1
|
Quinn KR, Sandhaeger F, Noury N, Zezelic E, Siegel M. Abstract choice representations during stable choice-response associations. Commun Biol 2025; 8:752. [PMID: 40369123 PMCID: PMC12078719 DOI: 10.1038/s42003-025-08129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/24/2025] [Indexed: 05/16/2025] Open
Abstract
An increasing body of evidence has demonstrated neural representations of choices independent of the motor actions used to report them - so-called abstract choices. However, it remains unclear whether such representations arise due to dynamic changes in choice-response associations or reflect a general property of decision-making. Here, we show that in the human brain, choices are represented abstractly even when choice-response associations remain stable over time. We recorded neural activity using magnetoencephalography while participants performed a motion discrimination task, with choice-response mappings held constant within blocks. We found neural information about participants' perceptual choices independent of both motor response and visual stimulus. Choice information increased during the stimulus and peaked after the response. Moreover, choice and response information showed distinct cortical distributions, with choice-related signals strongest in frontoparietal regions. Thus, abstract choice representations are not limited to dynamic or action-independent contexts and may be a general feature of decision-making.
Collapse
Affiliation(s)
- Katrina R Quinn
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
- MEG Center, University of Tübingen, Tübingen, Germany.
| | - Florian Sandhaeger
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
| | - Nima Noury
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
| | - Ema Zezelic
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Markus Siegel
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
- MEG Center, University of Tübingen, Tübingen, Germany.
- German Center for Mental Health (DZPG), Tübingen, Germany.
| |
Collapse
|
2
|
Jiao L, Ma M, He P, Geng X, Liu X, Liu F, Ma W, Yang S, Hou B, Tang X. Brain-Inspired Learning, Perception, and Cognition: A Comprehensive Review. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:5921-5941. [PMID: 38809737 DOI: 10.1109/tnnls.2024.3401711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The progress of brain cognition and learning mechanisms has provided new inspiration for the next generation of artificial intelligence (AI) and provided the biological basis for the establishment of new models and methods. Brain science can effectively improve the intelligence of existing models and systems. Compared with other reviews, this article provides a comprehensive review of brain-inspired deep learning algorithms for learning, perception, and cognition from microscopic, mesoscopic, macroscopic, and super-macroscopic perspectives. First, this article introduces the brain cognition mechanism. Then, it summarizes the existing studies on brain-inspired learning and modeling from the perspectives of neural structure, cognitive module, learning mechanism, and behavioral characteristics. Next, this article introduces the potential learning directions of brain-inspired learning from four aspects: perception, cognition, understanding, and decision-making. Finally, the top-ten open problems that brain-inspired learning, perception, and cognition currently face are summarized, and the next generation of AI technology has been prospected. This work intends to provide a quick overview of the research on brain-inspired AI algorithms and to motivate future research by illuminating the latest developments in brain science.
Collapse
|
3
|
Kang I, Talluri BC, Yates JL, Niell CM, Nienborg H. Is the impact of spontaneous movements on early visual cortex species specific? Trends Neurosci 2025; 48:7-21. [PMID: 39701910 PMCID: PMC11741931 DOI: 10.1016/j.tins.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/22/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Recent studies in non-human primates do not find pronounced signals related to the animal's own body movements in the responses of neurons in the visual cortex. This is notable because such pronounced signals have been widely observed in the visual cortex of mice. Here, we discuss factors that may contribute to the differences observed between species, such as state, slow neural drift, eccentricity, and changes in retinal input. The interpretation of movement-related signals in the visual cortex also exemplifies the challenge of identifying the sources of correlated variables. Dissecting these sources is central for understanding the functional roles of movement-related signals. We suggest a functional classification of the possible sources, aimed at facilitating cross-species comparative approaches to studying the neural mechanisms of vision during natural behavior.
Collapse
Affiliation(s)
- Incheol Kang
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bharath Chandra Talluri
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob L Yates
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Liska JP, Rowley DP, Nguyen TTK, Muthmann JO, Butts DA, Yates J, Huk AC. Running modulates primate and rodent visual cortex differently. eLife 2024; 12:RP87736. [PMID: 39560660 PMCID: PMC11575896 DOI: 10.7554/elife.87736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
When mice run, activity in their primary visual cortex (V1) is strongly modulated. This observation has altered conceptions of a brain region assumed to be a passive image processor. Extensive work has followed to dissect the circuits and functions of running-correlated modulation. However, it remains unclear whether visual processing in primates might similarly change during locomotion. We therefore measured V1 activity in marmosets while they viewed stimuli on a treadmill. In contrast to mouse, running-correlated modulations of marmoset V1 were small and tended to be slightly suppressive. Population-level analyses revealed trial-to-trial fluctuations of shared gain across V1 in both species, but while strongly correlated with running in mice, gain modulations were smaller and more often negatively correlated with running in marmosets. Thus, population-wide fluctuations of V1 may reflect a common feature of mammalian visual cortical function, but important quantitative differences point to distinct consequences for the relation between vision and action in primates versus rodents.
Collapse
Affiliation(s)
- John P Liska
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Declan P Rowley
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
- Departments of Ophthalmology and Psychiatry & Biobehavioral Sciences, Fuster Laboratory for Cognitive Neuroscience, UCLA, Los Angeles, United States
| | - Trevor Thai Kim Nguyen
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Jens-Oliver Muthmann
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, United States
| | - Jacob Yates
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, United States
| | - Alexander C Huk
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
- Departments of Ophthalmology and Psychiatry & Biobehavioral Sciences, Fuster Laboratory for Cognitive Neuroscience, UCLA, Los Angeles, United States
| |
Collapse
|
5
|
Ziemba CM, Goris RLT, Stine GM, Perez RK, Simoncelli EP, Movshon JA. Neuronal and Behavioral Responses to Naturalistic Texture Images in Macaque Monkeys. J Neurosci 2024; 44:e0349242024. [PMID: 39197942 PMCID: PMC11484546 DOI: 10.1523/jneurosci.0349-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
The visual world is richly adorned with texture, which can serve to delineate important elements of natural scenes. In anesthetized macaque monkeys, selectivity for the statistical features of natural texture is weak in V1, but substantial in V2, suggesting that neuronal activity in V2 might directly support texture perception. To test this, we investigated the relation between single cell activity in macaque V1 and V2 and simultaneously measured behavioral judgments of texture. We generated stimuli along a continuum between naturalistic texture and phase-randomized noise and trained two macaque monkeys to judge whether a sample texture more closely resembled one or the other extreme. Analysis of responses revealed that individual V1 and V2 neurons carried much less information about texture naturalness than behavioral reports. However, the sensitivity of V2 neurons, especially those preferring naturalistic textures, was significantly closer to that of behavior compared with V1. The firing of both V1 and V2 neurons predicted perceptual choices in response to repeated presentations of the same ambiguous stimulus in one monkey, despite low individual neural sensitivity. However, neither population predicted choice in the second monkey. We conclude that neural responses supporting texture perception likely continue to develop downstream of V2. Further, combined with neural data recorded while the same two monkeys performed an orientation discrimination task, our results demonstrate that choice-correlated neural activity in early sensory cortex is unstable across observers and tasks, untethered from neuronal sensitivity, and therefore unlikely to directly reflect the formation of perceptual decisions.
Collapse
Affiliation(s)
- Corey M Ziemba
- Center for Neural Science, New York University, New York, NY
| | - Robbe L T Goris
- Center for Neural Science, New York University, New York, NY
| | - Gabriel M Stine
- Center for Neural Science, New York University, New York, NY
| | - Richard K Perez
- Center for Neural Science, New York University, New York, NY
| | - Eero P Simoncelli
- Center for Neural Science, New York University, New York, NY
- Center for Computational Neuroscience, Flatiron Institute, New York, NY
| | | |
Collapse
|
6
|
Miyashita Y. Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit. Annu Rev Neurosci 2024; 47:211-234. [PMID: 39115926 DOI: 10.1146/annurev-neuro-081623-091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.
Collapse
Affiliation(s)
- Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan;
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Charlton JA, Goris RLT. Abstract deliberation by visuomotor neurons in prefrontal cortex. Nat Neurosci 2024; 27:1167-1175. [PMID: 38684894 PMCID: PMC11156582 DOI: 10.1038/s41593-024-01635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
During visually guided behavior, the prefrontal cortex plays a pivotal role in mapping sensory inputs onto appropriate motor plans. When the sensory input is ambiguous, this involves deliberation. It is not known whether the deliberation is implemented as a competition between possible stimulus interpretations or between possible motor plans. Here we study neural population activity in the prefrontal cortex of macaque monkeys trained to flexibly report perceptual judgments of ambiguous visual stimuli. We find that the population activity initially represents the formation of a perceptual choice before transitioning into the representation of the motor plan. Stimulus strength and prior expectations both bear on the formation of the perceptual choice, but not on the formation of the action plan. These results suggest that prefrontal circuits involved in action selection are also used for the deliberation of abstract propositions divorced from a specific motor plan, thus providing a crucial mechanism for abstract reasoning.
Collapse
Affiliation(s)
- Julie A Charlton
- Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Robbe L T Goris
- Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Laamerad P, Liu LD, Pack CC. Decision-related activity and movement selection in primate visual cortex. SCIENCE ADVANCES 2024; 10:eadk7214. [PMID: 38809984 PMCID: PMC11135405 DOI: 10.1126/sciadv.adk7214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Fluctuations in the activity of sensory neurons often predict perceptual decisions. This connection can be quantified with a metric called choice probability (CP), and there is a longstanding debate about whether CP reflects a causal influence on decisions or an echo of decision-making activity elsewhere in the brain. Here, we show that CP can reflect a third variable, namely, the movement used to indicate the decision. In a standard visual motion discrimination task, neurons in the middle temporal (MT) area of primate cortex responded more strongly during trials that involved a saccade toward their receptive fields. This variability accounted for much of the CP observed across the neuronal population, and it arose through training. Moreover, pharmacological inactivation of MT biased behavioral responses away from the corresponding visual field locations. These results demonstrate that training on a task with fixed sensorimotor contingencies introduces movement-related activity in sensory brain regions and that this plasticity can shape the neural circuitry of perceptual decision-making.
Collapse
Affiliation(s)
- Pooya Laamerad
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Liu D. Liu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | |
Collapse
|
9
|
Ziemba CM, Goris RLT, Stine GM, Perez RK, Simoncelli EP, Movshon JA. Neuronal and behavioral responses to naturalistic texture images in macaque monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581645. [PMID: 38464304 PMCID: PMC10925125 DOI: 10.1101/2024.02.22.581645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The visual world is richly adorned with texture, which can serve to delineate important elements of natural scenes. In anesthetized macaque monkeys, selectivity for the statistical features of natural texture is weak in V1, but substantial in V2, suggesting that neuronal activity in V2 might directly support texture perception. To test this, we investigated the relation between single cell activity in macaque V1 and V2 and simultaneously measured behavioral judgments of texture. We generated stimuli along a continuum between naturalistic texture and phase-randomized noise and trained two macaque monkeys to judge whether a sample texture more closely resembled one or the other extreme. Analysis of responses revealed that individual V1 and V2 neurons carried much less information about texture naturalness than behavioral reports. However, the sensitivity of V2 neurons, especially those preferring naturalistic textures, was significantly closer to that of behavior compared with V1. The firing of both V1 and V2 neurons predicted perceptual choices in response to repeated presentations of the same ambiguous stimulus in one monkey, despite low individual neural sensitivity. However, neither population predicted choice in the second monkey. We conclude that neural responses supporting texture perception likely continue to develop downstream of V2. Further, combined with neural data recorded while the same two monkeys performed an orientation discrimination task, our results demonstrate that choice-correlated neural activity in early sensory cortex is unstable across observers and tasks, untethered from neuronal sensitivity, and thus unlikely to reflect a critical aspect of the formation of perceptual decisions. Significance statement As visual signals propagate along the cortical hierarchy, they encode increasingly complex aspects of the sensory environment and likely have a more direct relationship with perceptual experience. We replicate and extend previous results from anesthetized monkeys differentiating the selectivity of neurons along the first step in cortical vision from area V1 to V2. However, our results further complicate efforts to establish neural signatures that reveal the relationship between perception and the neuronal activity of sensory populations. We find that choice-correlated activity in V1 and V2 is unstable across different observers and tasks, and also untethered from neuronal sensitivity and other features of nonsensory response modulation.
Collapse
|
10
|
Talluri BC, Kang I, Lazere A, Quinn KR, Kaliss N, Yates JL, Butts DA, Nienborg H. Activity in primate visual cortex is minimally driven by spontaneous movements. Nat Neurosci 2023; 26:1953-1959. [PMID: 37828227 PMCID: PMC10620084 DOI: 10.1038/s41593-023-01459-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Organisms process sensory information in the context of their own moving bodies, an idea referred to as embodiment. This idea is important for developmental neuroscience, robotics and systems neuroscience. The mechanisms supporting embodiment are unknown, but a manifestation could be the observation in mice of brain-wide neuromodulation, including in the primary visual cortex, driven by task-irrelevant spontaneous body movements. We tested this hypothesis in macaque monkeys (Macaca mulatta), a primate model for human vision, by simultaneously recording visual cortex activity and facial and body movements. We also sought a direct comparison using an analogous approach to those used in mouse studies. Here we found that activity in the primate visual cortex (V1, V2 and V3/V3A) was associated with the animals' own movements, but this modulation was largely explained by the impact of the movements on the retinal image, that is, by changes in visual input. These results indicate that visual cortex in primates is minimally driven by spontaneous movements and may reflect species-specific sensorimotor strategies.
Collapse
Affiliation(s)
- Bharath Chandra Talluri
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Incheol Kang
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adam Lazere
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katrina R Quinn
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nicholas Kaliss
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob L Yates
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Sandhaeger F, Omejc N, Pape AA, Siegel M. Abstract perceptual choice signals during action-linked decisions in the human brain. PLoS Biol 2023; 21:e3002324. [PMID: 37816222 PMCID: PMC10564462 DOI: 10.1371/journal.pbio.3002324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Humans can make abstract choices independent of motor actions. However, in laboratory tasks, choices are typically reported with an associated action. Consequentially, knowledge about the neural representation of abstract choices is sparse, and choices are often thought to evolve as motor intentions. Here, we show that in the human brain, perceptual choices are represented in an abstract, motor-independent manner, even when they are directly linked to an action. We measured MEG signals while participants made choices with known or unknown motor response mapping. Using multivariate decoding, we quantified stimulus, perceptual choice, and motor response information with distinct cortical distributions. Choice representations were invariant to whether the response mapping was known during stimulus presentation, and they occupied a distinct representational space from motor signals. As expected from an internal decision variable, they were informed by the stimuli, and their strength predicted decision confidence and accuracy. Our results demonstrate abstract neural choice signals that generalize to action-linked decisions, suggesting a general role of an abstract choice stage in human decision-making.
Collapse
Affiliation(s)
- Florian Sandhaeger
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Nina Omejc
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Anna-Antonia Pape
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Markus Siegel
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
12
|
Odean NN, Sanayei M, Shadlen MN. Transient Oscillations of Neural Firing Rate Associated With Routing of Evidence in a Perceptual Decision. J Neurosci 2023; 43:6369-6383. [PMID: 37550053 PMCID: PMC10500999 DOI: 10.1523/jneurosci.2200-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023] Open
Abstract
To form a perceptual decision, the brain must acquire samples of evidence from the environment and incorporate them in computations that mediate choice behavior. While much is known about the neural circuits that process sensory information and those that form decisions, less is known about the mechanisms that establish the functional linkage between them. We trained monkeys of both sexes to make difficult decisions about the net direction of visual motion under conditions that required trial-by-trial control of functional connectivity. In one condition, the motion appeared at different locations on different trials. In the other, two motion patches appeared, only one of which was informative. Neurons in the parietal cortex produced brief oscillations in their firing rate at the time routing was established: upon onset of the motion display when its location was unpredictable across trials, and upon onset of an attention cue that indicated in which of two locations an informative patch of dots would appear. The oscillation was absent when the stimulus location was fixed across trials. We interpret the oscillation as a manifestation of the mechanism that establishes the source and destination of flexibly routed information, but not the transmission of the information per se Significance Statement It has often been suggested that oscillations in neural activity might serve a role in routing information appropriately. We observe an oscillation in neural firing rate in the lateral intraparietal area consistent with such a role. The oscillations are transient. They coincide with the establishment of routing, but they do not appear to play a role in the transmission (or conveyance) of the routed information itself.
Collapse
Affiliation(s)
- Naomi N Odean
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York 10025
| | - Mehdi Sanayei
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York 10025
| | - Michael N Shadlen
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York 10025
- Howard Hughes Medical Institute, Columbia University, New York, New York 10025
- Kavli Institute, New York, New York 10025
| |
Collapse
|
13
|
Katz LN, Yu G, Herman JP, Krauzlis RJ. Correlated variability in primate superior colliculus depends on functional class. Commun Biol 2023; 6:540. [PMID: 37202508 DOI: 10.1038/s42003-023-04912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Correlated variability in neuronal activity (spike count correlations, rSC) can constrain how information is read out from populations of neurons. Traditionally, rSC is reported as a single value summarizing a brain area. However, single values, like summary statistics, stand to obscure underlying features of the constituent elements. We predict that in brain areas containing distinct neuronal subpopulations, different subpopulations will exhibit distinct levels of rSC that are not captured by the population rSC. We tested this idea in macaque superior colliculus (SC), a structure containing several functional classes (i.e., subpopulations) of neurons. We found that during saccade tasks, different functional classes exhibited differing degrees of rSC. "Delay class" neurons displayed the highest rSC, especially during saccades that relied on working memory. Such dependence of rSC on functional class and cognitive demand underscores the importance of taking functional subpopulations into account when attempting to model or infer population coding principles.
Collapse
Affiliation(s)
- Leor N Katz
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| | - Gongchen Yu
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA
| | - James P Herman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Patel AM, Kawaguchi K, Seillier L, Nienborg H. Serotonergic modulation of local network processing in V1 mirrors previously reported signatures of local network modulation by spatial attention. Eur J Neurosci 2023; 57:1368-1382. [PMID: 36878879 PMCID: PMC11610500 DOI: 10.1111/ejn.15953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Sensory processing is influenced by neuromodulators such as serotonin, thought to relay behavioural state. Recent work has shown that the modulatory effect of serotonin itself differs with the animal's behavioural state. In primates, including humans, the serotonin system is anatomically important in the primary visual cortex (V1). We previously reported that in awake fixating macaques, serotonin reduces the spiking activity by decreasing response gain in V1. But the effect of serotonin on the local network is unknown. Here, we simultaneously recorded single-unit activity and local field potentials (LFPs) while iontophoretically applying serotonin in V1 of alert monkeys fixating on a video screen for juice rewards. The reduction in spiking response we observed previously is the opposite of the known increase of spiking activity with spatial attention. Conversely, in the local network (LFP), the application of serotonin resulted in changes mirroring the local network effects of previous reports in macaques directing spatial attention to the receptive field. It reduced the LFP power and the spike-field coherence, and the LFP became less predictive of spiking activity, consistent with reduced functional connectivity. We speculate that together, these effects may reflect the sensory side of a serotonergic contribution to quiet vigilance: The lower gain reduces the salience of stimuli to suppress an orienting reflex to novel stimuli, whereas at the network level, visual processing is in a state comparable to that of spatial attention.
Collapse
Affiliation(s)
- Aashay M. Patel
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Katsuhisa Kawaguchi
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| | - Lenka Seillier
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20894, USA
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| |
Collapse
|
15
|
Levi AJ, Zhao Y, Park IM, Huk AC. Sensory and Choice Responses in MT Distinct from Motion Encoding. J Neurosci 2023; 43:2090-2103. [PMID: 36781221 PMCID: PMC10042117 DOI: 10.1523/jneurosci.0267-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
The macaque middle temporal (MT) area is well known for its visual motion selectivity and relevance to motion perception, but the possibility of it also reflecting higher-level cognitive functions has largely been ignored. We tested for effects of task performance distinct from sensory encoding by manipulating subjects' temporal evidence-weighting strategy during a direction discrimination task while performing electrophysiological recordings from groups of MT neurons in rhesus macaques (one male, one female). This revealed multiple components of MT responses that were, surprisingly, not interpretable as behaviorally relevant modulations of motion encoding, or as bottom-up consequences of the readout of motion direction from MT. The time-varying motion-driven responses of MT were strongly affected by our strategic manipulation-but with time courses opposite the subjects' temporal weighting strategies. Furthermore, large choice-correlated signals were represented in population activity distinct from its motion responses, with multiple phases that lagged psychophysical readout and even continued after the stimulus (but which preceded motor responses). In summary, a novel experimental manipulation of strategy allowed us to control the time course of readout to challenge the correlation between sensory responses and choices, and population-level analyses of simultaneously recorded ensembles allowed us to identify strong signals that were so distinct from direction encoding that conventional, single-neuron-centric analyses could not have revealed or properly characterized them. Together, these approaches revealed multiple cognitive contributions to MT responses that are task related but not functionally relevant to encoding or decoding of motion for psychophysical direction discrimination, providing a new perspective on the assumed status of MT as a simple sensory area.SIGNIFICANCE STATEMENT This study extends understanding of the middle temporal (MT) area beyond its representation of visual motion. Combining multineuron recordings, population-level analyses, and controlled manipulation of task strategy, we exposed signals that depended on changes in temporal weighting strategy, but did not manifest as feedforward effects on behavior. This was demonstrated by (1) an inverse relationship between temporal dynamics of behavioral readout and sensory encoding, (2) a choice-correlated signal that always lagged the stimulus time points most correlated with decisions, and (3) a distinct choice-correlated signal after the stimulus. These findings invite re-evaluation of MT for functions outside of its established sensory role and highlight the power of experimenter-controlled changes in temporal strategy, coupled with recording and analysis approaches that transcend the single-neuron perspective.
Collapse
Affiliation(s)
- Aaron J Levi
- Center for Perceptual Systems, Departments of Neuroscience and Psychology, The University of Texas at Austin, Austin, Texas 78705
| | - Yuan Zhao
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Il Memming Park
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Alexander C Huk
- Center for Perceptual Systems, Departments of Neuroscience and Psychology, The University of Texas at Austin, Austin, Texas 78705
- Fuster Laboratory, University of California Los Angeles, Los Angeles CA 90095
| |
Collapse
|
16
|
Abstract
Neural mechanisms of perceptual decision making have been extensively studied in experimental settings that mimic stable environments with repeating stimuli, fixed rules, and payoffs. In contrast, we live in an ever-changing environment and have varying goals and behavioral demands. To accommodate variability, our brain flexibly adjusts decision-making processes depending on context. Here, we review a growing body of research that explores the neural mechanisms underlying this flexibility. We highlight diverse forms of context dependency in decision making implemented through a variety of neural computations. Context-dependent neural activity is observed in a distributed network of brain structures, including posterior parietal, sensory, motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive control. We propose that investigating the distributed network underlying flexible decisions is key to advancing our understanding and discuss a path forward for experimental and theoretical investigations.
Collapse
Affiliation(s)
- Gouki Okazawa
- Center for Neural Science, New York University, New York, NY, USA;
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY, USA;
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
17
|
Togoli I, Bueti D, Fornaciai M. The nature of magnitude integration: Contextual interference versus active magnitude binding. J Vis 2022; 22:11. [PMID: 36259675 PMCID: PMC9587468 DOI: 10.1167/jov.22.11.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Magnitude dimensions such as duration and numerosity have been shown to systematically interact, biasing each other in a congruent fashion: the more numerous a set of items is, the longer it is perceived to last in time. This integration between dimensions plays an important role in defining how we perceive magnitude. So far, however, the nature of magnitude integration remains unclear. Is magnitude integration a contextual interference, occurring whenever different types of information are concurrently available in the visual field, or does it involve an active “binding” of the different dimensions of the same object? To address these possibilities, we measured the integration bias induced by numerosity on perceived duration, in two cases: with duration and numerosity conveyed by distinct stimuli, or by the same stimulus. We show that a congruent integration effect can be observed only when the two magnitudes belong to the same stimulus. Instead, when the two magnitudes are conveyed by distinct stimuli, we observed an opposite effect. These findings demonstrate for the first time that a congruent integration occurs only between the dimensions of the same stimulus, suggesting the involvement of an active mechanism integrating the different dimensions of the same object in a unified percept.
Collapse
Affiliation(s)
- Irene Togoli
- International School for Advanced Studies (SISSA), Trieste, Italy.,
| | - Domenica Bueti
- International School for Advanced Studies (SISSA), Trieste, Italy.,
| | | |
Collapse
|
18
|
Shushruth S, Zylberberg A, Shadlen MN. Sequential sampling from memory underlies action selection during abstract decision-making. Curr Biol 2022; 32:1949-1960.e5. [PMID: 35354066 PMCID: PMC9090972 DOI: 10.1016/j.cub.2022.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
The study of perceptual decision-making in monkeys has provided insights into the process by which sensory evidence is integrated toward a decision. When monkeys make decisions with the knowledge of the motor actions the decisions bear upon, the process of evidence integration is instantiated by neurons involved in the selection of said actions. It is less clear how monkeys make decisions when unaware of the actions required to communicate their choice-what we refer to as "abstract" decisions. We investigated this by training monkeys to associate the direction of motion of a noisy random-dot display with the color of two targets. Crucially, the targets were displayed at unpredictable locations after the motion stimulus was extinguished. We found that the monkeys postponed decision formation until the targets were revealed. Neurons in the parietal association area LIP represented the integration of evidence leading to a choice, but as the stimulus was no longer visible, the samples of evidence must have been retrieved from short-term memory. Our results imply that when decisions are temporally unyoked from the motor actions they bear upon, decision formation is protracted until they can be framed in terms of motor actions.
Collapse
Affiliation(s)
- S Shushruth
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, New York, NY 10027, USA.
| | - Ariel Zylberberg
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, New York, NY 10027, USA.
| | - Michael N Shadlen
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, New York, NY 10027, USA; Howard Hughes Medical Institute, New York, NY 10027, USA; Kavli Institute, Columbia University, 612 West 130th Street, New York, NY 10027, USA.
| |
Collapse
|