflammatory, and anti-apoptotic effects in other tissues, its functional significance in β-cells remains unknown. We have previously identified Receptor Activator of Nuclear Factor Kappa B (NFκB) (RANK) as a negative regulator of β-cell health. In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo. METHODS We evaluated Lgr4 expression in mouse and human islets in response to acute (proinflammatory cytokines), or chronic (high fat fed mice, db/db mice, and aging) stress. To determine the role of LGR4 we employed in vitro Lgr4 loss and gain of function in primary rodent and human β-cells and examined its mechanism of action in the rodent INS1 cell line. Using Lgr4fl/fl and Lgr4fl/fl/Rankfl/fl × Ins1-Cre mice we generated β-cell-specific conditional knockout (cko) mice to test the role of LGR4 and its interaction with RANK in vivo under basal and stress-induced conditions. RESULTS Lgr4 expression in rodent and human islets was reduced by multiple stressors. In vitro, Lgr4 knockdown decreased proliferation and survival in rodent β-cells, while overexpression protected against cytokine-induced cell death in rodent and human β-cells. Mechanistically, LGR4 protects β-cells by suppressing RANK- Tumor necrosis factor receptor associated factor 6 (TRAF6) interaction and subsequent activation of NFκB. Lgr4cko mice exhibit normal glucose homeostasis but increased β-cell death in both sexes and decreased β-cell proliferation and maturation only in females. Male Lgr4cko mice under stress displayed reduced β-cell proliferation and a further increase in β-cell death. The impaired β-cell phenotype in Lgr4cko mice was rescued in Lgr4/Rank double ko (dko) mice. Upon aging, both male and female Lgr4cko mice displayed impaired β-cell homeostasis, however, only female mice became glucose intolerant with decreased plasma insulin. CONCLUSIONS These data demonstrate a novel role for LGR4 as a positive regulator of β-cell health under basal and stress-induced conditions, through suppressing the negative effects of RANK.
Collapse
Affiliation(s)
- Joanna Filipowska
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Zelda Cisneros
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Sneha S Varghese
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Nancy Leon-Rivera
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, and Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy Kang
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Geming Lu
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Computational Quantitative Medicine, City of Hope, Duarte, CA 91010, USA
| | - Hung-Ping Shih
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Supriyo Bhattacharya
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA 91010, USA
| | - Sangeeta Dhawan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Adolfo Garcia-Ocaña
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Nagesha Guthalu Kondegowda
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Rupangi C Vasavada
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
4
|
Petrovic I, Grzesiek S, Isaikina P. Advances in the molecular understanding of GPCR-arrestin complexes. Biochem Soc Trans 2024; 52:2333-2342. [PMID: 39508463 DOI: 10.1042/bst20240170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Arrestins are essential proteins for the regulation of G protein-coupled receptors (GPCRs). They mediate GPCR desensitization after the activated receptor has been phosphorylated by G protein receptor kinases (GRKs). In addition, GPCR-arrestin interactions may trigger signaling pathways that are distinct and independent from G proteins. The non-visual GPCRs encompass hundreds of receptors with varying phosphorylation patterns and amino acid sequences, which are regulated by only two human non-visual arrestin isoforms. This review describes recent findings on GPCR-arrestin complexes, obtained by structural techniques, biophysical, biochemical, and cellular assays. The solved structures of complete GPCR-arrestin complexes are of limited resolution ranging from 3.2 to 4.7 Å and reveal a high variability in the relative receptor-arrestin orientation. In contrast, biophysical and functional data indicate that arrestin recruitment, activation and GPCR-arrestin complex stability depend on the receptor phosphosite sequence patterns and density. At present, there is still a manifest lack of high-resolution structural and dynamical information on the interactions of native GPCRs with both GRKs and arrestins, which could provide a detailed molecular understanding of the genesis of receptor phosphorylation patterns and the specificity GPCR-arrestin interactions. Such insights seem crucial for progress in the rational design of advanced, arrestin-specific therapeutics.
Collapse
Affiliation(s)
- Ivana Petrovic
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Polina Isaikina
- Center for Life Sciences, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
5
|
You X, Peng Q, Qian W, Duan H, Xie Z, Feng Y. SRSF2 is essential for maintaining pancreatic beta-cell identity and regulating glucose homeostasis in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119845. [PMID: 39265887 DOI: 10.1016/j.bbamcr.2024.119845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Diabetes is characterized by decreased beta-cell mass and islet dysfunction. The splicing factor SRSF2 plays a crucial role in cell survival, yet its impact on pancreatic beta cell survival and glucose homeostasis remains unclear. We observed that the deletion of Srsf2 specifically in beta cells led to time-dependent deterioration in glucose tolerance, impaired insulin secretion, decreased islet mass, an increased number of alpha cells, and the onset of diabetes by the age of 10 months in mice. Single-cell RNA sequencing (scRNA-seq) analyses revealed that, despite an increase in populations of unfolded protein response (UPR)-activated and undifferentiated beta cells within the SRSF2_KO group, there was a notable decrease in the expression of UPR-related and endoplasmic reticulum (ER)-related genes, accompanied by a loss of beta-cell identity. This suggests that beta cells have transitioned from an adaptive phase to a maladaptive phase in islets of 10-month-old SRSF2_KO mice. Further results demonstrated that deletion of SRSF2 caused decreased proliferation in beta cells within 3-month-old islets and Min6 cells. These findings underscore the essential role of SRSF2 in controlling beta-cell proliferation and preserving beta-cell function in mice.
Collapse
Affiliation(s)
- Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Wenju Qian
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Huimin Duan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
6
|
Filipowska J, Cisneros Z, Leon-Rivera N, Wang P, Kang R, Lu G, Yuan YC, Bhattacharya S, Dhawan S, Garcia-Ocaña A, Kondegowda NG, Vasavada RC. LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593645. [PMID: 38798561 PMCID: PMC11118322 DOI: 10.1101/2024.05.10.593645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pancreatic β-cell stress contributes to diabetes progression. This study demonstrates that Leucine-rich repeat-containing G-protein-coupled-receptor-4 (LGR4) is critical for maintaining β-cell health and is modulated by stressors. In vitro , Lgr4 knockdown decreases proliferation and survival in rodent β-cells, while overexpression protects against cytokine-induced cell death in rodent and human β-cells. Mechanistically, LGR4 suppresses Receptor Activator of Nuclear Factor Kappa B (NFκB) (RANK) and its subsequent activation of NFκB to protect β-cells. β-cell-specific Lgr4 -conditional knockout (cko) mice exhibit normal glucose homeostasis but increased β-cell death in both sexes and decreased proliferation only in females. Male Lgr4 cko mice under stress display reduced β-cell proliferation and a further increase in β-cell death. Upon aging, both male and female Lgr4 cko mice display impaired β-cell homeostasis, however, only female mice are glucose intolerant with decreased plasma insulin. We show that LGR4 is required for maintaining β-cell health under basal and stress-induced conditions, through suppression of RANK. Teaser LGR4 receptor is critical for maintaining β-cell health under basal and stressed conditions, through suppression of RANK.
Collapse
|
7
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
9
|
Khajavi N, Beck A, Riçku K, Beyerle P, Jacob K, Syamsul SF, Belkacemi A, Reinach PS, Schreier PC, Salah H, Popp T, Novikoff A, Breit A, Chubanov V, Müller TD, Zierler S, Gudermann T. TRPM7 kinase is required for insulin production and compensatory islet responses during obesity. JCI Insight 2023; 8:163397. [PMID: 36574297 PMCID: PMC9977431 DOI: 10.1172/jci.insight.163397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Most overweight individuals do not develop diabetes due to compensatory islet responses to restore glucose homeostasis. Therefore, regulatory pathways that promote β cell compensation are potential targets for treatment of diabetes. The transient receptor potential cation channel subfamily M member 7 protein (TRPM7), harboring a cation channel and a serine/threonine kinase, has been implicated in controlling cell growth and proliferation. Here, we report that selective deletion of Trpm7 in β cells disrupted insulin secretion and led to progressive glucose intolerance. We indicate that the diminished insulinotropic response in β cell-specific Trpm7-knockout mice was caused by decreased insulin production because of impaired enzymatic activity of this protein. Accordingly, high-fat-fed mice with a genetic loss of TRPM7 kinase activity displayed a marked glucose intolerance accompanied by hyperglycemia. These detrimental glucoregulatory effects were engendered by reduced compensatory β cell responses because of mitigated protein kinase B (AKT)/ERK signaling. Collectively, our data identify TRPM7 kinase as a potentially novel regulator of insulin synthesis, β cell dynamics, and glucose homeostasis under obesogenic diet.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Andreas Beck
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Klea Riçku
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Philipp Beyerle
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Katharina Jacob
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Sabrina F. Syamsul
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Anouar Belkacemi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Peter S. Reinach
- Wenzhou Medical University, Ophthalmology Department, Wenzhou, China
| | - Pascale C.F. Schreier
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Houssein Salah
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Timo D. Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,German Center for Lung Research, Munich, Germany
| |
Collapse
|
10
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
11
|
Akter S, Akhter H, Chaudhury HS, Rahman MH, Gorski A, Hasan MN, Shin Y, Rahman MA, Nguyen MN, Choi TG, Kim SS. Dietary carbohydrates: Pathogenesis and potential therapeutic targets to obesity-associated metabolic syndrome. Biofactors 2022; 48:1036-1059. [PMID: 36102254 DOI: 10.1002/biof.1886] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS) is a common feature in obesity, comprising a cluster of abnormalities including abdominal fat accumulation, hyperglycemia, hyperinsulinemia, dyslipidemia, and hypertension, leading to diabetes and cardiovascular diseases (CVD). Intake of carbohydrates (CHO), particularly a sugary diet that rapidly increases blood glucose, triglycerides, and blood pressure levels is the predominant determining factor of MetS. Complex CHO, on the other hand, are a stable source of energy taking a longer time to digest. In particular, resistant starch (RS) or soluble fiber is an excellent source of prebiotics, which alter the gut microbial composition, which in turn improves metabolic control. Altering maternal CHO intake during pregnancy may result in the child developing MetS. Furthermore, lifestyle factors such as physical inactivity in combination with dietary habits may synergistically influence gene expression by modulating genetic and epigenetic regulators transforming childhood obesity into adolescent metabolic disorders. This review summarizes the common pathophysiology of MetS in connection with the nature of CHO, intrauterine nutrition, genetic predisposition, lifestyle factors, and advanced treatment approaches; it also emphasizes how dietary CHO may act as a key element in the pathogenesis and future therapeutic targets of obesity and MetS.
Collapse
Affiliation(s)
- Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Biotechnology, Bangladesh University of Health Sciences, Dhaka 1216, Bangladesh
| | - Hajara Akhter
- Biomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Habib Sadat Chaudhury
- Department of Biochemistry, International Medical College Hospital, Tongi 1711, Bangladesh
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Andrew Gorski
- Department of Philosophy in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | | | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Minh Nam Nguyen
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Pristine Pharmaceuticals, Patuakhali 8600, Bangladesh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Aslanoglou D, Bertera S, Friggeri L, Sánchez-Soto M, Lee J, Xue X, Logan RW, Lane JR, Yechoor VK, McCormick PJ, Meiler J, Free RB, Sibley DR, Bottino R, Freyberg Z. Dual pancreatic adrenergic and dopaminergic signaling as a therapeutic target of bromocriptine. iScience 2022; 25:104771. [PMID: 35982797 PMCID: PMC9379584 DOI: 10.1016/j.isci.2022.104771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Bromocriptine is approved as a diabetes therapy, yet its therapeutic mechanisms remain unclear. Though bromocriptine's actions have been mainly attributed to the stimulation of brain dopamine D2 receptors (D2R), bromocriptine also targets the pancreas. Here, we employ bromocriptine as a tool to elucidate the roles of catecholamine signaling in regulating pancreatic hormone secretion. In β-cells, bromocriptine acts on D2R and α2A-adrenergic receptor (α2A-AR) to reduce glucose-stimulated insulin secretion (GSIS). Moreover, in α-cells, bromocriptine acts via D2R to reduce glucagon secretion. α2A-AR activation by bromocriptine recruits an ensemble of G proteins with no β-arrestin2 recruitment. In contrast, D2R recruits G proteins and β-arrestin2 upon bromocriptine stimulation, demonstrating receptor-specific signaling. Docking studies reveal distinct bromocriptine binding to α2A-AR versus D2R, providing a structural basis for bromocriptine's dual actions on β-cell α2A-AR and D2R. Together, joint dopaminergic and adrenergic receptor actions on α-cell and β-cell hormone release provide a new therapeutic mechanism to improve dysglycemia.
Collapse
Affiliation(s)
- Despoina Aslanoglou
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Laura Friggeri
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Marta Sánchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeongkyung Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, UK
| | - Vijay K. Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter J. McCormick
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
- Imagine Pharma, Pittsburgh, PA, USA
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, PA, USA
| |
Collapse
|
13
|
Zhai R, Snyder J, Montgomery S, Sato PY. Double life: How GRK2 and β-arrestin signaling participate in diseases. Cell Signal 2022; 94:110333. [PMID: 35430346 PMCID: PMC9929935 DOI: 10.1016/j.cellsig.2022.110333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
G-protein coupled receptor (GPCR) kinases (GRKs) and β-arrestins play key roles in GPCR and non-GPCR cellular responses. In fact, GRKs and arrestins are involved in a plethora of pathways vital for physiological maintenance of inter- and intracellular communication. Here we review decades of research literature spanning from the discovery, identification of key structural elements, and findings supporting the diverse roles of these proteins in GPCR-mediated pathways. We then describe how GRK2 and β-arrestins partake in non-GPCR signaling and briefly summarize their involvement in various pathologies. We conclude by presenting gaps in knowledge and our prospective on the promising pharmacological potential in targeting these proteins and/or downstream signaling. Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and arrestins in metabolism and disease progression.
Collapse
Affiliation(s)
| | | | | | - Priscila Y. Sato
- Corresponding author at: Drexel University College of Medicine, Department of Pharmacology and Physiology, 245 N 15th Street, NCB 8152, Philadelphia, PA 19102, USA. (P.Y. Sato)
| |
Collapse
|
14
|
Wess J. The Two β-Arrestins Regulate Distinct Metabolic Processes: Studies with Novel Mutant Mouse Models. Int J Mol Sci 2022; 23:ijms23010495. [PMID: 35008921 PMCID: PMC8745095 DOI: 10.3390/ijms23010495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 01/04/2023] Open
Abstract
The two β-arrestins (β-arrestin-1 and -2; alternative names: arrestin-2 and -3, respectively) are well known for their ability to inhibit signaling via G protein-coupled receptors. However, β-arrestins can also act as signaling molecules in their own right. Although the two proteins share a high degree of sequence and structural homology, early studies with cultured cells indicated that β-arrestin-1 and -2 are not functionally redundant. Recently, the in vivo metabolic roles of the two β-arrestins have been studied using mutant mice selectively lacking either β-arrestin-1 or -2 in cell types that are of particular relevance for regulating glucose and energy homeostasis. These studies demonstrated that the β-arrestin-1 and -2 mutant mice displayed distinct metabolic phenotypes in vivo, providing further evidence for the functional heterogeneity of these two highly versatile signaling proteins.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
In vivo metabolic effects after acute activation of skeletal muscle G s signaling. Mol Metab 2021; 55:101415. [PMID: 34883278 PMCID: PMC8728399 DOI: 10.1016/j.molmet.2021.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/21/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Objective The goal of this study was to determine the glucometabolic effects of acute activation of Gs signaling in skeletal muscle (SKM) in vivo and its contribution to whole-body glucose homeostasis. Methods To address this question, we studied mice that express a Gs-coupled designer G protein-coupled receptor (Gs-DREADD or GsD) selectively in skeletal muscle. We also identified two Gs-coupled GPCRs that are endogenously expressed by SKM at relatively high levels (β2-adrenergic receptor and CRF2 receptor) and studied the acute metabolic effects of activating these receptors in vivo by highly selective agonists (clenbuterol and urocortin 2 (UCN2), respectively). Results Acute stimulation of GsD signaling in SKM impaired glucose tolerance in lean and obese mice by decreasing glucose uptake selectively into SKM. The acute metabolic effects following agonist activation of β2-adrenergic and, potentially, CRF2 receptors appear primarily mediated by altered insulin release. Clenbuterol injection improved glucose tolerance by increasing insulin secretion in lean mice. In SKM, clenbuterol stimulated glycogen breakdown. UCN2 injection resulted in decreased glucose tolerance associated with lower plasma insulin levels. The acute metabolic effects of UCN2 were not mediated by SKM Gs signaling. Conclusions Selective activation of Gs signaling in SKM causes an acute increase in blood glucose levels. However, acute in vivo stimulation of endogenous Gs-coupled receptors enriched in SKM has only a limited impact on whole-body glucose homeostasis, most likely due to the fact that these receptors are also expressed by pancreatic islets where they modulate insulin release. A novel mouse model allowed us to study the in vivo metabolic effects of acute activation of Gs signaling in skeletal muscle (SKM). Acute stimulation of this pathway resulted in impaired glucose tolerance in lean and obese mice due to decreased glucose uptake by SKM. Acute treatment of mice with selective β2-adrenergic and CRF2 receptor agonists (both receptors couple to Gs and are enriched in SKM) resulted in complex in vivo metabolic outcomes, primarily due to altered insulin release. Our study provides an excellent example of how different tissue expression patterns of receptors can affect the acute effects of GPCR agonists on whole-body glucose homeostasis Our findings also highlight the importance of studying both acute and chronic effects of GPCR agonist treatment to properly assess translationally relevant metabolic outcomes.
Collapse
|
16
|
Pydi SP, Barella LF, Zhu L, Meister J, Rossi M, Wess J. β-Arrestins as Important Regulators of Glucose and Energy Homeostasis. Annu Rev Physiol 2021; 84:17-40. [PMID: 34705480 DOI: 10.1146/annurev-physiol-060721-092948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
β-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein-coupled receptors. However, β-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two β-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed β-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both β-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that β-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA; .,Current affiliation: Department of Biological Sciences and Bioengineering, The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, India
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| |
Collapse
|