1
|
Hussain MS, Eltaib L, Rana AJ, Maqbool M, Ashique S, Alanazi MN, Khan Y, Agrawal M. Exploiting E3 ligases for lung cancer therapy: The promise of DCAF-PROTACs. Pathol Res Pract 2025; 270:156001. [PMID: 40359818 DOI: 10.1016/j.prp.2025.156001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Lung cancer remains the leading cause of cancer-related mortality, underscoring the urgent need for novel therapeutic strategies. One emerging approach in drug development targets oncogenic proteins via the ubiquitin-proteasome system (UPS), specifically through proteolysis-targeting chimeras (PROTACs). Among the various E3 ligase complexes, the CRL4 complex-comprising DDB1 and CUL4-associated factors (DCAFs)-has garnered attention for its roles in cellular homeostasis, DNA repair, and oncogenesis. This review explores the therapeutic potential of DCAF-based PROTACs (DCAF-PROTACs) in lung cancer by focusing on the substrate receptors DCAF13, DCAF15, and DCAF16, which mediate CRL4-dependent ubiquitination. We first discuss the dysregulation of DCAF proteins in lung cancer and then elaborate on their mechanistic role in facilitating target-specific protein degradation via DCAF-E3 ligase complexes. Recent studies show that DCAF-PROTACs selectively degrade oncogenic proteins, addressing treatment resistance and tumor heterogeneity. Notably, DCAF13 promotes lung adenocarcinoma by destabilizing p53, while DCAF15-PROTACs target and degrade RBM39 effectively. Additionally, the development of electrophilic PROTACs targeting DCAF16 presents a promising avenue for degrading nuclear proteins. Despite these advancements, several challenges must be addressed prior to clinical translation, including issues related to drug bioavailability, stability, and emerging resistance mechanisms. This review also explores the potential of combination therapies, particularly with immunotherapy, to enhance tumor specificity and therapeutic efficacy. Ultimately, the deployment of DCAF-PROTACs marks a significant advancement in precision oncology, offering a novel and targeted approach to protein degradation-based cancer treatment.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India.
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Amita Joshi Rana
- College of Pharmacy, Graphic Era Hill University, Bhimtal, Uttarakhand 263136, India
| | - Mudasir Maqbool
- Department of Pharmacology, Government Medical College Baramulla, Jammu and Kashmir 193103, India
| | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, West Bengal 711316, India
| | - Mashael N Alanazi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| |
Collapse
|
2
|
Liu J, Zhang Z, Xu W, Jia M, Zeng X, Wu C, Fu Z, Xu X, Ye C, Wu C, Xu H, Lei H, Wu Y, Yan H. Targeting the RBM39-MEK5 axis synergizes with bortezomib to inhibit the malignant growth of multiple myeloma. Blood Adv 2025; 9:1991-2005. [PMID: 40048740 PMCID: PMC12034074 DOI: 10.1182/bloodadvances.2025015815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/05/2025] [Indexed: 04/23/2025] Open
Abstract
ABSTRACT Aberrant alternative splicing is one of the hallmarks of cancer and is potentially based on upregulated expression-of-splicing factors in some types of cancer. Our previous study suggested that the splicing factor RBM39 is significantly upregulated in multiple myeloma (MM) and that its upregulation is positively associated with poor prognosis. Here, we further demonstrate that the survival and proliferation of MM cells rely on RBM39 and that RBM39 knockdown inhibits the malignant growth of MM. Indisulam, a "molecular glue" that mediates the proteasomal degradation of RBM39, has potent suppressive effects on MM both in vitro and in vivo. Deletion of RBM39 results in extensively altered splicing, with mis-splicing of MEK5 verified to inhibit the malignant growth of MM. Full-length MEK5 plays a vital role in maintaining MM cell survival, whereas aberrant MEK5 isoforms with exon loss exhibit loss of function and a propensity for proteasomal degradation. Targeting RBM39 or MEK5 synergistically increases the cytotoxicity of bortezomib in MM cells via the inhibition of p65. Our study validates the specific mechanism of RBM39 in MM, providing an approach for broader targeting and optimized therapeutic strategies for MM.
Collapse
Affiliation(s)
- Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilu Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Xu
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyuan Jia
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Zeng
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyu Wu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze Fu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Xu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjing Ye
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wu
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanzhang Xu
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hu Lei
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingli Wu
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yan
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Luo W, Xu M, Wong N, Ng CSH. Alternative Splicing in Lung Adenocarcinoma: From Bench to Bedside. Cancers (Basel) 2025; 17:1329. [PMID: 40282505 PMCID: PMC12025742 DOI: 10.3390/cancers17081329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor and the most prevalent pathological type of lung cancer. The alternative splicing (AS) of mRNA enables the generation of multiple protein products from a single gene. This is a tightly regulated process that significantly contributes to the proteome diversity in eukaryotes. Recent multi-omics studies have delineated the splicing profiles that underline LUAD tumorigenesis from initiation to metastasis. Such progress holds robust promise to facilitate the development of screening strategies and individualized therapies. Perturbed AS fosters the emergence of novel neoantigen resources and disturbances in the immune microenvironment, which allow new investigations into modulatory targets for LUAD immunotherapy. This review presents an update on the landscape of dysregulated splicing events in LUAD and the associated mechanisms and theranostic perspectives with unique insights into AS-based immunotherapy, such as Chimeric Antigen Receptor T cell therapy. These AS variants can be used in conjunction with current therapeutic modules in LUAD, allowing bench to bedside translation to combat this highly malignant cancer.
Collapse
Affiliation(s)
| | | | - Nathalie Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.L.); (M.X.)
| | - Calvin Sze-Hang Ng
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.L.); (M.X.)
| |
Collapse
|
4
|
Yang Y, Li Z, Yang Y, Xiao P, He Z, Zhang Z, Li Y, Shi L, Wang X, Tao Y, Fan J, Zhang F, Yang C, Yao F, Ji T, Zhang Y, Zhou B, Yu J, Guo A, Wei Z, Jiao W, Wu Y, Li Y, Wu D, Wu Y, Gao L, Hu Y, Pan J, Hu S, Yang X. The RBM39 degrader indisulam inhibits acute megakaryoblastic leukemia by altering the alternative splicing of ZMYND8. Cell Biosci 2025; 15:46. [PMID: 40223119 PMCID: PMC11995665 DOI: 10.1186/s13578-025-01380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Acute megakaryoblastic leukemia (AMKL) is a rare hematological malignancy in adults but children. Alternative splicing (AS) has been shown to affect hematological cancer progression, making splicing factors promising targets. Our research aims to investigate the efficacy of the molecular glue degrader indisulam, which targets the splicing factor RNA binding motif protein 39 (RBM39) in AMKL models. RESULTS Public drug sensitivity data analysis revealed that AMKL cell lines exhibited the highest sensitivity to indisulam compared with other tumor types. Then we confirmed that RBM39 depletion by indisulam treatment induced AMKL cell cycle arrest and apoptosis. In AMKL mouse model, indisulam treatment significantly reduced the leukemic burden and prolonged the lifetime of AMKL mice. Mechanically, integration of transcriptomic and proteomic analyses revealed that indisulam-mediated RBM39 degradation resulted in AS of the transcription factor zinc finger MYND-type containing 8 (ZMYND8), an AMKL cell growth regulator. Finally, the effectiveness of indisulam depended on DDB1- and Cul4- Associated Factor 15 (DCAF15) expression because knockout of DCAF15 rescued the indisulam-induced RBM39 degradation and mis-splicing of ZMYND8. CONCLUSION Indisulam is a promising therapeutic candidate for AMKL and the RBM39-mediated ZMYND8 splicing plays an important role in promoting the development of AMKL.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550001, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Yang Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Peifang Xiao
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550001, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yizhen Li
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaodong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Junjie Fan
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Fenli Zhang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550001, China
| | - Chunxia Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550001, China
| | - Fahua Yao
- Department of Pediatrics, Guizhou Hospital, Shanghai Children's Medical Center, Guiyang, 550004, China
| | - Tongting Ji
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yongping Zhang
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Bi Zhou
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou Municipal Hospital of Anhui Province, Suzhou, 234000, China
| | - Juanjuan Yu
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Ailian Guo
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Zhongling Wei
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Wanyan Jiao
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatric, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Yumeng Wu
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatric, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Yan Li
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatric, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yijun Wu
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Li Gao
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Yixin Hu
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China.
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China.
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China.
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China.
| | - Xiaoyan Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550001, China.
| |
Collapse
|
5
|
Lu CP, Li JB, Li DB, Wang YH, Jiang XG, Ma JJ, Xu G. RNA-binding motif protein RBM39 enhances the proliferation of gastric cancer cells by facilitating an oncogenic splicing switch in MRPL33. Acta Pharmacol Sin 2025; 46:1068-1081. [PMID: 39753980 PMCID: PMC11950233 DOI: 10.1038/s41401-024-01431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/13/2024] [Indexed: 03/17/2025]
Abstract
Gastric cancer is a malignant gastrointestinal disease characterized by high morbidity and mortality rates worldwide. The occurrence and progression of gastric cancer are influenced by various factors, including the abnormal alternative splicing of key genes. Recently, RBM39 has emerged as a tumor biomarker that regulates alternative splicing in several types of cancer. However, the specific functions and key alternative splicing events modulated by RBM39 in gastric cancer are still unclear. In this work, bioinformatic analysis of The Cancer Genome Atlas (TCGA) database and immunoblotting of patient tissue samples revealed that RBM39 was highly expressed in gastric cancer tissues and that its elevated expression significantly reduced overall patient survival. Cell-line-based and tumor xenograft experiments demonstrated that RBM39 knockdown attenuated the growth of gastric cancer cells both in vitro and in vivo. Mechanistically, through RNA-seq, minigene, and RT‒PCR, we discovered and further validated that RBM39 inhibited exon 3 skipping, thereby modulating the splicing of MRPL33. The long isoform MRPL33-L, which includes exon 3, but not the short isoform MRPL33-S, which lacks exon 3, significantly promoted the proliferation and colony formation of gastric cancer cells. Furthermore, we observed an increased percent-splice-in (PSI) of MRPL33 in gastric cancer tissues. Genetic manipulation and pharmacological treatment with the RBM39 degrader indisulam demonstrated that RBM39 regulated cell proliferation by influencing the splicing switch of MRPL33 in gastric cancer cells and a xenograft mouse model. Our findings indicate that RBM39 regulates the oncogenic splicing of MRPL33 and suggest that it may serve as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Dong-Bao Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yu-Hong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiao-Gang Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Wang J, Zheng L, Chen W, Zhang X, Lv D, Zeng C, Zhang C, Zhang R, Kang T, Zhong L. Targeting RBM39 suppresses tumor growth and sensitizes osteosarcoma cells to cisplatin. Oncogene 2025; 44:575-586. [PMID: 39633066 DOI: 10.1038/s41388-024-03242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Osteosarcoma is one of the most common malignant primary bone tumors and lacks effective therapeutic targets. Recent studies have reported that RNA binding proteins (RBPs) could serve as promising therapeutic targets for cancers, as their critical roles in transcriptional regulation and RNA splicing. Nevertheless, the potential of pharmacologically inhibiting RBPs as a therapeutic strategy for patients with osteosarcoma remains unclear. In this study, we identified the RNA-binding protein RBM39 as a promising therapeutic target for osteosarcoma. RBM39 is essential for cell viability, and a higher expression of RBM39 was associated with poor prognosis in osteosarcoma. Mechanistically, RBM39 served as a coactivator of c-Jun to transcriptionally upregulate DKK1, leading to the activation of the GSK3β-NF-κB pathway. Importantly, our results reveal that the pharmacological depletion of RBM39 by using the anti-cancer aryl sulfonamide (E7820), a drug known for its oral bioavailability and safe administration, effectively represses osteosarcoma growth and sensitizes osteosarcoma cells to cisplatin treatment both in vitro and in vivo. Our findings unveil the crucial role of RBM39 in modulating tumor growth and cisplatin sensitivity in osteosarcoma cells, suggesting that the combination of aryl sulfonamides with cisplatin may benefit patients with osteosarcoma.
Collapse
Affiliation(s)
- Jingxuan Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lisi Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanqi Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Changlin Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhong
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
7
|
Lv X, Sun X, Gao Y, Song X, Hu X, Gong L, Han L, He M, Wei M. Targeting RNA splicing modulation: new perspectives for anticancer strategy? J Exp Clin Cancer Res 2025; 44:32. [PMID: 39885614 PMCID: PMC11781073 DOI: 10.1186/s13046-025-03279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
The excision of introns from pre-mRNA is a crucial process in the expression of the majority of genes. Alternative splicing allows a single gene to generate diverse mRNA and protein products. Aberrant RNA splicing is recognized as a molecular characteristic present in almost all types of tumors. Therefore, identifying cancer-specific subtypes from aberrant processing offers new opportunities for therapeutic development. Numerous splicing modulators, each utilizing different mechanisms, have been developed as promising anticancer therapies, some of which are in clinical trials. In this review, we summarize the splice-altered signatures of cancer cell transcriptomes and the contributions of splicing aberrations to tumorigenesis and progression. Especially, we discuss current and emerging RNA splicing-targeted strategies for cancer therapy, including pharmacological approaches and splice-switching antisense oligonucleotides (ASOs). Finally, we address the challenges and opportunities in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
- Central Laboratory, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Yang Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaoyun Hu
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China
| | - Lang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China.
| |
Collapse
|
8
|
Shi Y, Zheng H, Wang T, Zhou S, Zhao S, Li M, Cao B. Targeting KRAS: from metabolic regulation to cancer treatment. Mol Cancer 2025; 24:9. [PMID: 39799325 PMCID: PMC11724471 DOI: 10.1186/s12943-024-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance. Here, we review the metabolic reprogramming of glucose, glutamine, and lipids regulated by oncogenic KRAS, with an emphasis on recent insights into the relationship between changes in metabolic mechanisms driven by KRAS mutant and related advances in targeted therapy. We also focus on advances in KRAS inhibitor discovery and related treatment strategies in colorectal, pancreatic, and non-small cell lung cancer, including current clinical trials. Therefore, this review provides an overview of the current understanding of metabolic mechanisms associated with KRAS mutation and related therapeutic strategies, aiming to facilitate the understanding of current challenges in KRAS-driven cancer and to support the investigation of therapeutic strategies.
Collapse
Affiliation(s)
- Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Tianzhen Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China
| | - Shengpu Zhou
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China.
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
9
|
Liguori L, Salomone F, Viggiano A, Sabbatino F, Pepe S, Formisano L, Bianco R, Servetto A. KRAS mutations in advanced non-small cell lung cancer: From biology to novel therapeutic strategies. Crit Rev Oncol Hematol 2025; 205:104554. [PMID: 39522850 DOI: 10.1016/j.critrevonc.2024.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Kristen rat sarcoma viral oncogene homolog (KRAS) mutations play a major role in the carcinogenesis of many types of solid tumors including non-small cell lung cancer (NSCLC). Among KRAS mutations, p.G12C single-nucleotide variant (KRASG12C) is the most frequently reported in NSCLC patients, with a prevalence of about 12-13 %. For many decades, KRAS mutations including KRASG12C were considered "undruggable" because of the lack of effective and well-tolerated selective therapies. Noteworthy, CodeBreaK100 and KRYSTAL-1 clinical trials have recently demonstrated that sotorasib and adagrasib, two novel selective KRASG12C inhibitors, have clinical activity with acceptable adverse-event profile for the treatment of advanced NSCLC patients with KRASG12C mutation. On the other hand, no selective therapies are approved for the treatment of advanced NSCLC patients with non-G12C KRAS mutations. As a result, these patients receive the same treatments as those without KRAS mutations. In this paper, we describe the role of KRAS mutations in NSCLC focusing on the clinical and molecular characteristics which potentially identify specific subtypes of NSCLC patients based on different KRAS mutations. We also provide an overview of the main clinical trials testing novel selective KRASG12C inhibitors as well as novel potential therapeutic strategies for NSCLC patients with non-G12C KRAS mutations.
Collapse
Affiliation(s)
- Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples II, Naples 80131, Italy; Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi 84031, Italy.
| | - Fabio Salomone
- Department of Clinical Medicine and Surgery, University of Naples II, Naples 80131, Italy.
| | - Angela Viggiano
- Department of Clinical Medicine and Surgery, University of Naples II, Naples 80131, Italy
| | - Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi 84031, Italy.
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi 84031, Italy.
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples II, Naples 80131, Italy.
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples II, Naples 80131, Italy.
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples II, Naples 80131, Italy.
| |
Collapse
|
10
|
Qin H, Zhang Q, Guo Y. Genome-wide identification of alternative splicing related with transcription factors and splicing regulators in breast cancer stem cells responding to fasting-mimicking diet. Comput Biol Chem 2024; 113:108272. [PMID: 39509796 DOI: 10.1016/j.compbiolchem.2024.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Fasting-mimicking diet (FMD) can effectively inhibit the viability of breast cancer stem cells (CSCs). However, the molecular mechanisms underlying the inhibitory function of FMD on breast CSCs remain largely unknown. Elucidating the mechanisms by which FMD suppresses breast CSCs is beneficial to targeting breast CSCs. Herein, we systematically analyze alternative splicing and RNA binding protein (RBP) expression in breast CSCs during FMD. The analysis results show that a large number of regulated alternative splicing (RAS) and differentially expressed genes (DEGs) appear responding to FMD. Further studies show that there are potential regulatory relationships between transcription factors (TFs) with RAS (RAS-TFs) and their differentially expressed target genes (RAS-TF-DEGs). Moreover, differentially expressed RNA binding proteins (DERBPs) exhibit potential regulatory functions on RAS-TFs. In short, DERBPs potentially control the alternative splicing of TFs (RAS-TFs), regulating their target gene (RAS-TF-DEG) expression, which leads to the regulation of biological processes in breast CSCs during FMD. In addition, the alternative splicing and DEGs are compared between breast CSCs and differentiated cancer cells during FMD, providing new interpretations for the different responses of the two types of cells. Our studies will shed light on the understanding of the molecular mechanisms underlying breast CSC inhibition induced by FMD.
Collapse
Affiliation(s)
- Hongshuang Qin
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi 033001, China.
| | - Qian Zhang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi 033001, China
| | - Yanxiang Guo
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi 033001, China
| |
Collapse
|
11
|
Jang JH, Kim JY, Lee TJ. Recent advances in anticancer mechanisms of molecular glue degraders: focus on RBM39-dgrading synthetic sulfonamide such as indisulam, E7820, tasisulam, and chloroquinoxaline sulfonamide. Genes Genomics 2024; 46:1345-1361. [PMID: 39271535 DOI: 10.1007/s13258-024-01565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Synthetic sulfonamide anticancer drugs, including E7820, indisulam, tasisulam, and chloroquinoxaline sulfonamide, exhibit diverse mechanisms of action and therapeutic potential, functioning as molecular glue degraders. E7820 targets RBM39, affecting RNA splicing and angiogenesis by suppressing integrin α2. Phase I studies have demonstrated some stability in advanced solid malignancies; however, further efficacy studies are required. Indisulam causes G1 cell cycle arrest and delays the G1/S transition by modulating splicing through RBM39 degradation via DCAF15. Despite its limited initial efficacy, it shows promise in combination therapies, particularly for hematopoietic malignancies and gliomas. Tasisulam inhibits VEGF signaling, suppresses angiogenesis, and induces apoptosis. Although early trials indicated broad activity, safety concerns have halted its development. Chloroquinoxaline sulfonamide, initially investigated for cell cycle arrest and topoisomerase II inhibition, was discontinued owing to its limited efficacy and toxicity, despite promising initial results. Recent studies revealed the structural interaction of E7820 with DCAF15 and RBM39, although phase II trials on myeloid malignancies have shown limited efficacy. Indisulam is effective against glioblastoma and neuroblastoma, with potential synergy in combination therapies and metabolic disruption. Recent research on tasisulam reveals its potential in cancer therapy by targeting RBM39 degradation through DCAF15-mediated pathways. Understanding these mechanisms could lead to new treatments that affect alternative splicing and improve cancer therapies Overall, although these drugs exhibit promising mechanisms of action, further research is required to optimize their clinical efficacy and safety.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
12
|
Karlebach G, Hansen P, Köhler K, Robinson P. IsopretGO-analysing and visualizing the functional consequences of differential splicing. NAR Genom Bioinform 2024; 6:lqae165. [PMID: 39660256 PMCID: PMC11630322 DOI: 10.1093/nargab/lqae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Gene Ontology overrepresentation analysis (GO-ORA) is a standard approach towards characterizing salient functional characteristics of sets of differentially expressed genes (DGE) in RNA sequencing (RNA-seq) experiments. GO-ORA compares the distribution of GO annotations of the DGE to that of all genes or all expressed genes. This approach has not been available to characterize differential alternative splicing (DAS). Here, we introduce a desktop application called isopretGO for visualizing the functional implications of DGE and DAS that leverages our previously published machine-learning predictions of GO annotations for individual isoforms. We show based on an analysis of 100 RNA-seq datasets that DAS and DGE frequently have starkly different functional profiles. We present an example that shows how isopretGO can be used to identify functional shifts in RNA-seq data that can be attributed to differential splicing.
Collapse
Affiliation(s)
- Guy Karlebach
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Peter Hansen
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Kristin Köhler
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
13
|
Lu C, Cai Y, Wu S, Wang Y, Li JB, Xu G, Ma J. Deubiquitinating enzyme USP39 promotes the growth and metastasis of gastric cancer cells by modulating the degradation of RNA-binding protein RBM39. J Biol Chem 2024; 300:107751. [PMID: 39260689 PMCID: PMC11490714 DOI: 10.1016/j.jbc.2024.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
It has been revealed recently that the RNA-binding motif protein RBM39 is highly expressed in several cancers, which results in poor patient survival. However, how RBM39 is regulated in gastric cancer cells is unknown. Here, affinity purification-mass spectrometry and a biochemical screening are employed to identify the RBM39-interacting proteins and the deubiquitinating enzymes that regulate the RBM39 protein level. Integration of the data obtained from these two approaches uncovers USP39 as the potential deubiquitinating enzyme that regulates RBM39 stability. Bioinformatic analysis discloses that USP39 is increased in gastric cancer tissues and its elevation shortens the duration of overall survival for gastric cancer patients. Biochemical experiments verify that USP39 and RBM39 interact with each other and highly colocalize in the nucleus. Expression of USP39 elevates while USP39 knockdown attenuates the RBM39 protein level and their interaction regulates this modulation and their colocalization. Mechanistic studies reveal that USP39 reduces the K48-linked polyubiquitin chains on RBM39, thus enhancing its stability and increasing the protein level by preventing its proteasomal degradation. USP39 overexpression promotes while its knockdown attenuates the growth, colony formation, migration, and invasion of gastric cancer cells. Interestingly, overexpression of RBM39 partially restores the impact of USP39 depletion, while RBM39 knockdown partially abolishes the effect of USP39 overexpression on the growth, colony formation, migration, and invasion of gastric cancer cells. Collectively, this work identifies the first DUB for RBM39 and elucidates the regulatory functions and the underlying mechanism, providing a possible alternative approach to suppressing RBM39 by inhibiting USP39 in cancer therapy.
Collapse
Affiliation(s)
- Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yunxin Cai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Shenglong Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China; Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China.
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
14
|
Anglada-Girotto M, Ciampi L, Bonnal S, Head SA, Miravet-Verde S, Serrano L. In silico RNA isoform screening to identify potential cancer driver exons with therapeutic applications. Nat Commun 2024; 15:7039. [PMID: 39147755 PMCID: PMC11327330 DOI: 10.1038/s41467-024-51380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Alternative splicing is crucial for cancer progression and can be targeted pharmacologically, yet identifying driver exons genome-wide remains challenging. We propose identifying such exons by associating statistically gene-level cancer dependencies from knockdown viability screens with splicing profiles and gene expression. Our models predict the effects of splicing perturbations on cell proliferation from transcriptomic data, enabling in silico RNA screening and prioritizing targets for splicing-based therapies. We identified 1,073 exons impacting cell proliferation, many from genes not previously linked to cancer. Experimental validation confirms their influence on proliferation, especially in highly proliferative cancer cell lines. Integrating pharmacological screens with splicing dependencies highlights the potential driver exons affecting drug sensitivity. Our models also allow predicting treatment outcomes from tumor transcriptomes, suggesting applications in precision oncology. This study presents an approach to identifying cancer driver exon and their therapeutic potential, emphasizing alternative splicing as a cancer target.
Collapse
Affiliation(s)
- Miquel Anglada-Girotto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| | - Ludovica Ciampi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Sarah A Head
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
15
|
Mao G, Liu J. Research on the mechanism of exosomes from different sources influencing the progression of lung cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:4231-4248. [PMID: 38760988 DOI: 10.1002/tox.24292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 05/20/2024]
Abstract
As a key regulator of intercellular communication, exosomes are essential for tumor cells. In our study, we will explore the mechanisms of exosomes from different sources on lung cancer. We isolated CD8+T cells and cancer-associated fibroblasts (CAFs) from venous blood and tumor tissues of lung cancer patients, and isolated exosomes. MiR-2682 was high expression in CD8+T-derived exosomes, and lncRNA-FOXD3-AS1 was upregulated in CAF-derived exosomes. Online bioinformatics database analysis showed that RNA Binding Motif Protein 39 (RBM39) was identified as the target of miR-2682, and eukaryotic translation initiation factors 3B (EIF3B) was identified as the RNA binding protein of FOXD3-AS1. CD8+T-derived exosomes inhibited the growth of A549 cells and promoted apoptosis, while miR-2682 inhibits reversed these effects of CD8+T-derived exosomes. CAF-derived exosomes promoted the growth of A549 cells and inhibited apoptosis, while FOXD3-AS1 siRNA reversed the effect of CAF-derived exosomes. Mechanism studies have found that miR-2682 inhibits the growth of lung cancer cells by inhibiting the expression of RBM39. FOXD3-AS1 promoted the growth of lung cancer cells by binding to EIF3B. In vivo experiments showed that CD8+T cell-derived exosome miR-2682 inhibited lung cancer tumor formation, while CAF-derived exosome FOXD3-AS1 promoted lung cancer tumor formation. This study provides mechanistic insights into the role of miR-2682 and FOXD3-AS1 in lung cancer progression and provides new strategies for lung cancer treatment.
Collapse
Affiliation(s)
- Guangxian Mao
- Peking University Shenzhen Hospital Medical College, Anhui Medical University, Shenzhen, People's Republic of China
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Jixian Liu
- Peking University Shenzhen Hospital Medical College, Anhui Medical University, Shenzhen, People's Republic of China
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
16
|
Kohsaka S, Yagishita S, Shirai Y, Matsuno Y, Ueno T, Kojima S, Ikeuchi H, Ikegami M, Kitada R, Yoshioka KI, Toshimitsu K, Tabata K, Yokoi A, Doi T, Yamamoto N, Owa T, Hamada A, Mano H. A molecular glue RBM39-degrader induces synthetic lethality in cancer cells with homologous recombination repair deficiency. NPJ Precis Oncol 2024; 8:117. [PMID: 38789724 PMCID: PMC11126574 DOI: 10.1038/s41698-024-00610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
E7820 and Indisulam (E7070) are sulfonamide molecular glues that modulate RNA splicing by degrading the splicing factor RBM39 via ternary complex formation with the E3 ligase adaptor DCAF15. To identify biomarkers of the antitumor efficacy of E7820, we treated patient-derived xenograft (PDX) mouse models established from 42 patients with solid tumors. The overall response rate was 38.1% (16 PDXs), and tumor regression was observed across various tumor types. Exome sequencing of the PDX genome revealed that loss-of-function mutations in genes of the homologous recombination repair (HRR) system, such as ATM, were significantly enriched in tumors that responded to E7820 (p = 4.5 × 103). Interestingly, E7820-mediated double-strand breaks in DNA were increased in tumors with BRCA2 dysfunction, and knockdown of BRCA1/2 transcripts or knockout of ATM, ATR, or BAP1 sensitized cancer cells to E7820. Transcriptomic analyses revealed that E7820 treatment resulted in the intron retention of mRNAs and decreased transcription, especially for HRR genes. This induced HRR malfunction probably leads to the synthetic lethality of tumor cells with homologous recombination deficiency (HRD). Furthermore, E7820, in combination with olaparib, exerted a synergistic effect, and E7820 was even effective in an olaparib-resistant cell line. In conclusion, HRD is a promising predictive biomarker of E7820 efficacy and has a high potential to improve the prognosis of patients with HRD-positive cancers.
Collapse
Affiliation(s)
- Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukina Shirai
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo,Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rina Kitada
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ken-Ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kohta Toshimitsu
- Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki, 300-2635, Japan
| | - Kimiyo Tabata
- Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki, 300-2635, Japan
| | - Akira Yokoi
- Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki, 300-2635, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Chiba, 277-8577, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Owa
- Eisai Inc., 200 Metro Blvd., Nutley, NJ, 07110, USA
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
17
|
Wu C, Wu C, Liu J, Jia M, Zeng X, Fu Z, He Z, Xu W, Yan H. Indisulam synergizes with melphalan to inhibit Multiple Myeloma malignancy via targeting TOP2A. PLoS One 2024; 19:e0299019. [PMID: 38593113 PMCID: PMC11003618 DOI: 10.1371/journal.pone.0299019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/03/2024] [Indexed: 04/11/2024] Open
Abstract
Multiple myeloma (MM) is the second most prevalent hematologic malignancy which remains uncurable. Numerous drugs have been discovered to inhibit MM cells. Indisulam, an aryl sulfonamide, has a potent anti-myeloma activity in vitro and in vivo. This study aims to explore the new mechanism of indisulam and investigate its potential use in combination with melphalan. We examined DNA damage in MM cells through various methods such as western blotting (WB), immunofluorescence, and comet assay. We also identified the role of topoisomerase IIα (TOP2A) using bioinformatic analyses. The impact of indisulam on the RNA and protein levels of TOP2A was investigated through qPCR and WB. Cell proliferation and apoptosis were assessed using CCK-8 assays, Annexin V/PI assays and WB. We predicted the synergistic effect of the combination treatment based on calculations performed on a website, and further explored the effect of indisulam in combination with melphalan on MM cell lines and xenografts. RNA sequencing data and basic experiments indicated that indisulam caused DNA damage and inhibited TOP2A expression by decreasing transcription and promoting degradation via the proteasome pathway. Functional experiments revealed that silencing TOP2A inhibited cell proliferation and induced apoptosis and DNA damage. Finally, Indisulam/melphalan combination treatment demonstrated a strong synergistic anti-tumor effect compared to single-agent treatments in vitro and in vivo. These findings suggest that combination therapies incorporating indisulam and melphalan have the potential to enhance treatment outcomes for MM.
Collapse
Affiliation(s)
- Chengyu Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wu
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyuan Jia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Zeng
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Ze Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziqi He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Xu
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Whitley MJ, Tran TH, Rigby M, Yi M, Dharmaiah S, Waybright TJ, Ramakrishnan N, Perkins S, Taylor T, Messing S, Esposito D, Nissley DV, McCormick F, Stephen AG, Turbyville T, Cornilescu G, Simanshu DK. Comparative analysis of KRAS4a and KRAS4b splice variants reveals distinctive structural and functional properties. SCIENCE ADVANCES 2024; 10:eadj4137. [PMID: 38354232 PMCID: PMC11636682 DOI: 10.1126/sciadv.adj4137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.
Collapse
Affiliation(s)
- Matthew J. Whitley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy H. Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Megan Rigby
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ming Yi
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy J. Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nitya Ramakrishnan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shelley Perkins
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V. Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, USA
| | - Andrew G. Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thomas Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gabriel Cornilescu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
19
|
Tu SM, Chen JZ, Singh SR, Maraboyina S, Gokden N, Hsu PC, Langford T. Stem Cell Theory of Cancer: Clinical Implications for Cellular Metabolism and Anti-Cancer Metabolomics. Cancers (Basel) 2024; 16:624. [PMID: 38339375 PMCID: PMC10854810 DOI: 10.3390/cancers16030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Although Otto Warburg may be right about the role of glycolysis versus OXPHOS in cancer metabolism, it remains unclear whether an altered metabolism is causative or correlative and is the main driver or a mere passenger in the pathogenesis of cancer. Currently, most of our successful treatments are designed to eliminate non-cancer stem cells (non-CSCs) such as differentiated cancer cells. When the treatments also happen to control CSCs or the stem-ness niche, it is often unintended, unexpected, or undetected for lack of a pertinent theory about the origin of cancer that clarifies whether cancer is a metabolic, genetic, or stem cell disease. Perhaps cellular context matters. After all, metabolic activity may be different in different cell types and their respective microenvironments-whether it is in a normal progenitor stem cell vs. progeny differentiated cell and whether it is in a malignant CSC vs. non-CSC. In this perspective, we re-examine different types of cellular metabolism, e.g., glycolytic vs. mitochondrial, of glucose, glutamine, arginine, and fatty acids in CSCs and non-CSCs. We revisit the Warburg effect, an obesity epidemic, the aspartame story, and a ketogenic diet. We propose that a pertinent scientific theory about the origin of cancer and of cancer metabolism influences the direction of cancer research as well as the design of drug versus therapy development in cancer care.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (J.Z.C.); (S.R.S.)
| | - Jim Z. Chen
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (J.Z.C.); (S.R.S.)
| | - Sunny R. Singh
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (J.Z.C.); (S.R.S.)
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Ping-Ching Hsu
- Department of Environmental & Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Timothy Langford
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
20
|
Choi S, Cho N, Kim EM, Kim KK. The role of alternative pre-mRNA splicing in cancer progression. Cancer Cell Int 2023; 23:249. [PMID: 37875914 PMCID: PMC10594706 DOI: 10.1186/s12935-023-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
21
|
Yan Y, Ren Y, Bao Y, Wang Y. RNA splicing alterations in lung cancer pathogenesis and therapy. CANCER PATHOGENESIS AND THERAPY 2023; 1:272-283. [PMID: 38327600 PMCID: PMC10846331 DOI: 10.1016/j.cpt.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 02/09/2024]
Abstract
RNA splicing alterations are widespread and play critical roles in cancer pathogenesis and therapy. Lung cancer is highly heterogeneous and causes the most cancer-related deaths worldwide. Large-scale multi-omics studies have not only characterized the mutational landscapes but also discovered a plethora of transcriptional and post-transcriptional changes in lung cancer. Such resources have greatly facilitated the development of new diagnostic markers and therapeutic options over the past two decades. Intriguingly, altered RNA splicing has emerged as an important molecular feature and therapeutic target of lung cancer. In this review, we provide a brief overview of splicing dysregulation in lung cancer and summarize the recent progress on key splicing events and splicing factors that contribute to lung cancer pathogenesis. Moreover, we describe the general strategies targeting splicing alterations in lung cancer and highlight the potential of combining splicing modulation with currently approved therapies to combat this deadly disease. This review provides new mechanistic and therapeutic insights into splicing dysregulation in cancer.
Collapse
Affiliation(s)
- Yueren Yan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Campagne S, Jutzi D, Malard F, Matoga M, Romane K, Feldmuller M, Colombo M, Ruepp MD, Allain FHT. Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor RBM39. Nat Commun 2023; 14:5366. [PMID: 37666821 PMCID: PMC10477243 DOI: 10.1038/s41467-023-40254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/14/2023] [Indexed: 09/06/2023] Open
Abstract
Pharmacologic depletion of RNA-binding motif 39 (RBM39) using aryl sulfonamides represents a promising anti-cancer therapy but requires high levels of the adaptor protein DCAF15. Consequently, novel approaches to deplete RBM39 in an DCAF15-independent manner are required. Here, we uncover that RBM39 autoregulates via the inclusion of a poison exon into its own pre-mRNA and identify the cis-acting elements that govern this regulation. We also determine the NMR solution structures of RBM39's tandem RNA recognition motifs (RRM1 and RRM2) bound to their respective RNA targets, revealing how RRM1 recognises RNA stem loops whereas RRM2 binds specifically to single-stranded N(G/U)NUUUG. Our results support a model where RRM2 selects the 3'-splice site of a poison exon and the RRM3 and RS domain stabilise the U2 snRNP at the branchpoint. Our work provides molecular insights into RBM39-dependent 3'-splice site selection and constitutes a solid basis to design alternative anti-cancer therapies.
Collapse
Affiliation(s)
- Sébastien Campagne
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland.
- University of Bordeaux, Inserm U1212, CNRS UMR5320, ARNA Laboratory, 33077, Bordeaux, France.
| | - Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9NU, UK
| | - Florian Malard
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
- University of Bordeaux, Inserm U1212, CNRS UMR5320, ARNA Laboratory, 33077, Bordeaux, France
| | - Maja Matoga
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Ksenija Romane
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Miki Feldmuller
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Martino Colombo
- University of Bern, Department of Chemistry and Biochemistry, 3012, Bern, Switzerland
- Celgene Institute of Translational Research in Europe (CITRE), Bristol Myers Squibb, 41092, Seville, Spain
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9NU, UK.
| | - Frédéric H-T Allain
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland.
| |
Collapse
|
23
|
Wojtyś W, Oroń M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers (Basel) 2023; 15:cancers15112918. [PMID: 37296881 DOI: 10.3390/cancers15112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of RNA sequencing methods has allowed us to study and better understand the landscape of aberrant pre-mRNA splicing in tumors. Altered splicing patterns are observed in many different tumors and affect all hallmarks of cancer: growth signal independence, avoidance of apoptosis, unlimited proliferation, invasiveness, angiogenesis, and metabolism. In this review, we focus on the interplay between driver oncogenes and alternative splicing in cancer. On one hand, oncogenic proteins-mutant p53, CMYC, KRAS, or PI3K-modify the alternative splicing landscape by regulating expression, phosphorylation, and interaction of splicing factors with spliceosome components. Some splicing factors-SRSF1 and hnRNPA1-are also driver oncogenes. At the same time, aberrant splicing activates key oncogenes and oncogenic pathways: p53 oncogenic isoforms, the RAS-RAF-MAPK pathway, the PI3K-mTOR pathway, the EGF and FGF receptor families, and SRSF1 splicing factor. The ultimate goal of cancer research is a better diagnosis and treatment of cancer patients. In the final part of this review, we discuss present therapeutic opportunities and possible directions of further studies aiming to design therapies targeting alternative splicing mechanisms in the context of driver oncogenes.
Collapse
Affiliation(s)
- Weronika Wojtyś
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Oroń
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
24
|
Qian DC, Ulrich BC, Peng G, Zhao H, Conneely KN, Miller AH, Bruner DW, Eldridge RC, Wommack EC, Higgins KA, Shin DM, Saba NF, Smith AK, Burtness B, Park HS, Stokes WA, Beitler JJ, Xiao C. Outcomes Stratification of Head and Neck Cancer Using Pre- and Post-treatment DNA Methylation From Peripheral Blood. Int J Radiat Oncol Biol Phys 2023; 115:1217-1228. [PMID: 36410685 DOI: 10.1016/j.ijrobp.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Established prognostic factors for head and neck squamous cell carcinoma (HNSCC) mostly consist of clinical and tumor features assessed before treatment. We report a novel application of DNA methylation in peripheral blood before and after radiation therapy to further improve outcomes stratification. METHODS AND MATERIALS Peripheral blood samples from patients with nonmetastatic HNSCC were obtained for methylation analysis 1 week before and 1 month after radiation therapy. Patients were randomized 1:1 to a Discovery Cohort or a Validation Cohort. In the Discovery Cohort, associations between genome-wide methylation change (posttreatment minus pretreatment) and recurrence-free survival (RFS) as well as overall survival (OS) were evaluated using Cox regression. A methylation risk score (MRS) was then constructed from methylation levels at the top associated sites, filtered for residing within the regulatory regions of genes expressed in cells of hematopoietic lineage. The prognostic value of MRS was separately assessed in the Discovery and Validation Cohorts. RESULTS Between December 2013 and September 2018, 115 patients participated in this study. Human papilloma virus negative status, oral cavity cancer, gastrostomy tube insertion, and higher neutrophil count before radiation therapy were associated with shorter RFS and OS (P < .05). Genes downstream of the methylation sites comprising MRS are HIF1A, SF1, LGALS9, and FUT5, involved in hypoxia response, blood cell maturation, and immune modulation. High MRS (in the top third) was significantly associated with worse RFS (hazard ratio [HR], 7.1; 95% confidence interval [CI], 1.4-35.5; P = .016) and OS (HR, 15.9; 95% CI, 1.6-153.6; P = .017) in the Discovery Cohort, independent of the aforementioned risk factors. These findings were replicated in the Validation Cohort, for which high MRS also independently predicted worse RFS (HR, 10.2; 95%, CI 2.4-43.4; P = .002) and OS (HR, 3.7; 95% CI, 1.3-10.4; P = .015). CONCLUSIONS We successfully trained and validated a signature of DNA methylation in peripheral blood before and after radiation therapy that stratified outcomes among patients with HNSCC, implicating the potential for genomics-tailored surveillance and consolidation treatment.
Collapse
Affiliation(s)
- David C Qian
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Bryan C Ulrich
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Gang Peng
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Deborah W Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Ronald C Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Evanthia C Wommack
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Kristin A Higgins
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA
| | - Barbara Burtness
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Henry S Park
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT
| | - William A Stokes
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Jonathan J Beitler
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Canhua Xiao
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA.
| |
Collapse
|
25
|
Zhou Y, Hancock JF. RAS nanoclusters are cell surface transducers that convert extracellular stimuli to intracellular signalling. FEBS Lett 2023; 597:892-908. [PMID: 36595205 PMCID: PMC10919257 DOI: 10.1002/1873-3468.14569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Mutations of rat sarcoma virus (RAS) oncogenes (HRAS, KRAS and NRAS) can contribute to the development of cancers and genetic disorders (RASopathies). The spatiotemporal organization of RAS is an important property that warrants further investigation. In order to function, wild-type or oncogenic mutants of RAS must be localized to the inner leaflet of the plasma membrane (PM), which is driven by interactions between their C-terminal membrane-anchoring domains and PM lipids. The isoform-specific RAS-lipid interactions promote the formation of nanoclusters on the PM. As main sites for effector recruitment, these nanoclusters are biologically important. Since the spatial distribution of lipids is sensitive to changing environments, such as mechanical and electrical perturbations, RAS nanoclusters act as transducers to convert external stimuli to intracellular mitogenic signalling. As such, effective inhibition of RAS oncogenesis requires consideration of the complex interplay between RAS nanoclusters and various cell surface and extracellular stimuli. In this review, we discuss in detail how, by sorting specific lipids in the PM, RAS nanoclusters act as transducers to convert external stimuli into intracellular signalling.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, McGovern Medical School, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and University of Texas Health Science Center, TX, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, McGovern Medical School, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and University of Texas Health Science Center, TX, USA
| |
Collapse
|
26
|
Eléouët M, Lu C, Zhou Y, Yang P, Ma J, Xu G. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194902. [PMID: 36535628 DOI: 10.1016/j.bbagrm.2022.194902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding protein 39 (RBM39) involves in pre-mRNA splicing and transcriptional regulation. RBM39 is dysregulated in many cancers and its upregulation enhances cancer cell proliferation. Recently, it has been discovered that aryl sulfonamides act as molecular glues to recruit RBM39 to the CRL4DCAF15 E3 ubiquitin ligase complex for its ubiquitination and proteasomal degradation. Therefore, various studies have focused on the degradation of RBM39 by aryl sulfonamides in the aim of finding new cancer therapeutics. These discoveries also attracted focus for thorough study on the biological functions of RBM39. RBM39 was found to regulate the splicing and transcription of genes mainly involved in pre-mRNA splicing, cell cycle regulation, DNA damage response, and metabolism, but the understanding of these regulations is still in its infancy. This article reviews the advances of the current literature and discusses the remaining key issues on the biological function and dynamic regulation of RBM39 at the post-translational level.
Collapse
Affiliation(s)
- Morgane Eléouët
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yijia Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
27
|
Yang H, Zhou X, Fu D, Le C, Wang J, Zhou Q, Liu X, Yuan Y, Ding K, Xiao Q. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun (Lond) 2023; 43:42-74. [PMID: 36316602 PMCID: PMC9859734 DOI: 10.1002/cac2.12377] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 01/22/2023] Open
Abstract
RAS genes are the most frequently mutated oncogenes and play critical roles in the development and progression of malignancies. The mutation, isoform (KRAS, HRAS, and NRAS), position, and type of substitution vary depending on the tissue types. Despite decades of developing RAS-targeted therapies, only small subsets of these inhibitors are clinically effective, such as the allele-specific inhibitors against KRASG12C . Targeting the remaining RAS mutants would require further experimental elucidation of RAS signal transduction, RAS-altered metabolism, and the associated immune microenvironment. This study reviews the mechanisms and efficacy of novel targeted therapies for different RAS mutants, including KRAS allele-specific inhibitors, combination therapies, immunotherapies, and metabolism-associated therapies.
Collapse
Affiliation(s)
- Hang Yang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Xinyi Zhou
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Dongliang Fu
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Chenqin Le
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Jiafeng Wang
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Quan Zhou
- Department of Cell BiologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiangrui Liu
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ying Yuan
- Department of Medical Oncologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qian Xiao
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| |
Collapse
|
28
|
Tripathi G, Tripathi A, Johnson J, Kashyap MK. Role of RNA Splicing in Regulation of Cancer Stem Cell. Curr Stem Cell Res Ther 2023; 18:3-6. [PMID: 34875992 DOI: 10.2174/1574888x16666211207103628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
| | - Joel Johnson
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| |
Collapse
|
29
|
Adams LM, DeHart CJ, Drown BS, Anderson LC, Bocik W, Boja ES, Hiltke TM, Hendrickson CL, Rodriguez H, Caldwell M, Vafabakhsh R, Kelleher NL. Mapping the KRAS proteoform landscape in colorectal cancer identifies truncated KRAS4B that decreases MAPK signaling. J Biol Chem 2022; 299:102768. [PMID: 36470426 PMCID: PMC9808003 DOI: 10.1016/j.jbc.2022.102768] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
The KRAS gene is one of the most frequently mutated oncogenes in human cancer and gives rise to two isoforms, KRAS4A and KRAS4B. KRAS post-translational modifications (PTMs) have the potential to influence downstream signaling. However, the relationship between KRAS PTMs and oncogenic mutations remains unclear, and the extent of isoform-specific modification is unknown. Here, we present the first top-down proteomics study evaluating both KRAS4A and KRAS4B, resulting in 39 completely characterized proteoforms across colorectal cancer cell lines and primary tumor samples. We determined which KRAS PTMs are present, along with their relative abundance, and that proteoforms of KRAS4A versus KRAS4B are differentially modified. Moreover, we identified a subset of KRAS4B proteoforms lacking the C185 residue and associated C-terminal PTMs. By confocal microscopy, we confirmed that this truncated GFP-KRAS4BC185∗ proteoform is unable to associate with the plasma membrane, resulting in a decrease in mitogen-activated protein kinase signaling pathway activation. Collectively, our study provides a reference set of functionally distinct KRAS proteoforms and the colorectal cancer contexts in which they are present.
Collapse
Affiliation(s)
- Lauren M. Adams
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Caroline J. DeHart
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bryon S. Drown
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Lissa C. Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| | - William Bocik
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Emily S. Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda Maryland, USA
| | - Tara M. Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda Maryland, USA
| | | | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda Maryland, USA
| | - Michael Caldwell
- Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA,Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA,Department of Chemistry, Northwestern University, Evanston, Illinois, USA,Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA,Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA,For correspondence: Neil L. Kelleher
| |
Collapse
|
30
|
Nuevo-Tapioles C, Philips MR. The role of KRAS splice variants in cancer biology. Front Cell Dev Biol 2022; 10:1033348. [PMID: 36393833 PMCID: PMC9663995 DOI: 10.3389/fcell.2022.1033348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
The three mammalian RAS genes (HRAS, NRAS and KRAS) encode four proteins that play central roles in cancer biology. Among them, KRAS is mutated more frequently in human cancer than any other oncogene. The pre-mRNA of KRAS is alternatively spliced to give rise to two products, KRAS4A and KRAS4B, which differ in the membrane targeting sequences at their respective C-termini. Notably, both KRAS4A and KRAS4B are oncogenic when KRAS is constitutively activated by mutation in exon 2 or 3. Whereas KRAS4B is the most studied oncoprotein, KRAS4A is understudied and until recently considered relatively unimportant. Emerging work has confirmed expression of KRAS4A in cancer and found non-overlapping functions of the splice variants. The most clearly demonstrated of these is direct regulation of hexokinase 1 by KRAS4A, suggesting that the metabolic vulnerabilities of KRAS-mutant tumors may be determined in part by the relative expression of the splice variants. The aim of this review is to address the most relevant characteristics and differential functions of the KRAS splice variants as they relate to cancer onset and progression.
Collapse
|
31
|
Zhang Y, Weh KM, Howard CL, Riethoven JJ, Clarke JL, Lagisetty KH, Lin J, Reddy RM, Chang AC, Beer DG, Kresty LA. Characterizing isoform switching events in esophageal adenocarcinoma. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:749-768. [PMID: 36090744 PMCID: PMC9437810 DOI: 10.1016/j.omtn.2022.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022]
Abstract
Isoform switching events with predicted functional consequences are common in many cancers, but characterization of switching events in esophageal adenocarcinoma (EAC) is lacking. Next-generation sequencing was used to detect levels of RNA transcripts and identify specific isoforms in treatment-naïve esophageal tissues ranging from premalignant Barrett’s esophagus (BE), BE with low- or high-grade dysplasia (BE.LGD, BE.HGD), and EAC. Samples were stratified by histopathology and TP53 mutation status, identifying significant isoform switching events with predicted functional consequences. Comparing BE.LGD with BE.HGD, a histopathology linked to cancer progression, isoform switching events were identified in 75 genes including KRAS, RNF128, and WRAP53. Stratification based on TP53 status increased the number of significant isoform switches to 135, suggesting switching events affect cellular functions based on TP53 mutation and tissue histopathology. Analysis of isoforms agnostic, exclusive, and shared with mutant TP53 revealed unique signatures including demethylation, lipid and retinoic acid metabolism, and glucuronidation, respectively. Nearly half of isoform switching events were identified without significant gene-level expression changes. Importantly, two TP53-interacting isoforms, RNF128 and WRAP53, were significantly linked to patient survival. Thus, analysis of isoform switching events may provide new insight for the identification of prognostic markers and inform new potential therapeutic targets for EAC.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine M. Weh
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Connor L. Howard
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean-Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jennifer L. Clarke
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kiran H. Lagisetty
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jules Lin
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rishindra M. Reddy
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew C. Chang
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - David G. Beer
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura A. Kresty
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding author Laura A. Kresty, PhD, Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Ye Z, Bing A, Zhao S, Yi S, Zhan X. Comprehensive analysis of spliceosome genes and their mutants across 27 cancer types in 9070 patients: clinically relevant outcomes in the context of 3P medicine. EPMA J 2022; 13:335-350. [DOI: 10.1007/s13167-022-00279-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022]
|
33
|
Yelland T, Garcia E, Parry C, Kowalczyk D, Wojnowska M, Gohlke A, Zalar M, Cameron K, Goodwin G, Yu Q, Zhu PC, ElMaghloob Y, Pugliese A, Archibald L, Jamieson A, Chen YX, McArthur D, Bower J, Ismail S. Stabilization of the RAS:PDE6D Complex Is a Novel Strategy to Inhibit RAS Signaling. J Med Chem 2022; 65:1898-1914. [PMID: 35104933 PMCID: PMC8842248 DOI: 10.1021/acs.jmedchem.1c01265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
RAS is a major anticancer
drug target which requires membrane localization
to activate downstream signal transduction. The direct inhibition
of RAS has proven to be challenging. Here, we present a novel strategy
for targeting RAS by stabilizing its interaction with the prenyl-binding
protein PDE6D and disrupting its localization. Using rationally designed
RAS point mutations, we were able to stabilize the RAS:PDE6D complex
by increasing the affinity of RAS for PDE6D, which resulted in the
redirection of RAS to the cytoplasm and the primary cilium and inhibition
of oncogenic RAS/ERK signaling. We developed an SPR fragment screening
and identified fragments that bind at the KRAS:PDE6D interface, as
shown through cocrystal structures. Finally, we show that the stoichiometric
ratios of KRAS:PDE6D vary in different cell lines, suggesting that
the impact of this strategy might be cell-type-dependent. This study
forms the foundation from which a potential anticancer small-molecule
RAS:PDE6D complex stabilizer could be developed.
Collapse
Affiliation(s)
- Tamas Yelland
- CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Esther Garcia
- CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Charles Parry
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | | | - Marta Wojnowska
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Andrea Gohlke
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Matja Zalar
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,School of Chemical Engineering and Analytical Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Kenneth Cameron
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Gillian Goodwin
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,BioAscent Discovery Ltd, Biocity, Motherwell ML1 5UH, United Kingdom
| | - Qing Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | - Angelo Pugliese
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,BioAscent Discovery Ltd, Biocity, Motherwell ML1 5UH, United Kingdom
| | - Lewis Archibald
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Jamieson
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yong Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Duncan McArthur
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,BioAscent Discovery Ltd, Biocity, Motherwell ML1 5UH, United Kingdom
| | - Justin Bower
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Shehab Ismail
- CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,Department of Chemistry, KU Leuven, Celestijnenlaan 200G, Heverlee 3001, Belgium
| |
Collapse
|
34
|
Corral de la Fuente E, Olmedo Garcia ME, Gomez Rueda A, Lage Y, Garrido P. Targeting KRAS in Non-Small Cell Lung Cancer. Front Oncol 2022; 11:792635. [PMID: 35083149 PMCID: PMC8784727 DOI: 10.3389/fonc.2021.792635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is the most frequently altered oncogene in Non-Small Cell Lung Cancer (NSCLC). KRAS mutant tumors constitute a heterogeneous group of diseases, different from other oncogene-derived tumors in terms of biology and response to treatment, which hinders the development of effective drugs against KRAS. Therefore, for decades, despite enormous efforts invested in the development of drugs aimed at inhibiting KRAS or its signaling pathways, KRAS was considered to be undruggable. Recently, the discovery of a new pocket under the effector binding switch II region of KRAS G12C has allowed the development of direct KRAS inhibitors such as sotorasib, the first FDA-approved drug targeting KRAS G12C, or adagrasib, initiating a new exciting era. However, treatment with targeted KRAS G12C inhibitors also leads to resistance, and understanding the possible mechanisms of resistance and which drugs could be useful to overcome it is key. Among others, KRAS G12C (ON) tricomplex inhibitors and different combination therapy strategies are being analyzed in clinical trials. Another area of interest is the potential role of co-mutations in treatment selection, particularly immunotherapy. The best first-line strategy remains to be determined and, due to the heterogeneity of KRAS, is likely to be based on combination therapies.
Collapse
Affiliation(s)
- Elena Corral de la Fuente
- Early Phase Clinical Drug Development in Oncology, South Texas Accelerated Research Therapeutics (START) Madrid-Centro Integral Oncológico Clara Campal (CIOCC), Centro Integral Oncológico Clara Campal, Madrid, Spain
| | | | - Ana Gomez Rueda
- Department of Medical Oncology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Yolanda Lage
- Department of Medical Oncology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Pilar Garrido
- Department of Medical Oncology, Ramón y Cajal University Hospital, Madrid, Spain
| |
Collapse
|
35
|
Li Y, Hu L, Xu C. Kirsten rat sarcoma inhibitors in clinical development against nonsmall cell lung cancer. Curr Opin Oncol 2022; 34:66-76. [PMID: 34690284 DOI: 10.1097/cco.0000000000000808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The unique structure made Kirsten rat sarcoma (KRAS) 'undruggable' for quite an extended period. The functional mechanism of this small protein is well illustrated. However, there is no precision medicine for nonsmall cell lung cancer (NSCLC) patients burden with KRAS mutation. The attempts made by scientists to make challenge history against KRAS mutation and their druggable targets are worth elucidating. RECENT FINDINGS The appearance of orphan drug AMG510 in the market specifically targeting KRASG12C is a tremendous breakthrough. Several KRAS inhibitors are under development now. More studies focus on combo treatment of KRAS inhibition and immune checkpoint inhibitors (ICIs). Recent preclinical and clinical investigations have been reported that NSCLC patients with KRAS mutation can benefit from ICIs. SUMMARY The current review elucidates the development of KRAS inhibitors from basic research to clinical precision medicines. We retrospectively analyze the development of KRAS mutation targeting drugs and discuss the investigations for future development of KRAS inhibitors.
Collapse
Affiliation(s)
- Yunchang Li
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | | |
Collapse
|
36
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
37
|
Aran V. K-RAS4A: Lead or Supporting Role in Cancer Biology? Front Mol Biosci 2021; 8:729830. [PMID: 34604308 PMCID: PMC8479197 DOI: 10.3389/fmolb.2021.729830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022] Open
Abstract
The RAS oncogene is one of the most frequently mutated genes in human cancer, with K-RAS having a leading role in tumorigenesis. K-RAS undergoes alternative splicing, and as a result its transcript generates two gene products K-RAS4A and K-RAS4B, which are affected by the same oncogenic mutations, are highly homologous, and are expressed in a variety of human tissues at different levels. In addition, both isoforms localise to the plasma membrane by distinct targeting motifs. While some evidence suggests nonredundant functions for both splice variants, most work to date has focused on K-RAS4B, or even just K-RAS (i.e., without differentiating between the splice variants). This review aims to address the most relevant evidence published regarding K-RAS4A and to discuss if this “minor” isoform could also play a leading role in cancer, concluding that a significant body of evidence supports a leading role rather than a supporting (or secondary) role for K-RAS4A in cancer biology.
Collapse
Affiliation(s)
- Veronica Aran
- Laboratorio de Biomedicina Do Cérebro, Instituto Estadual Do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| |
Collapse
|