1
|
Tanouti Y, Roovers M, Wolff P, Lechner A, Van Elder D, Feller A, Soin R, Gueydan C, Kruys V, Droogmans L, Labar G. Structural insight into the novel Thermus thermophilus SPOUT methyltransferase RlmR catalysing Um2552 formation in the 23S rRNA A-loop: a case of convergent evolution. Nucleic Acids Res 2025; 53:gkaf432. [PMID: 40444636 PMCID: PMC12123411 DOI: 10.1093/nar/gkaf432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/15/2025] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
The A-loop of the 23S ribosomal RNA is a critical region of the ribosome involved in stabilizing the CCA-end of A-site-bound transfer RNA. Within this loop, nucleotide U2552 is frequently 2'-O-methylated (Um2552) in various organisms belonging to the three domains of life. Until now, two enzymatic systems are known to modify this position, relying on either a Rossmann fold-like methyltransferase (RFM) or a small RNA-guided system. Here, we report the identification of a third system involved in Um2552 formation, consisting of a methyltransferase of the SPOUT (SpoU-TrmD) superfamily encoded by the ttc1712 open reading frame of Thermus thermophilus, herein renamed RlmR. In Escherichia coli and human mitochondria, the absence of the RFM enzyme responsible for Um2552 formation is known to cause severe defects in ribogenesis and ribosome function. In contrast, no comparable effect was observed upon ttc1712 gene invalidation in T. thermophilus. We also report the high-resolution crystal structure of RlmR in complex with a 59-mer substrate RNA. The structure highlights significant conformational rearrangements of the A-loop and provides a new insight into the catalytic mechanism, revealing structural features that may be generalized to other SpoU methyltransferases.
Collapse
Affiliation(s)
- Yousra Tanouti
- Labiris, Avenue Emile Gryson 1, B-1070 Bruxelles, Belgium
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | - Philippe Wolff
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Antony Lechner
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Dany Van Elder
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, Avenue Emile Gryson 1, B-1070 Bruxelles, Belgium
| | - André Feller
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, Avenue Emile Gryson 1, B-1070 Bruxelles, Belgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Louis Droogmans
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, Avenue Emile Gryson 1, B-1070 Bruxelles, Belgium
| | - Geoffray Labar
- Labiris, Avenue Emile Gryson 1, B-1070 Bruxelles, Belgium
| |
Collapse
|
2
|
Heinrichs M, Finke AF, Aibara S, Krempler A, Boshnakovska A, Rehling P, Hillen HS, Richter-Dennerlein R. Coupling of ribosome biogenesis and translation initiation in human mitochondria. Nat Commun 2025; 16:3641. [PMID: 40240327 PMCID: PMC12003892 DOI: 10.1038/s41467-025-58827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Biogenesis of mitoribosomes requires dedicated chaperones, RNA-modifying enzymes, and GTPases, and defects in mitoribosome assembly lead to severe mitochondriopathies in humans. Here, we characterize late-step assembly states of the small mitoribosomal subunit (mtSSU) by combining genetic perturbation and mutagenesis analysis with biochemical and structural approaches. Isolation of native mtSSU biogenesis intermediates via a FLAG-tagged variant of the GTPase MTG3 reveals three distinct assembly states, which show how factors cooperate to mature the 12S rRNA. In addition, we observe four distinct primed initiation mtSSU states with an incompletely matured rRNA, suggesting that biogenesis and translation initiation are not mutually exclusive processes but can occur simultaneously. Together, these results provide insights into mtSSU biogenesis and suggest a functional coupling between ribosome biogenesis and translation initiation in human mitochondria.
Collapse
Affiliation(s)
- Marleen Heinrichs
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Anna Franziska Finke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shintaro Aibara
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Angelique Krempler
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany
- Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Hauke S Hillen
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
| | - Ricarda Richter-Dennerlein
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Rackham O, Saurer M, Ban N, Filipovska A. Unique architectural features of mammalian mitochondrial protein synthesis. Trends Cell Biol 2025; 35:11-23. [PMID: 38853081 DOI: 10.1016/j.tcb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Mitochondria rely on coordinated expression of their own mitochondrial DNA (mtDNA) with that of the nuclear genome for their biogenesis. The bacterial ancestry of mitochondria has given rise to unique and idiosyncratic features of the mtDNA and its expression machinery that can be specific to different organisms. In animals, the mitochondrial protein synthesis machinery has acquired many new components and mechanisms over evolution. These include several new ribosomal proteins, new stop codons and ways to recognise them, and new mechanisms to deliver nascent proteins into the mitochondrial inner membrane. Here we describe the mitochondrial protein synthesis machinery in mammals and its unique mechanisms of action elucidated to date and highlight the technologies poised to reveal the next generation of discoveries in mitochondrial translation.
Collapse
Affiliation(s)
- Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia; Curtin Medical School Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Martin Saurer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; The University of Western Australia Centre for Child Health Research, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
4
|
Lavdovskaia E, Hanitsch E, Linden A, Pašen M, Challa V, Horokhovskyi Y, Roetschke HP, Nadler F, Welp L, Steube E, Heinrichs M, Mai MMQ, Urlaub H, Liepe J, Richter-Dennerlein R. A roadmap for ribosome assembly in human mitochondria. Nat Struct Mol Biol 2024; 31:1898-1908. [PMID: 38992089 PMCID: PMC11638073 DOI: 10.1038/s41594-024-01356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Mitochondria contain dedicated ribosomes (mitoribosomes), which synthesize the mitochondrial-encoded core components of the oxidative phosphorylation complexes. The RNA and protein components of mitoribosomes are encoded on two different genomes (mitochondrial and nuclear) and are assembled into functional complexes with the help of dedicated factors inside the organelle. Defects in mitoribosome biogenesis are associated with severe human diseases, yet the molecular pathway of mitoribosome assembly remains poorly understood. Here, we applied a multidisciplinary approach combining biochemical isolation and analysis of native mitoribosomal assembly complexes with quantitative mass spectrometry and mathematical modeling to reconstitute the entire assembly pathway of the human mitoribosome. We show that, in contrast to its bacterial and cytosolic counterparts, human mitoribosome biogenesis involves the formation of ribosomal protein-only modules, which then assemble on the appropriate ribosomal RNA moiety in a coordinated fashion. The presence of excess protein-only modules primed for assembly rationalizes how mitochondria cope with the challenge of forming a protein-rich ribonucleoprotein complex of dual genetic origin. This study provides a comprehensive roadmap of mitoribosome biogenesis, from very early to late maturation steps, and highlights the evolutionary divergence from its bacterial ancestor.
Collapse
Affiliation(s)
- Elena Lavdovskaia
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Elisa Hanitsch
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Pašen
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Venkatapathi Challa
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hanna P Roetschke
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, London, UK
- Francis Crick Institute, London, UK
| | - Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Luisa Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Emely Steube
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Marleen Heinrichs
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Mandy Mong-Quyen Mai
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Ricarda Richter-Dennerlein
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Wu J, Zhao Q, Chen S, Xu H, Zhang R, Cai D, Gao Y, Peng W, Chen X, Yuan S, Li D, Li G, Nan A. NSUN4-mediated m5C modification of circERI3 promotes lung cancer development by altering mitochondrial energy metabolism. Cancer Lett 2024; 605:217266. [PMID: 39332589 DOI: 10.1016/j.canlet.2024.217266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
As a highly important methylation modification, the 5-methyladenosine (m5C) modification can profoundly affect RNAs by regulating their transcription, structure and stability. With the continuous development of high-throughput technology, differentially expressed circular RNAs (circRNAs) have been increasingly discovered, and circRNAs play unique roles in tumorigenesis and development. However, the regulatory mechanism of the m5C modification of circRNAs has not yet been revealed. In this study, circERI3, which is highly expressed in lung cancer tissue and significantly correlated with the clinical progression of lung cancer, was initially identified through differential expression profiling of circRNAs. A combined m5C microarray analysis revealed that circERI3 contains the m5C modification and that the NSUN4-mediated m5C modification of circERI3 can increase its nuclear export. The important function of circERI3 in promoting lung cancer progression in vitro and in vivo was clarified. Moreover, we elucidated the novel mechanism by which circERI3 targets DNA binding protein 1 (DDB1), regulates its ubiquitination, enhances its stability, and in turn promotes the transcription of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) through DDB1 to affect mitochondrial function and energy metabolism, which ultimately promotes the development of lung cancer. This study not only revealed the reasons for the abnormal distribution of circERI3 in lung cancer tissues from the perspective of methylation and clarified the important role of circERI3 in lung cancer progression but also described a novel mechanism by which circERI3 promotes lung cancer development through mitochondrial energy metabolism, providing new insights for the study of circRNAs in lung cancer.
Collapse
Affiliation(s)
- Jiaxi Wu
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Sixian Chen
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Dunyu Cai
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yihong Gao
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xingcai Chen
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Shengyi Yuan
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Deqing Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
6
|
Rubalcava-Gracia D, Bubb K, Levander F, Burr S, August A, Chinnery P, Koolmeister C, Larsson NG. LRPPRC and SLIRP synergize to maintain sufficient and orderly mammalian mitochondrial translation. Nucleic Acids Res 2024; 52:11266-11282. [PMID: 39087558 PMCID: PMC11472161 DOI: 10.1093/nar/gkae662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
In mammals, the leucine-rich pentatricopeptide repeat protein (LRPPRC) and the stem-loop interacting RNA-binding protein (SLIRP) form a complex in the mitochondrial matrix that is required throughout the life cycle of most mitochondrial mRNAs. Although pathogenic mutations in the LRPPRC and SLIRP genes cause devastating human mitochondrial diseases, the in vivo function of the corresponding proteins is incompletely understood. We show here that loss of SLIRP in mice causes a decrease of complex I levels whereas other OXPHOS complexes are unaffected. We generated knock-in mice to study the in vivo interdependency of SLIRP and LRPPRC by mutating specific amino acids necessary for protein complex formation. When protein complex formation is disrupted, LRPPRC is partially degraded and SLIRP disappears. Livers from Lrpprc knock-in mice had impaired mitochondrial translation except for a marked increase in the synthesis of ATP8. Furthermore, the introduction of a heteroplasmic pathogenic mtDNA mutation (m.C5024T of the tRNAAla gene) into Slirp knockout mice causes an additive effect on mitochondrial translation leading to embryonic lethality and reduced growth of mouse embryonic fibroblasts. To summarize, we report that the LRPPRC/SLIRP protein complex is critical for maintaining normal complex I levels and that it also coordinates mitochondrial translation in a tissue-specific manner.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Bubb
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Levander
- Department en Immunotechnology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit,University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Amelie V August
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit,University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Camilla Koolmeister
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Brischigliaro M, Sierra‐Magro A, Ahn A, Barrientos A. Mitochondrial ribosome biogenesis and redox sensing. FEBS Open Bio 2024; 14:1640-1655. [PMID: 38849194 PMCID: PMC11452305 DOI: 10.1002/2211-5463.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mitoribosome biogenesis is a complex process involving RNA elements encoded in the mitochondrial genome and mitoribosomal proteins typically encoded in the nuclear genome. This process is orchestrated by extra-ribosomal proteins, nucleus-encoded assembly factors, which play roles across all assembly stages to coordinate ribosomal RNA processing and maturation with the sequential association of ribosomal proteins. Both biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided insights into their assembly process. In this article, we will briefly outline the current understanding of mammalian mitoribosome biogenesis pathways and the factors involved. Special attention is devoted to the recent identification of iron-sulfur clusters as structural components of the mitoribosome and a small subunit assembly factor, the existence of redox-sensitive cysteines in mitoribosome proteins and assembly factors, and the role they may play as redox sensor units to regulate mitochondrial translation under stress.
Collapse
Affiliation(s)
| | - Ana Sierra‐Magro
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
| | - Ahram Ahn
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
| | - Antoni Barrientos
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
- Bruce W. Carter Department of Veterans Affairs VA Medical CenterMiamiFLUSA
| |
Collapse
|
8
|
Cipullo M, Valentín Gesé G, Gopalakrishna S, Krueger A, Lobo V, Pirozhkova MA, Marks J, Páleníková P, Shiriaev D, Liu Y, Misic J, Cai Y, Nguyen MD, Abdelbagi A, Li X, Minczuk M, Hafner M, Benhalevy D, Sarshad AA, Atanassov I, Hällberg BM, Rorbach J. GTPBP8 plays a role in mitoribosome formation in human mitochondria. Nat Commun 2024; 15:5664. [PMID: 38969660 PMCID: PMC11229512 DOI: 10.1038/s41467-024-50011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Mitochondrial gene expression relies on mitoribosomes to translate mitochondrial mRNAs. The biogenesis of mitoribosomes is an intricate process involving multiple assembly factors. Among these factors, GTP-binding proteins (GTPBPs) play important roles. In bacterial systems, numerous GTPBPs are required for ribosome subunit maturation, with EngB being a GTPBP involved in the ribosomal large subunit assembly. In this study, we focus on exploring the function of GTPBP8, the human homolog of EngB. We find that ablation of GTPBP8 leads to the inhibition of mitochondrial translation, resulting in significant impairment of oxidative phosphorylation. Structural analysis of mitoribosomes from GTPBP8 knock-out cells shows the accumulation of mitoribosomal large subunit assembly intermediates that are incapable of forming functional monosomes. Furthermore, fPAR-CLIP analysis reveals that GTPBP8 is an RNA-binding protein that interacts specifically with the mitochondrial ribosome large subunit 16 S rRNA. Our study highlights the role of GTPBP8 as a component of the mitochondrial gene expression machinery involved in mitochondrial large subunit maturation.
Collapse
Affiliation(s)
- Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Genís Valentín Gesé
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, 17165, Sweden
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Annika Krueger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Vivian Lobo
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Maria A Pirozhkova
- Lab for Cellular RNA Biology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - James Marks
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Petra Páleníková
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Dmitrii Shiriaev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Yong Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Jelena Misic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Yu Cai
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Minh Duc Nguyen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Abubakar Abdelbagi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Xinping Li
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Benhalevy
- Lab for Cellular RNA Biology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aishe A Sarshad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, 17165, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden.
| |
Collapse
|
9
|
Zhong H, Barrientos A. The zinc finger motif in the mitochondrial large ribosomal subunit protein bL36m is essential for optimal yeast mitoribosome assembly and function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119707. [PMID: 38493895 PMCID: PMC11009049 DOI: 10.1016/j.bbamcr.2024.119707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Ribosomes across species contain subsets of zinc finger proteins that play structural roles by binding to rRNA. While the majority of these zinc fingers belong to the C2-C2 type, the large subunit protein L36 in bacteria and mitochondria exhibits an atypical C2-CH motif. To comprehend the contribution of each coordinating residue in S. cerevisiae bL36m to mitoribosome assembly and function, we engineered and characterized strains carrying single and double mutations in the zinc coordinating residues. Our findings reveal that although all four residues markedly influence protein stability, C to A mutations in C66 and/or C69 have a more pronounced effect compared to those at C82 and H88. Importantly, protein stability directly correlates with the assembly and function of the mitoribosome and the growth rate of yeast in respiratory conditions. Mass spectrometry analysis of large subunit particles indicates that strains deleted for bL36m or expressing mutant variants have defective assembly of the L7/L12 stalk base, limiting their functional competence. Furthermore, we employed a synthetic bL36m protein collection, including both wild-type and mutant proteins, to elucidate their ability to bind zinc. Our data indicate that mutations in C82 and, particularly, H88 allow for some zinc binding albeit inefficient or unstable, explaining the residual accumulation and activity in mitochondria of bL36m variants carrying mutations in these residues. In conclusion, stable zinc binding by bL36m is essential for optimal mitoribosome assembly and function. MS data are available via ProteomeXchange with identifierPXD046465.
Collapse
Affiliation(s)
- Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th St, Miami, FL 33125, USA.
| |
Collapse
|
10
|
Nguyen TG, Ritter C, Kummer E. Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome. Nat Commun 2023; 14:7991. [PMID: 38042949 PMCID: PMC10693566 DOI: 10.1038/s41467-023-43599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
Mitochondria contain their own genetic information and a dedicated translation system to express it. The mitochondrial ribosome is assembled from mitochondrial-encoded RNA and nuclear-encoded ribosomal proteins. Assembly is coordinated in the mitochondrial matrix by biogenesis factors that transiently associate with the maturing particle. Here, we present a structural snapshot of a large mitoribosomal subunit assembly intermediate containing 7 biogenesis factors including the GTPases GTPBP7 and GTPBP10. Our structure illustrates how GTPBP10 aids the folding of the ribosomal RNA during the biogenesis process, how this process is related to bacterial ribosome biogenesis, and why mitochondria require two biogenesis factors in contrast to only one in bacteria.
Collapse
Affiliation(s)
- Thu Giang Nguyen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Christina Ritter
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Eva Kummer
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
11
|
Khawaja A, Cipullo M, Krüger A, Rorbach J. Insights into mitoribosomal biogenesis from recent structural studies. Trends Biochem Sci 2023; 48:629-641. [PMID: 37169615 DOI: 10.1016/j.tibs.2023.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
The mitochondrial ribosome (mitoribosome) is a multicomponent machine that has unique structural features. Biogenesis of the human mitoribosome includes correct maturation and folding of the mitochondria-encoded RNA components (12S and 16S mt-rRNAs, and mt-tRNAVal) and their assembly together with 82 nucleus-encoded mitoribosomal proteins. This complex process requires the coordinated action of multiple assembly factors. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided detailed insights into the specific functions of several mitoribosome assembly factors and have defined their timing. In this review we summarize mitoribosomal small (mtSSU) and large subunit (mtLSU) biogenesis based on structural findings, and we discuss potential crosstalk between mtSSU and mtLSU assembly pathways as well as coordination between mitoribosome biogenesis and other processes involved in mitochondrial gene expression.
Collapse
Affiliation(s)
- Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Abstract
Ribosome biogenesis is a fundamental multi-step cellular process in all domains of life that involves the production, processing, folding, and modification of ribosomal RNAs (rRNAs) and ribosomal proteins. To obtain insights into the still unexplored early assembly phase of the bacterial 50S subunit, we exploited a minimal in vitro reconstitution system using purified ribosomal components and scalable reaction conditions. Time-limited assembly assays combined with cryo-EM analysis visualizes the structurally complex assembly pathway starting with a particle consisting of ordered density for only ~500 nucleotides of 23S rRNA domain I and three ribosomal proteins. In addition, our structural analysis reveals that early 50S assembly occurs in a domain-wise fashion, while late 50S assembly proceeds incrementally. Furthermore, we find that both ribosomal proteins and folded rRNA helices, occupying surface exposed regions on pre-50S particles, induce, or stabilize rRNA folds within adjacent regions, thereby creating cooperativity.
Collapse
|
13
|
Harper NJ, Burnside C, Klinge S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature 2023; 614:175-181. [PMID: 36482135 PMCID: PMC9892005 DOI: 10.1038/s41586-022-05621-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial ribosomes (mitoribosomes) synthesize proteins encoded within the mitochondrial genome that are assembled into oxidative phosphorylation complexes. Thus, mitoribosome biogenesis is essential for ATP production and cellular metabolism1. Here we used cryo-electron microscopy to determine nine structures of native yeast and human mitoribosomal small subunit assembly intermediates, illuminating the mechanistic basis for how GTPases are used to control early steps of decoding centre formation, how initial rRNA folding and processing events are mediated, and how mitoribosomal proteins have active roles during assembly. Furthermore, this series of intermediates from two species with divergent mitoribosomal architecture uncovers both conserved principles and species-specific adaptations that govern the maturation of mitoribosomal small subunits in eukaryotes. By revealing the dynamic interplay between assembly factors, mitoribosomal proteins and rRNA that are required to generate functional subunits, our structural analysis provides a vignette for how molecular complexity and diversity can evolve in large ribonucleoprotein assemblies.
Collapse
Affiliation(s)
- Nathan J Harper
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Chloe Burnside
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Sebastian Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
14
|
Wang X, Deng D, Yan Y, Cai M, Liu X, Luo A, Liu S, Zhang X, Jiang H, Liu X. Genetic variants in m5C modification core genes are associated with the risk of Chinese pediatric acute lymphoblastic leukemia: A five-center case-control study. Front Oncol 2023; 12:1082525. [PMID: 36698387 PMCID: PMC9868168 DOI: 10.3389/fonc.2022.1082525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Objective To explore the functions of the polymorphisms in 5-methylcytosine (m5C) modification-related coding genes on the susceptibility of pediatric acute lymphoblastic leukemia (ALL). Methods Case-control study and multinomial logistic regression analysis were performed to construct models to evaluate the susceptibility of pediatric ALL. The relationship between five functional SNPs in m5C modification-coding genes and pediatric ALL risk was analyzed. Genotyping of 808 cases and 1,340 healthy samples from South China was identified using a TaqMan assay; odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the relationship between the five selected SNPs and pediatric ALL susceptibility. Results Among the five analyzed SNPs, NOL1 rs3764909 and NSUN4 rs10252 variants significantly increased the susceptibility of pediatric ALL, while NSUN3 rs7653521, NSUN5 rs1880948, and NSUN6 rs3740102 variants were not associated with the risk of ALL. Stratification analyses demonstrated that NOL1 rs3764909 C>A exhibited a significant association with increased pediatric ALL risk in subgroups of common B ALL, pre-B ALL, T-cell ALL, low and middle risk, other gene fusion types, non-gene fusion, hypodiploid, normal diploid, primitive lymphocytes in marrow < 5% on week 12, and minimal residual disease (MRD) <0.01% on week 12 after induced therapy; NSUN4 rs10252 G>A was related to increased risk of ALL children in subgroups of age ≥ 120 months, normal white blood cell (WBC) number, middle risk, non-gene fusion, MRD ≥ 0.01 on days 15-19, and primitive lymphocytes in marrow < 5% on day 33 after induced therapy. Compared with the reference haplotype CAGTA, children who harbored haplotypes CCGTG and ACATA were remarkably related to increased ALL susceptibility. rs3764909 and rs10252 varieties of alleles were not associated with MRD levels after the selected chemotherapeutics. Conclusions In conclusion, NOL1 rs3764909 and NSUN4 rs10252 variants were enhanced by pediatric ALL risk and were suggested to be potential biomarkers for pediatric ALL.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Hematology/Oncology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Decheng Deng
- Department of Hematology/Oncology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yaping Yan
- Department of Hematology/Oncology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Mansi Cai
- Department of Hematology/Oncology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Ailing Luo
- Department of Hematology/Oncology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Department of Hematology/Oncology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaohong Zhang
- Department of Hematology/Oncology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaoping Liu
- Department of Hematology/Oncology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Abstract
Mitoribosome biogenesis is a complex and energetically costly process that involves RNA elements encoded in the mitochondrial genome and mitoribosomal proteins most frequently encoded in the nuclear genome. The process is catalyzed by extra-ribosomal proteins, nucleus-encoded assembly factors that act in all stages of the assembly process to coordinate the processing and maturation of ribosomal RNAs with the hierarchical association of ribosomal proteins. Biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided hints regarding their assembly. In this general concept chapter, we will briefly describe the current knowledge, mainly regarding the mammalian mitoribosome biogenesis pathway and factors involved, and will emphasize the biological sources and approaches that have been applied to advance the field.
Collapse
Affiliation(s)
- J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Austin Choi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
16
|
Del'Olio S, Barrientos A. Systematic Analysis of Assembly Intermediates in Yeast to Decipher the Mitoribosome Assembly Pathway. Methods Mol Biol 2023; 2661:163-191. [PMID: 37166638 PMCID: PMC10654547 DOI: 10.1007/978-1-0716-3171-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Studies of yeast mitoribosome assembly have been historically hampered by the difficulty of generating mitoribosome protein-coding gene deletion strains with a stable mitochondrial genome. The identification of mitochondrial DNA-stabilizing approaches allows for the generation of a complete set of yeast deletion strains covering all mitoribosome proteins and known assembly factors. These strains can be used to analyze the integrity and assembly state of mitoribosomes by determining the sedimentation profile of these structures by sucrose gradient centrifugation of mitochondrial extracts, coupled to mass spectrometry analysis of mitoribosome composition. Subsequent hierarchical cluster analysis of mitoribosome subassemblies accumulated in mutant strains reveals details regarding the order of protein association during the mitoribosome biogenetic process. These strains also allow the expression of truncated protein variants to probe the role of mitochondrion-specific protein extensions, the relevance of protein cofactors, or the importance of RNA-protein interactions in functional sites of the mitoribosome. In this chapter, we will detail the methodology involved in these studies.
Collapse
Affiliation(s)
- Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
17
|
Mechanisms and players of mitoribosomal biogenesis revealed in trypanosomatids. Trends Parasitol 2022; 38:1053-1067. [PMID: 36075844 DOI: 10.1016/j.pt.2022.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
Translation in mitochondria is mediated by mitochondrial ribosomes, or mitoribosomes, complex ribonucleoprotein machines with dual genetic origin. Mitoribosomes in trypanosomatid parasites diverged markedly from their bacterial ancestors and other eukaryotic lineages in terms of protein composition, rRNA content, and overall architecture, yet their core functional elements remained conserved. Recent cryo-electron microscopy studies provided atomic models of trypanosomatid large and small mitoribosomal subunits and their precursors, making these parasites the organisms with the best-understood biogenesis of mitoribosomes. The structures revealed molecular mechanisms and players involved in the assembly of mitoribosomes not only in the parasites, but also in eukaryotes in general.
Collapse
|
18
|
Fatkhullin B, Golubev A, Garaeva N, Validov S, Gabdulkhakov A, Yusupov M. Y98 Mutation Leads to the Loss of RsfS Anti-Association Activity in Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms231810931. [PMID: 36142845 PMCID: PMC9503621 DOI: 10.3390/ijms231810931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Ribosomal silencing factor S (RsfS) is a conserved protein that plays a role in the mechanisms of ribosome shutdown and cell survival during starvation. Recent studies demonstrated the involvement of RsfS in the biogenesis of the large ribosomal subunit. RsfS binds to the uL14 ribosomal protein on the large ribosomal subunit and prevents its association with the small subunit. Here, we estimated the contribution of RsfS amino acid side chains at the interface between RsfS and uL14 to RsfS anti-association function in Staphylococcus aureus through in vitro experiments: centrifugation in sucrose gradient profiles and an S. aureus cell-free system assay. The detected critical Y98 amino acid on the RsfS surface might become a new potential target for pharmacological drug development and treatment of S. aureus infections.
Collapse
Affiliation(s)
- Bulat Fatkhullin
- Institute of Protein Research, Russian Academy of Science, 142290 Pushchino, Russia
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964, CNRS, UMR7104, University of Strasbourg, 67400 Illkirch Graffenstaden, France
| | - Alexander Golubev
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Natalia Garaeva
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Shamil Validov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Science, 142290 Pushchino, Russia
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964, CNRS, UMR7104, University of Strasbourg, 67400 Illkirch Graffenstaden, France
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Correspondence:
| |
Collapse
|
19
|
Monné M, Marobbio CMT, Agrimi G, Palmieri L, Palmieri F. Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S-adenosylmethionine, and related diseases: A review †. IUBMB Life 2022; 74:573-591. [PMID: 35730628 DOI: 10.1002/iub.2658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
S-adenosyl-L-methionine (SAM) is a coenzyme and the most commonly used methyl-group donor for the modification of metabolites, DNA, RNA and proteins. SAM biosynthesis and SAM regeneration from the methylation reaction product S-adenosyl-L-homocysteine (SAH) take place in the cytoplasm. Therefore, the intramitochondrial SAM-dependent methyltransferases require the import of SAM and export of SAH for recycling. Orthologous mitochondrial transporters belonging to the mitochondrial carrier family have been identified to catalyze this antiport transport step: Sam5p in yeast, SLC25A26 (SAMC) in humans, and SAMC1-2 in plants. In mitochondria SAM is used by a vast number of enzymes implicated in the following processes: the regulation of replication, transcription, translation, and enzymatic activities; the maturation and assembly of mitochondrial tRNAs, ribosomes and protein complexes; and the biosynthesis of cofactors, such as ubiquinone, lipoate, and molybdopterin. Mutations in SLC25A26 and mitochondrial SAM-dependent enzymes have been found to cause human diseases, which emphasizes the physiological importance of these proteins.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| |
Collapse
|
20
|
Fatkhullin BF, Gabdulkhakov AG, Yusupov MM. Is RsfS a Hibernation Factor or a Ribosome Biogenesis Factor? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:500-510. [PMID: 35790407 DOI: 10.1134/s0006297922060025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Solving the structures of bacterial, archaeal, and eukaryotic ribosomes by crystallography and cryo-electron microscopy has given an impetus for studying intracellular regulatory proteins affecting various stages of protein translation. Among them are ribosome hibernation factors, which have been actively investigated during the last decade. These factors are involved in the regulation of protein biosynthesis under stressful conditions. The main role of hibernation factors is the reduction of energy consumption for protein biosynthesis and preservation of existing functional ribosomes from degradation, which increases cell survival under unfavorable conditions. Despite a broad interest in this topic, only a few articles have been published on the ribosomal silencing factor S (RsfS). According to the results of these studies, RsfS can be assigned to the group of hibernation factors. However, recent structural studies of the 50S ribosomal subunit maturation demonstrated that RsfS has the features inherent to biogenesis factors for example, ability to bind to the immature ribosomal subunit (similar to the RsfS mitochondrial ortholog MALSU1, mitochondrial assembly of ribosomal large subunit 1). In this review, we summarized the information on the function and structural features RsfS, as well as compared RsfS with MALSU1 in order to answer the emerging question on whether RsfS is a hibernation factor or a ribosome biogenesis factor. We believe that this review might promote future studies of the RsfS-involving molecular mechanisms, which so far remain completely unknown.
Collapse
Affiliation(s)
- Bulat F Fatkhullin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Institute of Genetics and Molecular and Cellular Biology, Illkirsch-Graffenstaden, F-67400, France
| | - Azat G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Marat M Yusupov
- Institute of Genetics and Molecular and Cellular Biology, Illkirsch-Graffenstaden, F-67400, France
- Laboratory of Structural Analyze of Biomacromolecules, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| |
Collapse
|
21
|
Li M, Tao Z, Zhao Y, Li L, Zheng J, Li Z, Chen X. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med 2022; 20:214. [PMID: 35562754 PMCID: PMC9102922 DOI: 10.1186/s12967-022-03427-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, 5-methylcytosine (m5C) RNA modification has emerged as a key player in regulating RNA metabolism and function through coding as well as non-coding RNAs. Accumulating evidence has shown that m5C modulates the stability, translation, transcription, nuclear export, and cleavage of RNAs to mediate cell proliferation, differentiation, apoptosis, stress responses, and other biological functions. In humans, m5C RNA modification is catalyzed by the NOL1/NOP2/sun (NSUN) family and DNA methyltransferase 2 (DNMT2). These RNA modifiers regulate the expression of multiple oncogenes such as fizzy-related-1, forkhead box protein C2, Grb associated-binding protein 2, and TEA domain transcription factor 1, facilitating the pathogenesis and progression of cancers. Furthermore, the aberrant expression of methyltransferases have been identified in various cancers and used to predict the prognosis of patients. In this review, we present a comprehensive overview of m5C RNA methyltransferases. We specifically highlight the potential mechanism of action of m5C in cancer. Finally, we discuss the prospect of m5C-relative studies.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Lei Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
22
|
Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 2022; 23:606-623. [PMID: 35459860 DOI: 10.1038/s41576-022-00480-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.
Collapse
|
23
|
Scaltsoyiannes V, Corre N, Waltz F, Giegé P. Types and Functions of Mitoribosome-Specific Ribosomal Proteins across Eukaryotes. Int J Mol Sci 2022; 23:ijms23073474. [PMID: 35408834 PMCID: PMC8998825 DOI: 10.3390/ijms23073474] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are key organelles that combine features inherited from their bacterial endosymbiotic ancestor with traits that arose during eukaryote evolution. These energy producing organelles have retained a genome and fully functional gene expression machineries including specific ribosomes. Recent advances in cryo-electron microscopy have enabled the characterization of a fast-growing number of the low abundant membrane-bound mitochondrial ribosomes. Surprisingly, mitoribosomes were found to be extremely diverse both in terms of structure and composition. Still, all of them drastically increased their number of ribosomal proteins. Interestingly, among the more than 130 novel ribosomal proteins identified to date in mitochondria, most of them are composed of a-helices. Many of them belong to the nuclear encoded super family of helical repeat proteins. Here we review the diversity of functions and the mode of action held by the novel mitoribosome proteins and discuss why these proteins that share similar helical folds were independently recruited by mitoribosomes during evolution in independent eukaryote clades.
Collapse
Affiliation(s)
- Vassilis Scaltsoyiannes
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
| | - Nicolas Corre
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
| | - Florent Waltz
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Munich, Germany
- Correspondence: (F.W.); (P.G.); Tel.: +33-3-6715-5363 (P.G.); Fax: +33-3-8861-4442 (P.G.)
| | - Philippe Giegé
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67084 Strasbourg, France; (V.S.); (N.C.)
- Correspondence: (F.W.); (P.G.); Tel.: +33-3-6715-5363 (P.G.); Fax: +33-3-8861-4442 (P.G.)
| |
Collapse
|
24
|
Rebelo-Guiomar P, Pellegrino S, Dent KC, Sas-Chen A, Miller-Fleming L, Garone C, Van Haute L, Rogan JF, Dinan A, Firth AE, Andrews B, Whitworth AJ, Schwartz S, Warren AJ, Minczuk M. A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit. Nat Commun 2022; 13:929. [PMID: 35177605 PMCID: PMC8854578 DOI: 10.1038/s41467-022-28503-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Many cellular processes, including ribosome biogenesis, are regulated through post-transcriptional RNA modifications. Here, a genome-wide analysis of the human mitochondrial transcriptome shows that 2’-O-methylation is limited to residues of the mitoribosomal large subunit (mtLSU) 16S mt-rRNA, introduced by MRM1, MRM2 and MRM3, with the modifications installed by the latter two proteins being interdependent. MRM2 controls mitochondrial respiration by regulating mitoribosome biogenesis. In its absence, mtLSU particles (visualized by cryo-EM at the resolution of 2.6 Å) present disordered RNA domains, partial occupancy of bL36m and bound MALSU1:L0R8F8:mtACP anti-association module, allowing five mtLSU biogenesis intermediates with different intersubunit interface configurations to be placed along the assembly pathway. However, mitoribosome biogenesis does not depend on the methyltransferase activity of MRM2. Disruption of the MRM2 Drosophila melanogaster orthologue leads to mitochondria-related developmental arrest. This work identifies a key checkpoint during mtLSU assembly, essential to maintain mitochondrial homeostasis. Rebelo-Guiomar et al. unveil late stage assembly intermediates of the human mitochondrial ribosome by inactivating the methyltransferase MRM2 in cells. Absence of MRM2 impairs organismal homeostasis, while its catalytic activity is dispensable for mitoribosomal biogenesis.
Collapse
Affiliation(s)
- Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK
| | - Simone Pellegrino
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust - MRC Stem Cell Institute, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.,Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Kyle C Dent
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust - MRC Stem Cell Institute, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.,Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.,MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.,Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Leonor Miller-Fleming
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK
| | - Caterina Garone
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, 40137, Italy
| | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK
| | - Jack F Rogan
- STORM Therapeutics Limited, Babraham Research Campus, Moneta Building, Cambridge, CB22 3AT, UK
| | - Adam Dinan
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Byron Andrews
- STORM Therapeutics Limited, Babraham Research Campus, Moneta Building, Cambridge, CB22 3AT, UK
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alan J Warren
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust - MRC Stem Cell Institute, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.,Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.
| |
Collapse
|
25
|
Lenarčič T, Niemann M, Ramrath DJF, Calderaro S, Flügel T, Saurer M, Leibundgut M, Boehringer D, Prange C, Horn EK, Schneider A, Ban N. Mitoribosomal small subunit maturation involves formation of initiation-like complexes. Proc Natl Acad Sci U S A 2022; 119:e2114710118. [PMID: 35042777 PMCID: PMC8784144 DOI: 10.1073/pnas.2114710118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial ribosomes (mitoribosomes) play a central role in synthesizing mitochondrial inner membrane proteins responsible for oxidative phosphorylation. Although mitoribosomes from different organisms exhibit considerable structural variations, recent insights into mitoribosome assembly suggest that mitoribosome maturation follows common principles and involves a number of conserved assembly factors. To investigate the steps involved in the assembly of the mitoribosomal small subunit (mt-SSU) we determined the cryoelectron microscopy structures of middle and late assembly intermediates of the Trypanosoma brucei mitochondrial small subunit (mt-SSU) at 3.6- and 3.7-Å resolution, respectively. We identified five additional assembly factors that together with the mitochondrial initiation factor 2 (mt-IF-2) specifically interact with functionally important regions of the rRNA, including the decoding center, thereby preventing premature mRNA or large subunit binding. Structural comparison of assembly intermediates with mature mt-SSU combined with RNAi experiments suggests a noncanonical role of mt-IF-2 and a stepwise assembly process, where modular exchange of ribosomal proteins and assembly factors together with mt-IF-2 ensure proper 9S rRNA folding and protein maturation during the final steps of assembly.
Collapse
Affiliation(s)
- Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Moritz Niemann
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - David J F Ramrath
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Salvatore Calderaro
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Timo Flügel
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Céline Prange
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Elke K Horn
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
26
|
Hierarchical folding of the catalytic core during mitochondrial ribosome biogenesis. Trends Cell Biol 2021; 32:182-185. [PMID: 34635384 DOI: 10.1016/j.tcb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Final maturation steps during ribosome biogenesis require the assistance of assembly and quality control factors to ensure the folding of rRNA and proteins into a functional translation machinery. Here we integrate several recent structural snapshots of native large ribosomal subunit intermediates into the complex pathway of mitochondrial ribosome assembly.
Collapse
|
27
|
Chandrasekaran V, Desai N, Burton NO, Yang H, Price J, Miska EA, Ramakrishnan V. Visualizing formation of the active site in the mitochondrial ribosome. eLife 2021; 10:e68806. [PMID: 34609277 PMCID: PMC8492066 DOI: 10.7554/elife.68806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome assembly is an essential and conserved process that is regulated at each step by specific factors. Using cryo-electron microscopy (cryo-EM), we visualize the formation of the conserved peptidyl transferase center (PTC) of the human mitochondrial ribosome. The conserved GTPase GTPBP7 regulates the correct folding of 16S ribosomal RNA (rRNA) helices and ensures 2'-O-methylation of the PTC base U3039. GTPBP7 binds the RNA methyltransferase NSUN4 and MTERF4, which sequester H68-71 of the 16S rRNA and allow biogenesis factors to access the maturing PTC. Mutations that disrupt binding of their Caenorhabditis elegans orthologs to the large subunit potently activate mitochondrial stress and cause viability, development, and sterility defects. Next-generation RNA sequencing reveals widespread gene expression changes in these mutant animals that are indicative of mitochondrial stress response activation. We also answer the long-standing question of why NSUN4, but not its enzymatic activity, is indispensable for mitochondrial protein synthesis.
Collapse
Affiliation(s)
| | - Nirupa Desai
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Hanting Yang
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Jon Price
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Eric A Miska
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - V Ramakrishnan
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
28
|
Affiliation(s)
- Marie Sissler
- ARNA - UMR5320 CNRS - U1212 INSERM, Université de Bordeaux, IECB, Pessac, France.
| | - Yaser Hashem
- ARNA - UMR5320 CNRS - U1212 INSERM, Université de Bordeaux, IECB, Pessac, France.
| |
Collapse
|
29
|
Hilander T, Jackson CB, Robciuc M, Bashir T, Zhao H. The roles of assembly factors in mammalian mitoribosome biogenesis. Mitochondrion 2021; 60:70-84. [PMID: 34339868 DOI: 10.1016/j.mito.2021.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
As ancient bacterial endosymbionts of eukaryotic cells, mitochondria have retained their own circular DNA as well as protein translation system including mitochondrial ribosomes (mitoribosomes). In recent years, methodological advancements in cryoelectron microscopy and mass spectrometry have revealed the extent of the evolutionary divergence of mitoribosomes from their bacterial ancestors and their adaptation to the synthesis of 13 mitochondrial DNA encoded oxidative phosphorylation complex subunits. In addition to the structural data, the first assembly pathway maps of mitoribosomes have started to emerge and concomitantly also the assembly factors involved in this process to achieve fully translational competent particles. These transiently associated factors assist in the intricate assembly process of mitoribosomes by enhancing protein incorporation, ribosomal RNA folding and modification, and by blocking premature or non-native protein binding, for example. This review focuses on summarizing the current understanding of the known mammalian mitoribosome assembly factors and discussing their possible roles in the assembly of small or large mitoribosomal subunits.
Collapse
Affiliation(s)
- Taru Hilander
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland.
| | - Christopher B Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Finland.
| | - Marius Robciuc
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Tanzeela Bashir
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Key Laboratory of Stem Cell and Biopharmaceutical Technology, School of Life Sciences, Guangxi Normal University, Guangxi, China.
| |
Collapse
|
30
|
Hillen HS, Lavdovskaia E, Nadler F, Hanitsch E, Linden A, Bohnsack KE, Urlaub H, Richter-Dennerlein R. Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Nat Commun 2021; 12:3672. [PMID: 34135319 PMCID: PMC8209004 DOI: 10.1038/s41467-021-23702-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.
Collapse
Affiliation(s)
- Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Elena Lavdovskaia
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Elisa Hanitsch
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
31
|
Cipullo M, Gesé GV, Khawaja A, Hällberg BM, Rorbach J. Structural basis for late maturation steps of the human mitoribosomal large subunit. Nat Commun 2021; 12:3673. [PMID: 34135318 PMCID: PMC8209036 DOI: 10.1038/s41467-021-23617-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/07/2021] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial ribosomes (mitoribosomes) synthesize a critical set of proteins essential for oxidative phosphorylation. Therefore, mitoribosomal function is vital to the cellular energy supply. Mitoribosome biogenesis follows distinct molecular pathways that remain poorly understood. Here, we determine the cryo-EM structures of mitoribosomes isolated from human cell lines with either depleted or overexpressed mitoribosome assembly factor GTPBP5, allowing us to capture consecutive steps during mitoribosomal large subunit (mt-LSU) biogenesis. Our structures provide essential insights into the last steps of 16S rRNA folding, methylation and peptidyl transferase centre (PTC) completion, which require the coordinated action of nine assembly factors. We show that mammalian-specific MTERF4 contributes to the folding of 16S rRNA, allowing 16 S rRNA methylation by MRM2, while GTPBP5 and NSUN4 promote fine-tuning rRNA rearrangements leading to PTC formation. Moreover, our data reveal an unexpected involvement of the elongation factor mtEF-Tu in mt-LSU assembly, where mtEF-Tu interacts with GTPBP5, similar to its interaction with tRNA during translational elongation.
Collapse
Affiliation(s)
- Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solna, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Genís Valentín Gesé
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solna, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden.
- Centre for Structural Systems Biology (CSSB) and Karolinska Institutet VR-RÅC, Hamburg, Germany.
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solna, Sweden.
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|