1
|
Ito T, Katayama K. Direct Visualization of Interfacial Charge Transfer in CsPbBr 3 Perovskite Solar Cells Using Pattern-Illumination Time-Resolved Phase Microscopy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26740-26750. [PMID: 40275762 DOI: 10.1021/acsami.5c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
This study follows our previous investigation of charge carrier dynamics at the hole transport layer (HTL)/perovskite (CsPbBr3) interface, where pattern-illumination time-resolved phase microscopy (PI-PM) revealed that HTLs significantly influence hole extraction and charge recombination processes. In the absence of an HTL, CsPbBr3 exhibited dominant hole dynamics, which were mitigated by the introduction of Spiro-OMeTAD and P3HT, with the latter showing superior hole extraction efficiency. In this follow-up study, we extend our analysis to electron transport layers (ETLs) and the full ETL/perovskite/HTL structure, and investigate modulation of charge separation at interfaces. Our results show that TiO2, a widely used ETL, enhances electron extraction but still exhibits recombination due to interfacial states. Li and Pt doping further improve charge separation, with Pt-doped TiO2 demonstrating the most significant reduction in recombination and the longest charge carrier lifetimes. When combined with HTLs, the choice of HTL significantly impacts charge extraction: P3HT facilitates more efficient hole removal than Spiro-OMeTAD. The most effective configuration for charge separation and suppression of residual charge carriers was achieved with Pt-doped TiO2 as the ETL and P3HT as the HTL. These findings provide a comprehensive understanding of charge carrier transport in inorganic perovskite solar cells, demonstrating the importance of both ETL and HTL selection for optimizing photovoltaic performance.
Collapse
Affiliation(s)
- Tatsuki Ito
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
2
|
Higashi T, Domen K. Interfacial Design of Particulate Photocatalyst Materials for Green Hydrogen Production. CHEMSUSCHEM 2024; 17:e202400663. [PMID: 38794839 DOI: 10.1002/cssc.202400663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Green hydrogen production using particulate photocatalyst materials has attracted much attention in recent years because this process could potentially lead to inexpensive and scalable solar-to-chemical energy conversion systems. Although the development of efficient particulate photocatalysts enabling one-step overall water splitting (OWS) with solar-to-hydrogen efficiencies in excess of 10 % remains challenging, promising photocatalyst candidates exhibiting OWS activity have been demonstrated. This review provides a comprehensive introduction to the solar-to-hydrogen energy conversion process of semiconductor photocatalyst materials and highlights recent advances in photocatalytic OWS via both one-step and two-step photoexcitation processes. The review also covers recent developments in the photocatalytic OWS of SrTiO3, including the establishment of large-scale photocatalytic systems, interfacial design using cocatalysts to enhance water splitting activity, and its photoelectrochemical (PEC) properties at the electrified solid/liquid interface. In addition, there is a special focus on visible-light-absorbing oxynitride and oxysulfide particulate photocatalysts with absorption edges near 600 nm. Methods for photocatalyst preparation and surface modification, as well as PEC properties, are also discussed. The semiconductor properties of particulate photocatalysts obtained from photoelectroanalytical evaluations using particulate photoelectrodes are evaluated. This review is intended to provide guidelines for the future development of particulate photocatalysts capable of efficient and stable OWS.
Collapse
Affiliation(s)
- Tomohiro Higashi
- Institute for Tenure Track Promotion, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki, 889-2192, Japan
| | - Kazunari Domen
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8533, Japan
- Department of Chemistry, Kyung Hee University, Seoul, 130-701, Republic of, Korea
| |
Collapse
|
3
|
Egawa Y, Kawaguchi K, Pan Z, Katayama K. Cocatalyst activity mapping for photocatalytic materials revealed by the pattern-illumination time-resolved phase microscopy. J Chem Phys 2024; 160:164705. [PMID: 38647310 DOI: 10.1063/5.0203491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
Photocatalytic water-splitting represents a promising avenue for clean hydrogen production, necessitating an in-depth understanding of the photocatalytic reaction mechanism. The majority of the photocatalytic materials need cocatalysts to enhance the photo-oxidation or reduction reactions. However, the working mechanism, such as collecting charge carriers or reducing the reaction barrier, is not clear because they disperse inhomogeneously on a surface, and it is difficult to follow the local charge carrier behavior. This study employs the pattern-illumination time-resolved phase microscopy (PI-PM) method to unravel the spatial charge carrier behavior in photocatalytic systems, utilizing time-resolved microscopic image (refractive index change) sequences and their clustering analyses. This approach is robust for studying the change in local charge carrier behavior. We studied two major cocatalyst effects on photocatalysts: TiO2 with/without Pt and hematite with/without CoPi. The PI-PM method, supported by charge type clustering and the effects of scavengers, allowed for the analysis of local activity influenced by cocatalysts. This approach revealed that the introduction of cocatalysts alters the local distribution of charge carrier behavior and significantly impacts their decay rates. In TiO2 systems, the presence of Pt cocatalysts led to a local electron site on the micron scale, extending the lifetime to a few tens of microseconds from a few microseconds. Similarly, in hematite films with CoPi, we observed a notable accumulation of holes at cocatalyst sites, emphasizing the role of cocatalysts in enhancing photocatalytic efficiency. The study's findings highlight the complexity of charge carrier dynamics in photocatalytic processes and the significant influence of cocatalysts.
Collapse
Affiliation(s)
- Yuta Egawa
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Kei Kawaguchi
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Zhenhua Pan
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
4
|
Katayama K. Pattern-illumination time-resolved phase microscopy and its applications for photocatalytic and photovoltaic materials. Phys Chem Chem Phys 2024; 26:9783-9815. [PMID: 38497609 DOI: 10.1039/d3cp06211b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Pattern-illumination time-resolved phase microscopy (PI-PM) is a technique used to study the microscopic charge carrier dynamics in photocatalytic and photovoltaic materials. The method involves illuminating a sample with a pump light pattern, which generates charge carriers and they decay subsequently due to trapping, recombination, and transfer processes. The distribution of photo-excited charge carriers is observed through refractive index changes using phase-contrast imaging. In the PI-PM method, the sensitivity of the refractive index change is enhanced by adjusting the focus position, the method takes advantage of photo-excited charge carriers to observe non-radiative processes, such as charge diffusion, trapping in defect/surface states, and interfacial charge transfer of photocatalytic and photovoltaic reactions. The quality of the image sequence is recovered using various informatics calculations. Categorizing and mapping different types of charge carriers based on their response profiles using clustering analysis provides spatial information on charge carrier types and the identification of local sites for efficient and inefficient photo-induced reactions, providing valuable information for the design and optimization of photocatalytic materials such as the cocatalyst effect.
Collapse
Affiliation(s)
- Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| |
Collapse
|
5
|
Ruan X, Meng D, Huang C, Xu M, Wen X, Ba K, Singh DJ, Zhang H, Zhang L, Xie T, Zhang W, Zheng W, Ravi SK, Cui X. Enhancing Photocatalytic Hydrogen Evolution by Synergistic Benefits of MXene Cocatalysis and Homo-Interface Engineering. SMALL METHODS 2023; 7:e2300627. [PMID: 37649214 DOI: 10.1002/smtd.202300627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/11/2023] [Indexed: 09/01/2023]
Abstract
Photocatalytic water splitting holds great promise as a sustainable and cost-effectiveness alternative for the production of hydrogen. Nevertheless, the practical implementation of this strategy is hindered by suboptimal visible light utilization and sluggish charge carrier dynamics, leading to low yield. MXene is a promising cocatalyst due to its high conductivity, abundance of active sites, tunable terminal functional groups, and great specific surface area. Homo-interface has perfect lattice matching and uniform composition, which are more conducive to photogenerated carriers' separation and migration. In this study, a novel ternary heterogeneous photocatalyst, a-TiO2 /H-TiO2 /Ti3 C2 MXene (MXTi), is presented using an electrostatic self-assembly method. Compared to commercial P25, pristine anatase, and rutile TiO2 , as-prepared MXTi exhibit exceptional photocatalytic hydrogen evolution performance, achieving a rate of 0.387 mmol h-1 . The significant improvement is attributable to the synergistic effect of homo-interface engineering and Ti3 C2 MXene, which leads to widened light absorption and efficient carrier transportation. The findings highlight the potential of interface engineering and MXene cocatalyst loading as a proactive approach to enhance the performance of photocatalytic water splitting, paving the way for more sustainable and efficient hydrogen production.
Collapse
Affiliation(s)
- Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
- School of Energy and Environment, City University of Hong Kong, Kowloon, SAR, Hong Kong, 999077, Hong Kong
| | - Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Xin Wen
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Kaikai Ba
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - David J Singh
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
- Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Haiyan Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Lei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Kowloon, SAR, Hong Kong, 999077, Hong Kong
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Jeong RH, Lee JH, Boo JH. Phase-Controlled Multi-Dimensional-Structure SnS/SnS 2/CdS Nanocomposite for Development of Solar-Driven Hydrogen Evolution Photocatalyst. Int J Mol Sci 2023; 24:13774. [PMID: 37762078 PMCID: PMC10530790 DOI: 10.3390/ijms241813774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The quest for water-splitting photocatalysts to generate hydrogen as a clean energy source from two-dimensional (2D) materials has enormous implications for sustainable energy solutions. Photocatalytic water splitting, a major field of interest, is focused on the efficient production of hydrogen from renewable resources such as water using 2D materials. Tin sulfide and tin disulfide, collectively known as SnS and SnS2, respectively, are metal sulfide compounds that have gained attention for their photocatalytic properties. Their unique electronic structures and morphological characteristics make them promising candidates for harnessing solar energy for environmental and energy-related purposes. CdS/SnS/SnS2 photocatalysts with two Sn phases (II and IV) were synthesized using a solvothermal method in this study. CdS was successfully placed on a broad SnS/SnS2 plane after a series of characterizations. We found that it is composited in the same way as a core-shell shape. When the SnS/SnS2 phase ratio was dominated by SnS and the structure was composited with CdS, the degradation efficiency was optimal. This material demonstrated high photocatalytic hydrogenation efficiency as well as efficient photocatalytic removal of Cr(VI) over 120 min. Because of the broad light absorption of CdS, the specific surface area, which is the reaction site, became very large. Second, it served as a transport medium for electron transfer from the conduction band (CB) of the SnS to the CB of the SnS2. Because of the composite, these electrons flowed into the CB of CdS, improving the separation efficiency of the photogenerated carriers even further. This material, which was easily composited, also effectively prevented mineral corrosion, which is a major issue with CdS.
Collapse
Affiliation(s)
- Rak Hyun Jeong
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae Hyeong Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jin-Hyo Boo
- Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
7
|
Meng Z, Pastor E, Selim S, Ning H, Maimaris M, Kafizas A, Durrant JR, Bakulin AA. Operando IR Optical Control of Localized Charge Carriers in BiVO 4 Photoanodes. J Am Chem Soc 2023; 145:17700-17709. [PMID: 37527512 PMCID: PMC10436276 DOI: 10.1021/jacs.3c04287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 08/03/2023]
Abstract
In photoelectrochemical cells (PECs) the photon-to-current conversion efficiency is often governed by carrier transport. Most metal oxides used in PECs exhibit thermally activated transport due to charge localization via the formation of polarons or the interaction with defects. This impacts catalysis by restricting the charge accumulation and extraction. To overcome this transport bottleneck nanostructuring, selective doping and photothermal treatments have been employed. Here we demonstrate an alternative approach capable of directly activating localized carriers in bismuth vanadate (BiVO4). We show that IR photons can optically excite localized charges, modulate their kinetics, and enhance the PEC current. Moreover, we track carriers bound to oxygen vacancies and expose their ∼10 ns charge localization, followed by ∼60 μs transport-assisted trapping. Critically, we demonstrate that localization is strongly dependent on the electric field within the device. While optical modulation has still a limited impact on overall PEC performance, we argue it offers a path to control devices on demand and uncover defect-related photophysics.
Collapse
Affiliation(s)
- Zhu Meng
- Department
of Chemistry and Centre for Processible Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Ernest Pastor
- IPR−Institut
de Physique de Rennes, CNRS-Centre National
de la Recherche Scientifique, UMR 6251 Université de Rennes, 35000 Rennes, France
| | - Shababa Selim
- Department
of Chemistry and Centre for Processible Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Haoqing Ning
- Department
of Chemistry and Centre for Processible Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Marios Maimaris
- Department
of Chemistry and Centre for Processible Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Andreas Kafizas
- Department
of Chemistry and Centre for Processible Electronics, Imperial College London, London W12 0BZ, United
Kingdom
- London
Centre for Nanotechnology, Imperial College
London, London SW7 2BP, United Kingdom
| | - James R. Durrant
- Department
of Chemistry and Centre for Processible Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Artem A. Bakulin
- Department
of Chemistry and Centre for Processible Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| |
Collapse
|
8
|
Lin Y, Wang Y, Shi C, Zhang D, Liu G, Chen L, Yuan B, Hou A, Zou D, Liu X, Zhang Q. Degradation of ciprofloxacin by a constitutive g-C 3N 4/BiOCl heterojunction under a persulfate system. RSC Adv 2023; 13:4361-4375. [PMID: 36760283 PMCID: PMC9892887 DOI: 10.1039/d2ra06500b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Ciprofloxacin (CIP) is a third-generation quinolone antimicrobial with broad-spectrum antimicrobial activity, and is not fully metabolized in the human body, resulting in more than 70% of CIP being excreted into water as a prodrug. In this study, g-C3N4/BiOCl heterojunction structure composites were prepared to study the degradation effect of ciprofloxacin (CIP) under photocatalytic conditions. The results showed that CIP at 10 mg L-1 was best degraded after 90 min at 0.3 g L-1 g-C3N4/BiOCl-2, pH of 5.8 and PS dosing of 1 mM. The quenching experiments and electron spin resonance spectroscopy (ESR) confirmed that ˙OH, ˙SO4 - and h+ played a major role. After the photocatalytic degradation of this reaction system, the biological toxicity of CIP was effectively controlled. This material is stable and the CIP removal rate remained above 80% after four cycles of experiments.
Collapse
Affiliation(s)
- Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University Changchun 130118 China .,School of Municipal & Environmental Engineering, Jilin Jianzhu University Changchun 130118 China
| | - Yu Wang
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Chunyan Shi
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Dongyan Zhang
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Gen Liu
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Lei Chen
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Baoling Yuan
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Ao Hou
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Deqiang Zou
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Xiaochen Liu
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Qingyu Zhang
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| |
Collapse
|
9
|
Edwin Malefane M, John Mafa P, Thokozani Innocent Nkambule T, Elizabeth Managa M, Tawanda Kuvarega A. Modulation of Z-scheme photocatalysts for pharmaceuticals remediation and pathogen inactivation: Design devotion, concept examination, and developments. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 452:138894. [PMID: 36060035 PMCID: PMC9422400 DOI: 10.1016/j.cej.2022.138894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 06/13/2023]
Abstract
The recent outbreak of Covid-19 guarantees overconsumption of different drugs as a necessity to reduce the symptoms caused by this pandemic. This triggers the proliferation of pharmaceuticals into drinking water systems. Is there any hope for access to safe drinking water? Photocatalytic degradation using artificial Z-scheme photocatalysts that has been employed for over a decade conveys a prospect for sustainable clean water supply. It is compelling to comprehensively summarise the state-of-the-art effects of Z-scheme photocatalytic systems towards the removal of pharmaceuticals in water. The principle of Z-scheme and the techniques used to validate the Z-scheme interfacial charge transfer are explored in detail. The application of the Z-scheme photocatalysts towards the degradation of antibiotics, NSAIDs, and bacterial/viral inactivation is deliberated. Conclusions and stimulating standpoints on the challenges of this emergent research direction are presented. The insights and up-to-date information will prompt the up-scaling of Z- scheme photocatalytic systems for commercialization.
Collapse
Affiliation(s)
- Mope Edwin Malefane
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Potlako John Mafa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Thabo Thokozani Innocent Nkambule
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Muthumuni Elizabeth Managa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Alex Tawanda Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| |
Collapse
|
10
|
Guo S, Su J, Luo H, Duan X, Shen Q, Xue J, Wei B, Zhang XM. Boosting Photocatalytic Hydrogen Evolution Reaction by the Improved Mass Flow and Energy Flow Process Based on Ultrasound Waves. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shaohui Guo
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi030024, P. R. China
| | - Jie Su
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi’an710071, China
| | - Hui Luo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, LondonSW7 2AZ, U.K
| | - Xiaochuan Duan
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi030024, P. R. China
| | - Qianqian Shen
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi030024, P. R. China
| | - Jinbo Xue
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi030024, P. R. China
| | - Bingqing Wei
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Xian-Ming Zhang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi030024, P. R. China
| |
Collapse
|
11
|
Ahamad T, Alshehri SM. Fabrication of Ag@SrTiO3/g-C3N4 heterojunctions for H2 production and the degradation of pesticides under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
|
13
|
Ran J, Zhang H, Fu S, Jaroniec M, Shan J, Xia B, Qu Y, Qu J, Chen S, Song L, Cairney JM, Jing L, Qiao SZ. NiPS 3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H 2 production. Nat Commun 2022; 13:4600. [PMID: 35933410 PMCID: PMC9357043 DOI: 10.1038/s41467-022-32256-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
High-performance and low-cost photocatalysts play the key role in achieving the large-scale solar hydrogen production. In this work, we report a liquid-exfoliation approach to prepare NiPS3 ultrathin nanosheets as a versatile platform to greatly improve the light-induced hydrogen production on various photocatalysts, including TiO2, CdS, In2ZnS4 and C3N4. The superb visible-light-induced hydrogen production rate (13,600 μmol h-1 g-1) is achieved on NiPS3/CdS hetero-junction with the highest improvement factor (~1,667%) compared with that of pure CdS. This significantly better performance is attributed to the strongly correlated NiPS3/CdS interface assuring efficient electron-hole dissociation/transport, as well as abundant atomic-level edge P/S sites and activated basal S sites on NiPS3 ultrathin nanosheets advancing hydrogen evolution. These findings are revealed by the state-of-art characterizations and theoretical computations. Our work for the first time demonstrates the great potential of metal phosphorous chalcogenide as a general platform to tremendously raise the performance of different photocatalysts.
Collapse
Affiliation(s)
- Jingrun Ran
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| | - Hongping Zhang
- State Key Laboratory of Environmentally Friendly Energy Materials, Engineering Research Center of Biomass Materials (Ministry of Education), School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China
| | - Sijia Fu
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Jieqiong Shan
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| | - Bingquan Xia
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yang Qu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, 150080, Harbin, P. R. China
| | - Jiangtao Qu
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, 230029, Hefei, Anhui, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, 230029, Hefei, Anhui, P. R. China
| | - Julie M Cairney
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, 150080, Harbin, P. R. China
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
14
|
Wu L, Zheng S, Lin H, Zhou S, Mahmoud Idris A, Wang J, Li S, Li Z. In-situ Assembling 0D/2D Z-scheme Heterojunction of Lead-free Cs2AgBiBr6/Bi2WO6 for Enhanced Photocatalytic CO2 Reduction. J Colloid Interface Sci 2022; 629:233-242. [DOI: 10.1016/j.jcis.2022.08.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 12/17/2022]
|
15
|
Chugenji T, Pan Z, Nandal V, Seki K, Domen K, Katayama K. Local charge carrier dynamics of a particulate Ga-doped La 5Ti 2Cu 0.9Ag 0.1O 7S 5 photocatalyst and the impact of Rh cocatalysts. Phys Chem Chem Phys 2022; 24:17485-17495. [PMID: 35822609 DOI: 10.1039/d2cp02808e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light responsive photocatalytic materials are expected to be deployed for practical use in photocatalytic water splitting. One of the promising materials as a p-type semiconductor, oxysulfides, was investigated in terms of the local charge carrier behavior for each particle by using a home-built time-resolved microscopic technique in combination with clustering analysis. We could differentiate electron and hole trapping to the surface states and the following recombination on a micron-scale from the nanosecond to microsecond order. The map of the charge carrier type revealed that charge trapping sites for electrons and holes were spatially separated within each particle/aggregate. Furthermore, the effect of the rhodium cocatalyst was recognized as a new electron pathway, trapping to the rhodium site and the following recombination, which was delayed compared with the original electron recombination process. The Rh effect was discussed based on the phenomenological simulation, revealing a possible reason for the decay was due to the anisotropic diffusion of charge carriers in oxysulfides or the interfacial energy barrier at the interface.
Collapse
Affiliation(s)
- Tatsuya Chugenji
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| | - Zhenhua Pan
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| | - Vikas Nandal
- Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1 AIST West, Tsukuba 305-8569, Japan
| | - Kazuhiko Seki
- Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1 AIST West, Tsukuba 305-8569, Japan
| | - Kazunari Domen
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 380-8553, Japan. .,Office of University Professors, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| |
Collapse
|
16
|
Wang Q, Kalathil S, Pornrungroj C, Sahm CD, Reisner E. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nat Catal 2022. [DOI: 10.1038/s41929-022-00817-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
He Q, Zhan S, Zhou F. A Tandem Reaction System for Inactivation of Marine Microorganisms by Commercial Carbon Black and Boron-Doped Carbon Nitride. ACS OMEGA 2022; 7:16524-16535. [PMID: 35601316 PMCID: PMC9118206 DOI: 10.1021/acsomega.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The Pureballast system, based on photocatalytic technology, can purify ships' ballast water. However, the efficiency of photocatalytic sterilization still needs to be improved due to the shortcomings of the photocatalyst itself and the complex components of seawater. In this work, a tandem reaction of electrocatalytic synthesis and photocatalytic decomposition of hydrogen peroxide (H2O2) was constructed for the inactivation of marine microorganisms. Using seawater and air as raw materials, electrocatalytic synthesis of H2O2 by commercial carbon black can avoid the risk of large-scale storage and transportation of H2O2 on ships. In addition, boron doping can improve the photocatalytic decomposition performance of H2O2 by g-C3N4. Experimental results show that constructing the tandem reaction is effective, inactivating 99.7% of marine bacteria within 1 h. The sterilization efficiency is significantly higher than that of the single way of electrocatalysis (52.8%) or photocatalysis (56.9%). Consequently, we analyzed the reasons for boron doping to enhance the efficiency of g-C3N4 decomposition of H2O2 based on experiments and first principles. The results showed that boron doping could significantly enhance not only the transfer kinetics of photogenerated electrons but also the adsorption capacity of H2O2. This work can provide some reference for the photocatalytic technology study of ballast water treatment.
Collapse
|
18
|
Ren K, Dong Y, Chen Y, Shi H. Bi2WO6 nanosheets assembled BN quantum dots: Enhanced charge separation and photocatalytic antibiotics degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Kovalevskiy N, Cherepanova S, Gerasimov E, Lyulyukin M, Solovyeva M, Prosvirin I, Kozlov D, Selishchev D. Enhanced Photocatalytic Activity and Stability of Bi 2WO 6 - TiO 2-N Nanocomposites in the Oxidation of Volatile Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:359. [PMID: 35159704 PMCID: PMC8838994 DOI: 10.3390/nano12030359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
The development of active and stable photocatalysts for the degradation of volatile organic compounds under visible light is important for efficient light utilization and environmental protection. Titanium dioxide doped with nitrogen is known to have a high activity but it exhibits a relatively low stability due to a gradual degradation of nitrogen species under highly powerful radiation. In this paper, we show that the combination of N-doped TiO2 with bismuth tungstate prevents its degradation during the photocatalytic process and results in a very stable composite photocatalyst. The synthesis of Bi2WO6-TiO2-N composites is preformed through the hydrothermal treatment of an aqueous medium containing nanocrystalline N-doped TiO2, as well as bismuth (III) nitrate and sodium tungstate followed by drying in air. The effect of the molar ratio between the components on their characteristics and photocatalytic activity is discussed. In addition to an enhanced stability, the composite photocatalysts with a low content of Bi2WO6 also exhibit an enhanced activity that is substantially higher than the activity of individual TiO2-N and Bi2WO6 materials. Thus, the Bi2WO6-TiO2-N composite has the potential as an active and stable photocatalyst for efficient purification of air.
Collapse
Affiliation(s)
- Nikita Kovalevskiy
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
- Research and Educational Center “Institute of Chemical Technologies”, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Cherepanova
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Evgeny Gerasimov
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Mikhail Lyulyukin
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Maria Solovyeva
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Igor Prosvirin
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Denis Kozlov
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Dmitry Selishchev
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
- Research and Educational Center “Institute of Chemical Technologies”, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
20
|
Maarisetty D, Baral SS. Effect of Defects on Optical, Electronic, and Interface Properties of NiO/SnO 2 Heterostructures: Dual-Functional Solar Photocatalytic H 2 Production and RhB Degradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60002-60017. [PMID: 34894647 DOI: 10.1021/acsami.1c19544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic H2 evolution and organic pollutant oxidation have witnessed a radical surge in recent times. However, this integration demands spatial charge separation and unique interface properties for a trade-off between oxidation and reduction reactions. In the current work, defect engineering of NiO/SnO2 nanoparticles aided in altering the optoelectronics and interface properties and enhanced photocatalytic activity. After annealing the catalysts in a N2 atmosphere, the hydroxyl groups were replaced by water molecules through surface modification. The photoexcited holes accumulated on SnO2 break the water molecules and facilitate the reduction of protons on NiO; this is known as spatial separation. Meanwhile, direct hole oxidation, an oxygen reduction reaction, ensures the degradation activity in this 2-fold system. By defect engineering, the limitations of SnO2 such as higher H2O adsorption, wide bandgap (reduced from 3.02 to 1.88 eV), and electronic properties were addressed. The H2 production in the current work has attained a value of 3732 μmol/(g h), which is 2.9 times that of the previous best reported under sunlight. Recyclability tests confirmed the stability of vacancies by promoting the reoxidation of defect states during photocatalytic activity. Additionally, efforts were made to study the effect of defect density on the photocurrent, the electrical resistance, and the mechanism of photocatalytic reactions. Electrochemical characterizations, UPS, XPS, UV-DRS, and PL were employed to understand the influence of defects on the bandgap, charge recombination, charge transport, charge carrier lifetime, and the interface properties that are responsible for photocatalytic activity. In this regard, it was understood that maintaining the optimal defect concentration is important for higher photocatalytic efficiencies, as the defect optimality preserves key photocatalytic properties. Apart from characterizations, the photocatalytic results suggest that excess defect density triggers the undesired thermodynamically favored back reactions, which greatly hampered the H2 yield of the process.
Collapse
Affiliation(s)
- Dileep Maarisetty
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, Goa 403726, India
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharastra, India
| | - Saroj Sundar Baral
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, Goa 403726, India
| |
Collapse
|
21
|
Charge Carrier Trapping during Diffusion Generally Observed for Particulate Photocatalytic Films. ENERGIES 2021. [DOI: 10.3390/en14217011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photo-excited charge carriers play a vital role in photocatalysts and photovoltaics, and their dynamic processes must be understood to improve their efficiencies by controlling them. The photo-excited charge carriers in photocatalytic materials are usually trapped to the defect states in the picosecond time range and are subject to recombination to the nanosecond to microsecond order. When photo-excited charge carrier dynamics are observed via refractive index changes, especially in particulate photocatalytic materials, another response between the trapping and recombination phases is often observed. This response has always provided the gradual increase of the refractive index changes in the nanosecond order, and we propose that the shallowly trapped charge carriers could still diffuse and be trapped to other states during this process. We examined various photocatalytic materials such as TiO2, SrTiO3, hematite, BiVO4, and methylammonium lead iodide for similar rising responses. Based on our assumption of surface trapping with diffusion, the responses were fit with the theoretical model with sufficient accuracy. We propose that these slow charge trapping processes must be included to fully understand the charge carrier dynamics of particulate photocatalytic materials.
Collapse
|