1
|
Bettinazzi S, Liang J, Rodriguez E, Bonneau M, Holt R, Whitehead B, Dowling DK, Lane N, Camus MF. Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural Drosophila populations. Evol Lett 2024; 8:916-926. [PMID: 39677574 PMCID: PMC11637609 DOI: 10.1093/evlett/qrae043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial function depends on the effective interactions between proteins and RNA encoded by the mitochondrial and nuclear genomes. Evidence suggests that both genomes respond to thermal selection and promote adaptation. However, the contribution of their epistatic interactions to life history phenotypes in the wild remains elusive. We investigated the evolutionary implications of mitonuclear interactions in a real-world scenario that sees populations adapted to different environments, altering their geographical distribution while experiencing flow and admixture. We created a Drosophila melanogaster panel with replicate native populations from the ends of the Australian east-coast cline, into which we substituted the mtDNA haplotypes that were either predominant or rare at each cline-end, thus creating putatively mitonuclear matched and mismatched populations. Our results suggest that mismatching may impact phenotype, with populations harboring the rarer mtDNA haplotype suffering a trade-off between aerobic capacity and key fitness aspects such as reproduction, growth, and survival. We discuss the significance of mitonuclear interactions as modulators of life history phenotypes in the context of future adaptation and population persistence.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jane Liang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Enrique Rodriguez
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marion Bonneau
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ruben Holt
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ben Whitehead
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
2
|
Low GW, Pavlova A, Gan HM, Ko MC, Sadanandan KR, Lee YP, Amos JN, Austin L, Falk S, Dowling DK, Sunnucks P. Accelerated differentiation of neo-W nuclear-encoded mitochondrial genes between two climate-associated bird lineages signals potential co-evolution with mitogenomes. Heredity (Edinb) 2024; 133:342-354. [PMID: 39174672 PMCID: PMC11527876 DOI: 10.1038/s41437-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
There is considerable evidence for mitochondrial-nuclear co-adaptation as a key evolutionary driver. Hypotheses regarding the roles of sex-linkage have emphasized Z-linked nuclear genes with mitochondrial function (N-mt genes), whereas it remains contentious whether the perfect co-inheritance of W genes with mitogenomes could hinder or facilitate co-adaptation. Young (neo-) sex chromosomes that possess relatively many N-mt genes compared to older chromosomes provide unprecedented hypothesis-testing opportunities. Eastern Yellow Robin (EYR) lineages in coastal and inland habitats with different climates are diverged in mitogenomes, and in a ~ 15.4 Mb nuclear region enriched with N-mt genes, in contrast with otherwise-similar nuclear genomes. This nuclear region maps to passerine chromosome 1A, previously found to be neo-sex in the inland EYR genome. To compare sex-linked Chr1A-derived genes between lineages, we assembled and annotated the coastal EYR genome. We found that: (i) the coastal lineage shares a similar neo-sex system with the inland lineage, (ii) neo-W and neo-Z N-mt genes are not more diverged between lineages than are comparable non-N-mt genes, and showed little evidence for broad positive selection, (iii) however, W-linked N-mt genes are more diverged between lineages than are their Z-linked gametologs. The latter effect was ~7 times stronger for N-mt than non-N-mt genes, suggesting that W-linked N-mt genes might have diverged between lineages under environmental selection through co-evolution with mitogenomes. Finally, we identify a candidate gene driver for divergent selection, NDUFA12. Our data represent a rare example suggesting a possible role for W-associated mitochondrial-nuclear interactions in climate-associated adaptation and lineage differentiation.
Collapse
Affiliation(s)
- Gabriel Weijie Low
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
- Evolution of Sensory and Physiological Systems, Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany.
- National Parks Board, 1 Cluny Road, Singapore Botanical Gardens, Singapore, 259569, Singapore.
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Han Ming Gan
- Deakin Genomics Centre, Deakin University, Geelong, VIC 3220, Australia
- Patriot Biotech Sdn Bhd, 47500, Subang Jaya, Selangor, Malaysia
| | - Meng-Ching Ko
- Evolution of Sensory and Physiological Systems, Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany
| | - Keren R Sadanandan
- Evolution of Sensory and Physiological Systems, Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany
| | - Yin Peng Lee
- Deakin Genomics Centre, Deakin University, Geelong, VIC 3220, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - J Nevil Amos
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- Arthur Rylah Institute for Environmental Research, Heidelberg, VIC 3084, Australia
| | - Lana Austin
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Stephanie Falk
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
3
|
Harkness BAS, Ibarguchi G, Poland VF, Friesen VL. Historical fragmentation and stepping-stone gene flow led to population genetic differentiation in a coastal seabird. Ecol Evol 2024; 14:e11204. [PMID: 38633521 PMCID: PMC11021922 DOI: 10.1002/ece3.11204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the forces that shape population genetic structure is fundamental both for understanding evolutionary trajectories and for conservation. Many factors can influence the geographic distribution of genetic variation, and the extent to which local populations differ can be especially difficult to predict in highly mobile organisms. For example, many species of seabirds are essentially panmictic, but some show strong structure. Pigeon Guillemots (Cepphus columba; Charadriiformes: Alcidae) breed in small colonies scattered along the North Pacific coastline and feed in shallow nearshore waters year-round. Given their distribution, gene flow is potentially lower and population genetic structure is stronger than in most other high-latitude Northern Hemisphere seabirds. We screened variation in the mitochondrial control region, four microsatellite loci, and two nuclear introns in 202 Pigeon Guillemots representing three of five subspecies. Mitochondrial sequences and nuclear loci both showed significant population differences, although structure was weaker for the nuclear loci. Genetic differentiation was correlated with geographic distance between sampling locations for both the mitochondrial and nuclear loci. Mitochondrial gene trees and demographic modeling both provided strong evidence for two refugial populations during the Pleistocene glaciations: one in the Aleutian Islands and one farther east and south. We conclude that historical fragmentation combined with a stepping-stone model of gene flow led to the relatively strong population differentiation in Pigeon Guillemots compared to other high-latitude Northern Hemisphere seabird species. Our study adds to growing evidence that Pleistocene glaciation events affected population genetic structure not only in terrestrial species but also in coastal marine animals.
Collapse
Affiliation(s)
- Bronwyn A. S. Harkness
- Department of BiologyQueen's UniversityKingstonOntarioCanada
- Present address:
Environment and Climate Change Canada, National Wildlife Research CentreOttawaOntarioCanada
| | - Gabriela Ibarguchi
- Department of BiologyQueen's UniversityKingstonOntarioCanada
- Present address:
Red Deer PolytechnicRed DeerAlbertaCanada
| | - Veronica F. Poland
- Department of BiologyQueen's UniversityKingstonOntarioCanada
- Present address:
KambahAustralian Capital TerritoryAustralia
| | | |
Collapse
|
4
|
Wang S. Divergent island hybrids mixed waves of ancient gene flow. Mol Ecol 2024; 33:e17279. [PMID: 38308460 DOI: 10.1111/mec.17279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
In this issue of Molecular Ecology, Salter et al. (2023) discovered that the Cuban Northern Bobwhite subspecies, Colinus virginianus cubanensis (Gould, 1850), is an ancient hybrid population formed due to historical hybridization potentially brought by waves of historical human migration. This study revealed a complex mixture of gene flow from distinct spatiotemporal origins underlying a seemingly semi-independent evolutionary trajectory. Hybridization can be more common and complex than we thought.
Collapse
Affiliation(s)
- Silu Wang
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
5
|
Iverson ENK. Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world. Evol Appl 2024; 17:e13642. [PMID: 38468713 PMCID: PMC10925831 DOI: 10.1111/eva.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Most species will not be able to migrate fast enough to cope with climate change, nor evolve quickly enough with current levels of genetic variation. Exacerbating the problem are anthropogenic influences on adaptive potential, including the prevention of gene flow through habitat fragmentation and the erosion of genetic diversity in small, bottlenecked populations. Facilitated adaptation, or assisted evolution, offers a way to augment adaptive genetic variation via artificial selection, induced hybridization, or genetic engineering. One key source of genetic variation, particularly for climatic adaptation, are the core metabolic genes encoded by the mitochondrial genome. These genes influence environmental tolerance to heat, drought, and hypoxia, but must interact intimately and co-evolve with a suite of important nuclear genes. These coadapted mitonuclear genes form some of the important reproductive barriers between species. Mitochondrial genomes can and do introgress between species in an adaptive manner, and they may co-introgress with nuclear genes important for maintaining mitonuclear compatibility. Managers should consider the relevance of mitonuclear genetic variability in conservation decision-making, including as a tool for facilitating adaptation. I propose a novel technique dubbed Conservation Mitonuclear Replacement (CmNR), which entails replacing the core metabolic machinery of a threatened species-the mitochondrial genome and key nuclear loci-with those from a closely related species or a divergent population, which may be better-adapted to climatic changes or carry a lower genetic load. The most feasible route to CmNR is to combine CRISPR-based nuclear genetic editing with mitochondrial replacement and assisted reproductive technologies. This method preserves much of an organism's phenotype and could allow populations to persist in the wild when no other suitable conservation options exist. The technique could be particularly important on mountaintops, where rising temperatures threaten an alarming number of species with almost certain extinction in the next century.
Collapse
Affiliation(s)
- Erik N. K. Iverson
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
6
|
Kan S, Liao X, Lan L, Kong J, Wang J, Nie L, Zou J, An H, Wu Z. Cytonuclear Interactions and Subgenome Dominance Shape the Evolution of Organelle-Targeted Genes in the Brassica Triangle of U. Mol Biol Evol 2024; 41:msae043. [PMID: 38391484 PMCID: PMC10919925 DOI: 10.1093/molbev/msae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
The interaction and coevolution between nuclear and cytoplasmic genomes are one of the fundamental hallmarks of eukaryotic genome evolution and, 2 billion yr later, are still major contributors to the formation of new species. Although many studies have investigated the role of cytonuclear interactions following allopolyploidization, the relative magnitude of the effect of subgenome dominance versus cytonuclear interaction on genome evolution remains unclear. The Brassica triangle of U features 3 diploid species that together have formed 3 separate allotetraploid species on similar evolutionary timescales, providing an ideal system for understanding the contribution of the cytoplasmic donor to hybrid polyploid. Here, we investigated the evolutionary pattern of organelle-targeted genes in Brassica carinata (BBCC) and 2 varieties of Brassica juncea (AABB) at the whole-genome level, with particular focus on cytonuclear enzyme complexes. We found partial evidence that plastid-targeted genes experience selection to match plastid genomes, but no obvious corresponding signal in mitochondria-targeted genes from these 2 separately formed allopolyploids. Interestingly, selection acting on plastid genomes always reduced the retention rate of plastid-targeted genes encoded by the B subgenome, regardless of whether the Brassica nigra (BB) subgenome was contributed by the paternal or maternal progenitor. More broadly, this study illustrates the distinct selective pressures experienced by plastid- and mitochondria-targeted genes, despite a shared pattern of inheritance and natural history. Our study also highlights an important role for subgenome dominance in allopolyploid genome evolution, even in genes whose function depends on separately inherited molecules.
Collapse
Affiliation(s)
- Shenglong Kan
- Marine College, Shandong University, Weihai 264209, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
7
|
Lian Q, Li S, Kan S, Liao X, Huang S, Sloan DB, Wu Z. Association Analysis Provides Insights into Plant Mitonuclear Interactions. Mol Biol Evol 2024; 41:msae028. [PMID: 38324417 PMCID: PMC10875325 DOI: 10.1093/molbev/msae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Cytonuclear interaction refers to the complex and ongoing process of coevolution between nuclear and organelle genomes, which are responsible for cellular respiration, photosynthesis, lipid metabolism, etc. and play a significant role in adaptation and speciation. There have been a large number of studies to detect signatures of cytonuclear interactions. However, identification of the specific nuclear and organelle genetic polymorphisms that are involved in these interactions within a species remains relatively rare. The recent surge in whole genome sequencing has provided us an opportunity to explore cytonuclear interaction from a population perspective. In this study, we analyzed a total of 3,439 genomes from 7 species to identify signals of cytonuclear interactions by association (linkage disequilibrium) analysis of variants in both the mitochondrial and nuclear genomes across flowering plants. We also investigated examples of nuclear loci identified based on these association signals using subcellular localization assays, gene editing, and transcriptome sequencing. Our study provides a novel perspective on the investigation of cytonuclear coevolution, thereby enriching our understanding of plant fitness and offspring sterility.
Collapse
Affiliation(s)
- Qun Lian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuai Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Marine College, Shandong University, Weihai 264209, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
8
|
Kayhani K, Barreto FS. Disproportionate role of nuclear-encoded proteins in organismal and mitochondrial thermal performance in a copepod. J Exp Biol 2023; 226:jeb246085. [PMID: 37947077 DOI: 10.1242/jeb.246085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Determining the mechanisms by which organisms evolve thermal tolerance is crucial to predicting how populations may respond to changes in local temperature regimes. Although evidence of relationships between mitochondrial background and thermal adaptation have been found, the presence of both nuclear-encoded and mitochondrial DNA (mtDNA)-encoded proteins warrants experiments aimed at parsing out the relative role of each genome in thermal adaptation. We investigated the relative role of mtDNA-encoded products in thermal tolerance between two divergent populations of Tigriopus californicus using first-generation (F1) hybrids that vary in maternally inherited mtDNA but are heterozygous for population-specific alleles across nuclear loci. We tested two measures of thermal tolerance, (1) survivorship to acute thermal stress and (2) thermal stability of mitochondrial performance in Complex I-fueled ATP synthesis, both across a range of increasing temperatures. We found that the southern population (San Diego, CA, USA) outperformed the northern population (Strawberry Hill, OR, USA) in survivorship, and that both reciprocal F1 hybrid crosses had intermediate survival. Mitochondria from the San Diego population displayed greater stability in ATP synthesis with increasing temperatures compared with those from Strawberry Hill. Interestingly, hybrids from both cross directions had synthesis profiles that were very similar to that of Strawberry Hill. Taken together, these results suggest that the relative role of the mtDNA in these phenotypes is negligible compared with that of elements encoded by nuclear DNA in this system.
Collapse
Affiliation(s)
- Kamron Kayhani
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
9
|
Nikelski E, Rubtsov AS, Irwin D. High heterogeneity in genomic differentiation between phenotypically divergent songbirds: a test of mitonuclear co-introgression. Heredity (Edinb) 2023; 130:1-13. [PMID: 36463372 PMCID: PMC9814147 DOI: 10.1038/s41437-022-00580-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Comparisons of genomic variation among closely related species often show more differentiation in mitochondrial DNA (mtDNA) and sex chromosomes than in autosomes, a pattern expected due to the differing effective population sizes and evolutionary dynamics of these genomic components. Yet, introgression can cause species pairs to deviate dramatically from general differentiation trends. The yellowhammer (Emberiza citrinella) and pine bunting (E. leucocephalos) are hybridizing avian sister species that differ greatly in appearance and moderately in nuclear DNA, but that show no mtDNA differentiation. This discordance is best explained by adaptive mtDNA introgression-a process that can select for co-introgression at nuclear genes with mitochondrial functions (mitonuclear genes). To better understand these discordant differentiation patterns and characterize nuclear differentiation in this system, we investigated genome-wide differentiation between allopatric yellowhammers and pine buntings and compared it to what was seen previously in mtDNA. We found significant nuclear differentiation that was highly heterogeneous across the genome, with a particularly wide differentiation peak on the sex chromosome Z. We further investigated mitonuclear gene co-introgression between yellowhammers and pine buntings and found support for this process in the direction of pine buntings into yellowhammers. Genomic signals indicative of co-introgression were common in mitonuclear genes coding for subunits of the mitoribosome and electron transport chain complexes. Such introgression of mitochondrial DNA and mitonuclear genes provides a possible explanation for the patterns of high genomic heterogeneity in genomic differentiation seen among some species groups.
Collapse
Affiliation(s)
- Ellen Nikelski
- Department of Zoology, and Biodiversity Research Centre, 6270 University Blvd., University of British Columbia, Vancouver, BC, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | | | - Darren Irwin
- Department of Zoology, and Biodiversity Research Centre, 6270 University Blvd., University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Kyrgiafini MA, Giannoulis T, Moutou KA, Mamuris Z. Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes (Basel) 2022; 13:2151. [PMID: 36421825 PMCID: PMC9690142 DOI: 10.3390/genes13112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
The mitochondrion was characterized for years as the energy factory of the cell, but now its role in many more cellular processes is recognized. The mitochondrion and mitochondrial DNA (mtDNA) also possess a set of distinct properties, including maternal inheritance, that creates the Mother's Curse phenomenon. As mtDNA is inherited from females to all offspring, mutations that are harmful to males tend to accumulate more easily. The Mother's Curse is associated with various diseases, and has a significant effect on males, in many cases even affecting their reproductive ability. Sometimes, it even leads to reproductive isolation, as in crosses between different populations, the mitochondrial genome cannot cooperate effectively with the nuclear one resulting in a mito-nuclear incompatibility and reduce the fitness of the hybrids. This phenomenon is observed both in the laboratory and in natural populations, and have the potential to influence their evolution and speciation. Therefore, it turns out that the study of mitochondria is an exciting field that finds many applications, including pest control, and it can shed light on the molecular mechanism of several diseases, improving successful diagnosis and therapeutics. Finally, mito-nuclear co-adaptation, paternal leakage, and kin selection are some mechanisms that can mitigate the impact of the Mother's Curse.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
11
|
Torres-Gonzalez E, Makova KD. Exploring the Effects of Mitonuclear Interactions on Mitochondrial DNA Gene Expression in Humans. Front Genet 2022; 13:797129. [PMID: 35846132 PMCID: PMC9277102 DOI: 10.3389/fgene.2022.797129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Most mitochondrial protein complexes include both nuclear and mitochondrial gene products, which coevolved to work together. This coevolution can be disrupted due to disparity in genetic ancestry between the nuclear and mitochondrial genomes in recently admixed populations. Such mitonuclear DNA discordance might result in phenotypic effects. Several nuclear-encoded proteins regulate expression of mitochondrial DNA (mtDNA) genes. We hypothesized that mitonuclear DNA discordance affects expression of genes encoded by mtDNA. To test this, we utilized the data from the GTEx project, which contains expression levels for ∼100 African Americans and >600 European Americans. The varying proportion of African and European ancestry in recently admixed African Americans provides a range of mitonuclear discordance values, which can be correlated with mtDNA gene expression levels (adjusted for age and ischemic time). In contrast, European Americans did not undergo recent admixture. We demonstrated that, for most mtDNA protein-coding genes, expression levels in energetically-demanding tissues were lower in African Americans than in European Americans. Furthermore, gene expression levels were lower in individuals with higher mitonuclear discordance, independent of population. Moreover, we found a negative correlation between mtDNA gene expression and mitonuclear discordance. In African Americans, the average value of African ancestry was higher for nuclear-encoded mitochondrial than non-mitochondrial genes, facilitating a match in ancestry with the mtDNA and more optimal interactions. These results represent an example of a phenotypic effect of mitonuclear discordance on human admixed populations, and have potential biomedical applications.
Collapse
Affiliation(s)
| | - Kateryna D. Makova
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
12
|
MacPherson A, Wang S, Yamaguchi R, Rieseberg L, Otto S. Parental Population Range Expansion Before Secondary Contact Promotes Heterosis. Am Nat 2022; 200:E1-E15. [DOI: 10.1086/719656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Burton RS. The role of mitonuclear incompatibilities in allopatric speciation. Cell Mol Life Sci 2022; 79:103. [PMID: 35091831 PMCID: PMC11072163 DOI: 10.1007/s00018-021-04059-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/03/2022]
Abstract
Aerobic metabolism in eukaryotic cells requires extensive interactions between products of the nuclear and mitochondrial genomes. Rapid evolution of the mitochondrial genome, including fixation of both adaptive and deleterious mutations, creates intrinsic selection pressures favoring nuclear gene mutations that maintain mitochondrial function. As this process occurs independently in allopatry, the resulting divergence between conspecific populations can subsequently be manifest in mitonuclear incompatibilities in inter-population hybrids. Such incompatibilities, mitonuclear versions of Bateson-Dobzhansky-Muller incompatibilities that form the standard model for allopatric speciation, can potentially restrict gene flow between populations, ultimately resulting in varying degrees of reproductive isolation. The potential role of mitonuclear incompatibilities in speciation is further enhanced where mtDNA substitution rates are elevated compared to the nuclear genome and where population structure maintains allopatry for adequate time to evolve multiple mitonuclear incompatibilities. However, the fact that mitochondrial introgression occurs across species boundaries has raised questions regarding the efficacy of mitonuclear incompatibilities in reducing gene flow. Several scenarios now appear to satisfactorily explain this phenomenon, including cases where differences in mtDNA genetic load may drive introgression or where co-introgression of coadapted nuclear genes may support the function of introgressed mtDNA. Although asymmetries in reproductive isolation between taxa are consistent with mitonuclear incompatibilities, interactions between autosomes and sex chromosomes yield similar predictions that are difficult to disentangle. With regard to establishing reproductive isolation while in allopatry, existing studies clearly suggest that mitonuclear incompatibilities can contribute to the evolution of barriers to gene flow. However, there is to date relatively little definitive evidence supporting a primary role for mitonuclear incompatibilities in the speciation process.
Collapse
Affiliation(s)
- Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|