1
|
Muysers H, Bartos M, Sauer JF. Conjoint generalized and trajectory-specific coding of task structure by prefrontal neurons. Cell Rep 2025; 44:115420. [PMID: 40057953 DOI: 10.1016/j.celrep.2025.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/05/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Neurons in the medial prefrontal cortex (mPFC) are spatially tuned. Trajectory-specific firing with distinct spatial tuning on different paths to reward sites as well as generalized spatial tuning with similar responses on separate trajectories have been described. However, it is unclear whether such distinct populations contribute differently to the encoding of task space. Here, we find coexisting populations of neurons with trajectory-specific and generalized tuning profiles in an olfaction-guided spatial memory task in mice. Neurons with generalized representation show stable spatial tuning within and across days, allow accurate predictions of the animal's position, and preferentially emerge upon task learning. In contrast, cells with trajectory-specific spatial tuning display dynamically changing tuning functions, are less informative about the current position, and can be identified at a larger proportion early in task learning. These results highlight a role for neurons with generalized tuning in the efficient and stable representation of task space.
Collapse
Affiliation(s)
- Hannah Muysers
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University, 79104 Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University, 79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University, 79104 Freiburg, Germany; Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
2
|
Dorian CC, Taxidis J, Buonomano D, Golshani P. Hippocampal sequences represent working memory and implicit timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643736. [PMID: 40166270 PMCID: PMC11956965 DOI: 10.1101/2025.03.17.643736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Working memory (WM) and timing are considered distinct cognitive functions, yet the neural signatures underlying both can be similar. To address the hypothesis that WM and timing may be multiplexed we developed a novel rodent task where 1st odor identity predicts the delay duration. We found that WM performance decreased when delay expectations were violated. Performance was worse for unexpected long delays than for unexpected short delays, suggesting that WM may be tuned to expire in a delay-dependent manner. Calcium imaging of dorsal CA1 neurons revealed odor-specific sequential activity tiling the short and long delays. Neural sequence structure also reflected expectation of the timing of the 2nd odor-i.e., of the expected delay. Consistent with the hypothesis that WM and timing may be multiplexed, our findings suggest that neural sequences in dorsal CA1 may encode cues and cue-specific elapsed time during the delay period of a WM task.
Collapse
Affiliation(s)
- Conor C. Dorian
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jiannis Taxidis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Dean Buonomano
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Greater Los Angeles Veteran Affairs Medical Center, Los Angeles, CA, USA
- Intellectual and Developmental Disabilities Research Center, University of California Los Angeles, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Ranjbar-Slamloo Y, Chong HR, Kamigaki T. Aging disrupts the link between network centrality and functional properties of prefrontal neurons during memory-guided behavior. Commun Biol 2025; 8:62. [PMID: 39820515 PMCID: PMC11739477 DOI: 10.1038/s42003-025-07498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
The prefrontal cortex (PFC) is vital for higher cognitive functions and displays neuronal heterogeneity, with neuronal activity varying significantly across individual neurons. Using calcium imaging in the medial PFC (mPFC) of mice, we investigate whether differences in degree centrality-a measure of connectivity strength within local circuits-could explain this neuronal diversity and its functional implications. In young adults, neurons with high degree centrality, inferred from resting-state activity, exhibit reliable and stable action-plan selectivity during memory-guided tasks, suggesting that connectivity strength is closely linked to functional heterogeneity. This relationship, however, deteriorates in middle-aged and older mice. A computational model simulating age-related declines in synaptic plasticity reproduces these results. In young adults, degree centrality also predicts cross-modal action-plan selectivity, but this predictive power diminishes with age. Furthermore, neurons with high action-plan selectivity are spatially clustered, a pattern that fades with aging. These findings reveal the significant aging impact on the network properties in parallel with the functional and spatial organization of the mPFC.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Huee Ru Chong
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tsukasa Kamigaki
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
4
|
Bae JW, Yi JH, Choe SY, Li Y, Jung MW. Cortical VIP neurons as a critical node for dopamine actions. SCIENCE ADVANCES 2025; 11:eadn3221. [PMID: 39742499 DOI: 10.1126/sciadv.adn3221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
Dopamine modulates a wide range of cognitive processes in the prefrontal cortex, but the underlying mechanisms remain unclear. Here, we examined the roles of prefrontal vasoactive intestinal polypeptide (VIP)-expressing neurons and their D1 receptors (D1Rs) in working memory using a delayed match-to-sample task in mice. VIP neurons conveyed robust working-memory signals, and their inactivation impaired behavioral performance. Moreover, selective knockdown of D1Rs in VIP neurons also resulted in impaired performance, indicating the critical role of VIP neurons and their D1Rs in supporting working memory. Additionally, we found that dopamine release dynamics during the delay period varied depending on the target location. Furthermore, dopaminergic terminal stimulation induced a contralateral response bias and enhanced neuronal target selectivity in a laterality-dependent manner. These results suggest that prefrontal dopamine modulates behavioral responses and delay-period activity based on laterality. Overall, these findings shed light on dopamine-modulated prefrontal neural processes underlying higher-order cognitive functions.
Collapse
Affiliation(s)
- Jung Won Bae
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Seo Yeon Choe
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
5
|
Tudi A, Yao M, Tang F, Zhou J, Li A, Gong H, Jiang T, Li X. Subregion preference in the long-range connectome of pyramidal neurons in the medial prefrontal cortex. BMC Biol 2024; 22:95. [PMID: 38679719 PMCID: PMC11057135 DOI: 10.1186/s12915-024-01880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) is involved in complex functions containing multiple types of neurons in distinct subregions with preferential roles. The pyramidal neurons had wide-range projections to cortical and subcortical regions with subregional preferences. Using a combination of viral tracing and fluorescence micro-optical sectioning tomography (fMOST) in transgenic mice, we systematically dissected the whole-brain connectomes of intratelencephalic (IT) and pyramidal tract (PT) neurons in four mPFC subregions. RESULTS IT and PT neurons of the same subregion projected to different target areas while receiving inputs from similar upstream regions with quantitative differences. IT and PT neurons all project to the amygdala and basal forebrain, but their axons target different subregions. Compared to subregions in the prelimbic area (PL) which have more connections with sensorimotor-related regions, the infralimbic area (ILA) has stronger connections with limbic regions. The connection pattern of the mPFC subregions along the anterior-posterior axis showed a corresponding topological pattern with the isocortex and amygdala but an opposite orientation correspondence with the thalamus. CONCLUSIONS By using transgenic mice and fMOST imaging, we obtained the subregional preference whole-brain connectomes of IT and pyramidal tract PT neurons in the mPFC four subregions. These results provide a comprehensive resource for directing research into the complex functions of the mPFC by offering anatomical dissections of the different subregions.
Collapse
Affiliation(s)
- Ayizuohere Tudi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Yao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Feifang Tang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Jiandong Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China.
| | - Xiangning Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China.
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
| |
Collapse
|
6
|
Muysers H, Chen HL, Hahn J, Folschweiller S, Sigurdsson T, Sauer JF, Bartos M. A persistent prefrontal reference frame across time and task rules. Nat Commun 2024; 15:2115. [PMID: 38459033 PMCID: PMC10923947 DOI: 10.1038/s41467-024-46350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Behavior can be remarkably consistent, even over extended time periods, yet whether this is reflected in stable or 'drifting' neuronal responses to task features remains controversial. Here, we find a persistently active ensemble of neurons in the medial prefrontal cortex (mPFC) of mice that reliably maintains trajectory-specific tuning over several weeks while performing an olfaction-guided spatial memory task. This task-specific reference frame is stabilized during learning, upon which repeatedly active neurons show little representational drift and maintain their trajectory-specific tuning across long pauses in task exposure and across repeated changes in cue-target location pairings. These data thus suggest a 'core ensemble' of prefrontal neurons forming a reference frame of task-relevant space for the performance of consistent behavior over extended periods of time.
Collapse
Affiliation(s)
- Hannah Muysers
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
| | - Hung-Ling Chen
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
| | - Johannes Hahn
- Institute of Neurophysiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Shani Folschweiller
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
- Sleep-Wake-Epilepsy Center and Center for Experimental Neurology, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg im Breisgau, Germany.
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
7
|
Lee HR, Choi SH, Lee SH. Differential involvement of mitochondria in post-tetanic potentiation at intracortical excitatory synapses of the medial prefrontal cortex. Cereb Cortex 2024; 34:bhad476. [PMID: 38061690 DOI: 10.1093/cercor/bhad476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2022] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Post-tetanic Ca2+ release from mitochondria produces presynaptic residual calcium, which contributes to post-tetanic potentiation. The loss of mitochondria-dependent post-tetanic potentiation is one of the earliest signs of Alzheimer's model mice. Post-tetanic potentiation at intracortical synapses of medial prefrontal cortex has been implicated in working memory. Although mitochondrial contribution to post-tetanic potentiation differs depending on synapse types, it is unknown which synapse types express mitochondria-dependent post-tetanic potentiation in the medial prefrontal cortex. We studied expression of mitochondria-dependent post-tetanic potentiation at different intracortical synapses of the rat medial prefrontal cortex. Post-tetanic potentiation occurred only at intracortical synapses onto layer 5 corticopontine cells from commissural cells and L2/3 pyramidal neurons. Among post-tetanic potentiation-expressing synapses, L2/3-corticopontine synapses in the prelimbic cortex were unique in that post-tetanic potentiation depends on mitochondria because post-tetanic potentiation at corresponding synapse types in other cortical areas was independent of mitochondria. Supporting mitochondria-dependent post-tetanic potentiation at L2/3-to-corticopontine synapses, mitochondria-dependent residual calcium at the axon terminals of L2/3 pyramidal neurons was significantly larger than that at commissural and corticopontine cells. Moreover, post-tetanic potentiation at L2/3-corticopontine synapses, but not at commissural-corticopontine synapses, was impaired in the young adult Alzheimer's model mice. These results would provide a knowledge base for comprehending synaptic mechanisms that underlies the initial clinical signs of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyoung-Ro Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hoon Choi
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Suk-Ho Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Chong HR, Ranjbar-Slamloo Y, Ho MZH, Ouyang X, Kamigaki T. Functional alterations of the prefrontal circuit underlying cognitive aging in mice. Nat Commun 2023; 14:7254. [PMID: 37945561 PMCID: PMC10636129 DOI: 10.1038/s41467-023-43142-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Executive function is susceptible to aging. How aging impacts the circuit-level computations underlying executive function remains unclear. Using calcium imaging and optogenetic manipulation during memory-guided behavior, we show that working-memory coding and the relevant recurrent connectivity in the mouse medial prefrontal cortex (mPFC) are altered as early as middle age. Population activity in the young adult mPFC exhibits dissociable yet overlapping patterns between tactile and auditory modalities, enabling crossmodal memory coding concurrent with modality-dependent coding. In middle age, however, crossmodal coding remarkably diminishes while modality-dependent coding persists, and both types of coding decay in advanced age. Resting-state functional connectivity, especially among memory-coding neurons, decreases already in middle age, suggesting deteriorated recurrent circuits for memory maintenance. Optogenetic inactivation reveals that the middle-aged mPFC exhibits heightened vulnerability to perturbations. These findings elucidate functional alterations of the prefrontal circuit that unfold in middle age and deteriorate further as a hallmark of cognitive aging.
Collapse
Affiliation(s)
- Huee Ru Chong
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yadollah Ranjbar-Slamloo
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Malcolm Zheng Hao Ho
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- IGP-Neuroscience, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 308232, Singapore
| | - Xuan Ouyang
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tsukasa Kamigaki
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
9
|
Fish KN, Rocco BR, Wilson JD, Lewis DA. Laminar-Specific Alterations in Calbindin-Positive Boutons in the Prefrontal Cortex of Subjects With Schizophrenia. Biol Psychiatry 2023; 94:142-152. [PMID: 36868891 PMCID: PMC10247897 DOI: 10.1016/j.biopsych.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive deficits in schizophrenia are associated with altered GABA (gamma-aminobutyric acid) neurotransmission in the prefrontal cortex (PFC). GABA neurotransmission requires GABA synthesis by 2 isoforms of glutamic acid decarboxylase (GAD65 and GAD67) and packaging by the vesicular GABA transporter (vGAT). Current postmortem findings suggest that GAD67 messenger RNA is lower in a subset of the calbindin-expressing (CB+) class of GABA neurons in schizophrenia. Hence, we assessed if CB+ GABA neuron boutons are affected in schizophrenia. METHODS For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, PFC tissue sections were immunolabeled for vGAT, CB, GAD67, and GAD65. The density of CB+ GABA boutons and levels of the 4 proteins per bouton were quantified. RESULTS Some CB+ GABA boutons contained both GAD65 and GAD67 (GAD65+/GAD67+), whereas others contained only GAD65 (GAD65+) or GAD67 (GAD67+). In schizophrenia, vGAT+/CB+/GAD65+/GAD67+ bouton density was not altered, vGAT+/CB+/GAD65+ bouton density was 86% higher in layers 2/superficial 3 (L2/3s), and vGAT+/CB+/GAD67+ bouton density was 36% lower in L5-6. Bouton GAD levels were differentially altered across bouton types and layers. In schizophrenia, the sum of GAD65 and GAD67 levels in vGAT+/CB+/GAD65+/GAD67+ boutons was 36% lower in L6, GAD65 levels were 51% higher in vGAT+/CB+/GAD65+ boutons in L2, and GAD67 levels in vGAT+/CB+/GAD67+ boutons were 30% to 46% lower in L2/3s-6. CONCLUSIONS These findings indicate that schizophrenia-associated alterations in the strength of inhibition from CB+ GABA neurons in the PFC differ across cortical layers and bouton classes, suggesting complex contributions to PFC dysfunction and cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Brad R Rocco
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James D Wilson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Zhou S, Seay M, Taxidis J, Golshani P, Buonomano DV. Multiplexing working memory and time in the trajectories of neural networks. Nat Hum Behav 2023; 7:1170-1184. [PMID: 37081099 PMCID: PMC10913811 DOI: 10.1038/s41562-023-01592-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Working memory (WM) and timing are generally considered distinct cognitive functions, but similar neural signatures have been implicated in both. To explore the hypothesis that WM and timing may rely on shared neural mechanisms, we used psychophysical tasks that contained either task-irrelevant timing or WM components. In both cases, the task-irrelevant component influenced performance. We then developed recurrent neural network (RNN) simulations that revealed that cue-specific neural sequences, which multiplexed WM and time, emerged as the dominant regime that captured the behavioural findings. During training, RNN dynamics transitioned from low-dimensional ramps to high-dimensional neural sequences, and depending on task requirements, steady-state or ramping activity was also observed. Analysis of RNN structure revealed that neural sequences relied primarily on inhibitory connections, and could survive the deletion of all excitatory-to-excitatory connections. Our results indicate that in some instances WM is encoded in time-varying neural activity because of the importance of predicting when WM will be used.
Collapse
Affiliation(s)
- Shanglin Zhou
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael Seay
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Jiannis Taxidis
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Semel Institute for Neuroscience and Behavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- West Los Angeles VA Medical Center, Los Angeles, CA, USA
| | - Dean V Buonomano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Yun M, Hwang JY, Jung MW. Septotemporal variations in hippocampal value and outcome processing. Cell Rep 2023; 42:112094. [PMID: 36763498 DOI: 10.1016/j.celrep.2023.112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
A large body of evidence indicates functional variations along the hippocampal longitudinal axis. To investigate whether and how value and outcome processing vary between the dorsal (DH) and the ventral hippocampus (VH), we examined neuronal activity and inactivation effects of the DH and VH in mice performing probabilistic classical conditioning tasks. Inactivation of either structure disrupts value-dependent anticipatory licking, and value-coding neurons are found in both structures, indicating their involvement in value processing. However, the DH neuronal population increases activity as a function of value, while the VH neuronal population is preferentially responsive to the highest-value sensory cue. Also, signals related to outcome-dependent value learning are stronger in the DH. VH neurons instead show rapid responses to punishment and strongly biased responses to negative prediction error. These findings suggest that the DH faithfully represents the external value landscape, whereas the VH preferentially represents behaviorally relevant, salient features of experienced events.
Collapse
Affiliation(s)
- Miru Yun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Ji Young Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea.
| |
Collapse
|
12
|
Moberg S, Takahashi N. Neocortical layer 5 subclasses: From cellular properties to roles in behavior. Front Synaptic Neurosci 2022; 14:1006773. [PMID: 36387773 PMCID: PMC9650089 DOI: 10.3389/fnsyn.2022.1006773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 09/08/2024] Open
Abstract
Layer 5 (L5) serves as the main output layer of cortical structures, where long-range projecting pyramidal neurons broadcast the columnar output to other cortical and extracortical regions of the brain. L5 pyramidal neurons are grouped into two subclasses based on their projection targets; while intratelencephalic (IT) neurons project to cortical areas and the striatum, extratelencephalic (ET) neurons project to subcortical areas such as the thalamus, midbrain, and brainstem. Each L5 subclass possesses distinct morphological and electrophysiological properties and is incorporated into a unique synaptic network. Thanks to recent advances in genetic tools and methodologies, it has now become possible to distinguish between the two subclasses in the living brain. There is increasing evidence indicating that each subclass plays a unique role in sensory processing, decision-making, and learning. This review first summarizes the anatomical and physiological properties as well as the neuromodulation of IT and ET neurons in the rodent neocortex, and then reviews recent literature on their roles in sensory processing and rodent behavior. Our ultimate goal is to provide a comprehensive understanding of the role of each subclass in cortical function by examining their operational regimes based on their cellular properties.
Collapse
Affiliation(s)
- Sara Moberg
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Naoya Takahashi
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
13
|
Hu Q, Wang Q, Li Y, Xie Z, Lin X, Huang G, Zhan L, Jia X, Zhao X. Intrinsic Brain Activity Alterations in Patients With Mild Cognitive Impairment-to-Normal Reversion: A Resting-State Functional Magnetic Resonance Imaging Study From Voxel to Whole-Brain Level. Front Aging Neurosci 2022; 13:788765. [PMID: 35111039 PMCID: PMC8802752 DOI: 10.3389/fnagi.2021.788765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Mild cognitive impairment (MCI) reversion refers to patients with MCI who revert from MCI to a normal cognitive state. Exploring the underlying neuromechanism of MCI reverters may contribute to providing new insights into the pathogenesis of Alzheimer's disease and developing therapeutic interventions. Information on patients with MCI and healthy controls (HCs) was collected from the Alzheimer's Disease Neuroimaging Initiative database. We redefined MCI reverters as patients with MCI whose logical memory scores changed from MCI to normal levels using the logical memory criteria. We explored intrinsic brain activity alterations in MCI reverters from voxel, regional, and whole-brain levels by comparing resting-state functional magnetic resonance imaging metrics of the amplitude of low-frequency of fluctuation (ALFF), the fractional amplitude of low-frequency fluctuation (fALFF), percent amplitude of fluctuation (PerAF), regional homogeneity (ReHo), and degree centrality (DC) between MCI reverters and HCs. Finally, partial correlation analyses were conducted between cognitive scale scores and resting-state functional magnetic resonance imaging metrics of brain regions, revealing significant group differences. Thirty-two patients with MCI from the Alzheimer's Disease Neuroimaging Initiative database were identified as reverters. Thirty-seven age-, sex-, and education-matched healthy individuals were also enrolled. At the voxel level, compared with the HCs, MCI reverters had increased ALFF, fALFF, and PerAF in the frontal gyrus (including the bilateral orbital inferior frontal gyrus and left middle frontal gyrus), increased PerAF in the left fusiform gyrus, and decreased ALFF and fALFF in the right inferior cerebellum. Regarding regional and whole-brain levels, MCI reverters showed increased ReHo in the left fusiform gyrus and right median cingulate and paracingulate gyri; increased DC in the left inferior temporal gyrus and left medial superior frontal; decreased DC in the right inferior cerebellum and bilateral insular gyrus relative to HCs. Furthermore, significant correlations were found between cognitive performance and neuroimaging changes. These findings suggest that MCI reverters show significant intrinsic brain activity changes compared with HCs, potentially related to the cognitive reversion of patients with MCI. These results enhance our understanding of the underlying neuromechanism of MCI reverters and may contribute to further exploration of Alzheimer's disease.
Collapse
Affiliation(s)
- Qili Hu
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qianqian Wang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yunfei Li
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Xiaomei Lin
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - LinLin Zhan
- School of Western Language, Heilongjiang University, Heilongjiang, China
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xiaohu Zhao
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Yi JH, Choe SY, Jung MW. Variations in Commissural Input Processing Across Different Types of Cortical Projection Neurons. Cereb Cortex 2021; 32:2508-2520. [PMID: 34607355 DOI: 10.1093/cercor/bhab361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/14/2022] Open
Abstract
To understand how incoming cortical inputs are processed by different types of cortical projection neurons in the medial prefrontal cortex, we compared intrinsic physiological properties of and commissural excitatory/inhibitory influences on layer 5 intratelencephalic (IT), layer 5 pyramidal tract (PT), and layers 2/3 IT projection neurons. We found that intrinsic physiological properties and commissural synaptic transmission varied across the three types of projection neurons. The rank order of intrinsic excitability was layer 5 PT > layer 5 IT > layers 2/3 IT neurons. Commissural connectivity was higher in layers 2/3 than layer 5 projection neurons, but commissural excitatory influence was stronger on layer 5 than layers 2/3 pyramidal neurons. Paired-pulse ratio was also greater in PT than IT neurons. These results indicate that commissural inputs activate deep layer PT neurons most preferentially and superficial layer IT neurons least preferentially. Deep layer PT neurons might faithfully transmit cortical input signals to downstream subcortical structures for reliable control of behavior, whereas superficial layer IT neurons might integrate cortical input signals from diverse sources in support of higher-order cognitive functions.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Seo Yeon Choe
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|