1
|
Li J, Guan Y, Hao TT, Huang J, Chen Y, Li H, Duan P, Xie HL. Phosphorescent Liquid Crystalline Polymer-based Circularly Polarized Luminescence Optical Waveguides for Enhanced Photonic Signal Processing and Information Encryption. Angew Chem Int Ed Engl 2025; 64:e202423395. [PMID: 39800656 DOI: 10.1002/anie.202423395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Indexed: 01/22/2025]
Abstract
Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs). Experimental results demonstrate that these LCPs exhibit a nematic liquid crystal phase and a phosphorescence lifetime of approximately 0.145 ms. By introducing a chiral dopant, we induce a chiral arrangement in the LCPs, followed by crosslinking via photo-cycloaddition and removal of the chiral dopants through solvent soaking. The resulting polymers exhibit stable solvent resistance and highly efficient circularly polarized phosphorescence (CPP) properties, with dissymmetric factors (gRTP) in the range of 0.16 to 0.17. Notably, the CPP-active OWMs exhibit efficient circularly polarized photonic signal waveguiding, with an optical loss coefficient of approximately 0.175 dB/mm. Ultimately, these CPP-active OWMs are sucessfully applied in information encryption, decryption, and optical switching, paving the way for advanced photonic and optoelectronic devices.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, and College of Chemistry, Xiangtan University, Xiangtan, 411105, P.R. China
| | - Yan Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tian-Tian Hao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, and College of Chemistry, Xiangtan University, Xiangtan, 411105, P.R. China
| | - Jiang Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Yi Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, and College of Chemistry, Xiangtan University, Xiangtan, 411105, P.R. China
| | - Heng Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, and College of Chemistry, Xiangtan University, Xiangtan, 411105, P.R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - He-Lou Xie
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, and College of Chemistry, Xiangtan University, Xiangtan, 411105, P.R. China
| |
Collapse
|
2
|
Nejadriahi H, Kittlaus E, Bose D, Chauhan N, Wang J, Fradet M, Bagheri M, Isichenko A, Heim D, Forouhar S, Blumenthal DJ. Sub-100 Hz intrinsic linewidth 852 nm silicon nitride external cavity laser. OPTICS LETTERS 2024; 49:7254-7257. [PMID: 39671690 DOI: 10.1364/ol.543307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
We demonstrate an external cavity laser with intrinsic linewidth below 100 Hz around an operating wavelength of 852 nm, selected for its relevance to laser cooling and manipulation of cesium atoms. This system achieves a maximum CW output power of 24 mW, a wavelength tunability over 10 nm, and a side-mode suppression ratio exceeding 50 dB. This performance level is facilitated by careful design of a low-loss integrated silicon nitride photonic circuit serving as the external cavity combined with commercially available semiconductor gain chips. This approach demonstrates the feasibility of compact integrated lasers with sub-kHz linewidth centering on the needs of emerging sensor concepts based on ultracold atoms and can be further extended to shorter wavelengths via selection of suitable semiconductor gain media.
Collapse
|
3
|
Isichenko A, Hunter AS, Bose D, Chauhan N, Song M, Liu K, Harrington MW, Blumenthal DJ. Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser. Sci Rep 2024; 14:27015. [PMID: 39557888 PMCID: PMC11574317 DOI: 10.1038/s41598-024-76699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Today's precision experiments for timekeeping, inertial sensing, and fundamental science place strict requirements on the spectral distribution of laser frequency noise. Rubidium-based experiments utilize table-top 780 nm laser systems for high-performance clocks, gravity sensors, and quantum gates. Wafer-scale integration of these lasers is critical for enabling systems-on-chip. Despite progress towards chip-scale 780 nm ultra-narrow linewidth lasers, achieving sub-Hz fundamental linewidth and sub-kHz integral linewidth has remained elusive. Here we report a hybrid integrated 780 nm self-injection locked laser with 0.74 Hz fundamental and 864 Hz integral linewidths and thermorefractive-noise-limited 100 Hz2/Hz at 10 kHz. These linewidths are over an order of magnitude lower than previous photonic-integrated 780 nm implementations. The laser consists of a Fabry-Pérot diode edge-coupled to an on-chip splitter and a tunable 90 million Q resonator realized in the CMOS foundry-compatible silicon nitride platform. We achieve 2 mW output power, 36 dB side mode suppression ratio, and a 2.5 GHz mode-hop-free tuning range. To demonstrate the potential for quantum atomic applications, we analyze the laser noise influence on sensitivity limits for atomic clocks, quantum gates, and atom interferometer gravimeters. This technology can be translated to other atomic wavelengths, enabling compact, ultra-low noise lasers for quantum sensing, computing, and metrology.
Collapse
Affiliation(s)
- Andrei Isichenko
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Andrew S Hunter
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Debapam Bose
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Nitesh Chauhan
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Present Address, Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Meiting Song
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kaikai Liu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Mark W Harrington
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Daniel J Blumenthal
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
4
|
Li Y, Xia D, Cheng H, Luo L, Wang L, Zeng S, Yang S, Li L, Chen B, Zhang B, Li Z. Low-loss compact chalcogenide microresonators for efficient stimulated Brillouin lasers. OPTICS LETTERS 2024; 49:4529-4532. [PMID: 39146092 DOI: 10.1364/ol.534233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Chalcogenide glasses (ChGs) possess a high elasto-optic coefficient, making them ideal for applications in microwave photonics and narrow-linewidth lasers based on stimulated Brillouin scattering (SBS). However, current As2S3-based integrated devices suffer from poor stability and low laser-induced damage threshold, and planar ChG devices feature limited quality factors. In this Letter, we propose and demonstrate a high-quality integrated GeSbS ChG Brillouin photonic device. By introducing Euler bending structures, we suppress high-order optical modes and reduce propagation losses in a finger-shaped GeSbS microresonator, resulting in a compact footprint of 3.8 mm2 and a high intrinsic quality factor of 5.19 × 106. The combination of GeSbS material's high Brillouin gain and the resonator's high-quality factor enables the generation of stimulated Brillouin lasers with a low threshold of 0.96 mW and a fundamental linewidth of 58 Hz. Moreover, cascaded stimulated Brillouin lasers can be realized up to the seventh order, yielding microwave beat frequencies up to 40 GHz.
Collapse
|
5
|
Bose D, Harrington MW, Isichenko A, Liu K, Wang J, Chauhan N, Newman ZL, Blumenthal DJ. Anneal-free ultra-low loss silicon nitride integrated photonics. LIGHT, SCIENCE & APPLICATIONS 2024; 13:156. [PMID: 38977674 PMCID: PMC11231177 DOI: 10.1038/s41377-024-01503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Heterogeneous and monolithic integration of the versatile low-loss silicon nitride platform with low-temperature materials such as silicon electronics and photonics, III-V compound semiconductors, lithium niobate, organics, and glasses has been inhibited by the need for high-temperature annealing as well as the need for different process flows for thin and thick waveguides. New techniques are needed to maintain the state-of-the-art losses, nonlinear properties, and CMOS-compatible processes while enabling this next generation of 3D silicon nitride integration. We report a significant advance in silicon nitride integrated photonics, demonstrating the lowest losses to date for an anneal-free process at a maximum temperature 250 °C, with the same deuterated silane based fabrication flow, for nitride and oxide, for an order of magnitude range in nitride thickness without requiring stress mitigation or polishing. We report record low anneal-free losses for both nitride core and oxide cladding, enabling 1.77 dB m-1 loss and 14.9 million Q for 80 nm nitride core waveguides, more than half an order magnitude lower loss than previously reported sub 300 °C process. For 800 nm-thick nitride, we achieve as good as 8.66 dB m-1 loss and 4.03 million Q, the highest reported Q for a low temperature processed resonator with equivalent device area, with a median of loss and Q of 13.9 dB m-1 and 2.59 million each respectively. We demonstrate laser stabilization with over 4 orders of magnitude frequency noise reduction using a thin nitride reference cavity, and using a thick nitride micro-resonator we demonstrate OPO, over two octave supercontinuum generation, and four-wave mixing and parametric gain with the lowest reported optical parametric oscillation threshold per unit resonator length. These results represent a significant step towards a uniform ultra-low loss silicon nitride homogeneous and heterogeneous platform for both thin and thick waveguides capable of linear and nonlinear photonic circuits and integration with low-temperature materials and processes.
Collapse
Affiliation(s)
- Debapam Bose
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Mark W Harrington
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Andrei Isichenko
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kaikai Liu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jiawei Wang
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Nitesh Chauhan
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | | | - Daniel J Blumenthal
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
6
|
Chen JQ, Chen C, Sun JJ, Zhang JW, Liu ZH, Qin L, Ning YQ, Wang LJ. Linewidth Measurement of a Narrow-Linewidth Laser: Principles, Methods, and Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:3656. [PMID: 38894446 PMCID: PMC11175310 DOI: 10.3390/s24113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Narrow-linewidth lasers mainly depend on the development of advanced laser linewidth measurement methods for related technological progress as key devices in satellite laser communications, precision measurements, ultra-high-speed optical communications, and other fields. This manuscript provides a theoretical analysis of linewidth characterization methods based on the beat frequency power spectrum and laser phase noise calculations, and elaborates on existing research of measurement technologies. In addition, to address the technical challenges of complex measurement systems that commonly rely on long optical fibers and significant phase noise jitter in the existing research, a short-delay self-heterodyne method based on coherent envelope spectrum demodulation was discussed in depth to reduce the phase jitter caused by 1/f noise. We assessed the performance parameters and testing conditions of different lasers, as well as the corresponding linewidth characterization methods, and analyzed the measurement accuracy and error sources of various methods.
Collapse
Affiliation(s)
- Jia-Qi Chen
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.-Q.C.); (J.-J.S.); (J.-W.Z.); (Z.-H.L.); (L.Q.); (Y.-Q.N.); (L.-J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.-Q.C.); (J.-J.S.); (J.-W.Z.); (Z.-H.L.); (L.Q.); (Y.-Q.N.); (L.-J.W.)
- Xiongan Innovation Institute, Chinese Academy of Sciences, Xiongan 071800, China
| | - Jing-Jing Sun
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.-Q.C.); (J.-J.S.); (J.-W.Z.); (Z.-H.L.); (L.Q.); (Y.-Q.N.); (L.-J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Wei Zhang
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.-Q.C.); (J.-J.S.); (J.-W.Z.); (Z.-H.L.); (L.Q.); (Y.-Q.N.); (L.-J.W.)
| | - Zhao-Hui Liu
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.-Q.C.); (J.-J.S.); (J.-W.Z.); (Z.-H.L.); (L.Q.); (Y.-Q.N.); (L.-J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Qin
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.-Q.C.); (J.-J.S.); (J.-W.Z.); (Z.-H.L.); (L.Q.); (Y.-Q.N.); (L.-J.W.)
| | - Yong-Qiang Ning
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.-Q.C.); (J.-J.S.); (J.-W.Z.); (Z.-H.L.); (L.Q.); (Y.-Q.N.); (L.-J.W.)
- Xiongan Innovation Institute, Chinese Academy of Sciences, Xiongan 071800, China
| | - Li-Jun Wang
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.-Q.C.); (J.-J.S.); (J.-W.Z.); (Z.-H.L.); (L.Q.); (Y.-Q.N.); (L.-J.W.)
- Xiongan Innovation Institute, Chinese Academy of Sciences, Xiongan 071800, China
| |
Collapse
|
7
|
Qin Q, Zhang JZ, Yang YH, Xu XB, Zeng Y, Wang JQ, Zou CL, Guo GC, Lin XM, Ye MY. Numerical analysis of on-chip acousto-optic modulators for visible wavelengths. APPLIED OPTICS 2024; 63:1719-1726. [PMID: 38437271 DOI: 10.1364/ao.516362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024]
Abstract
On-chip acousto-optic modulators that operate at an optical wavelength of 780 nm and a microwave frequency of 6.835 GHz are proposed. The modulators are based on a lithium-niobate-on-sapphire platform and efficiently excite surface acoustic waves and exhibit strong interactions with tightly confined optical modes in waveguides. In particular, a high-efficiency phase modulator and single-sideband mode converter are designed. We found that for both microwave and optical wavelengths below 1 µm, the interactions at the cross-sections of photonic waveguides are sensitive to the waveguide width and are significantly different from those in previous studies. Our designed devices have small footprints and high efficiencies, making them suitable for controlling rubidium atoms and realizing hybrid photonic-atomic chips. Furthermore, our devices have the potential to extend the acousto-optic modulators to other visible wavelengths for other atom transitions and for visible light applications, including imaging and sensing.
Collapse
|
8
|
Corato-Zanarella M, Ji X, Mohanty A, Lipson M. Absorption and scattering limits of silicon nitride integrated photonics in the visible spectrum. OPTICS EXPRESS 2024; 32:5718-5728. [PMID: 38439290 DOI: 10.1364/oe.505892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Visible-light photonic integrated circuits (PICs) promise scalability for technologies such as quantum information, biosensing, and scanning displays, yet extending large-scale silicon photonics to shorter wavelengths has been challenging due to the higher losses. Silicon nitride (SiN) has stood out as the leading platform for visible photonics, but the propagation losses strongly depend on the film's deposition and fabrication processes. Current loss measurement techniques cannot accurately distinguish between absorption and surface scattering, making it difficult to identify the dominant loss source and reach the platform's fundamental limit. Here we demonstrate an ultra-low loss, high-confinement SiN platform that approaches the limits of absorption and scattering across the visible spectrum. Leveraging the sensitivity of microresonators to loss, we probe and discriminate each loss contribution with unparalleled sensitivity, and derive their fundamental limits and scaling laws as a function of wavelength, film properties and waveguide parameters. Through the design of the waveguide cross-section, we show how to approach the absorption limit of the platform, and demonstrate the lowest propagation losses in high-confinement SiN to date across the visible spectrum. We envision that our techniques for loss characterization and minimization will contribute to the development of large-scale, dense PICs that redefine the loss limits of integrated platforms across the electromagnetic spectrum.
Collapse
|
9
|
Liu K, Wang J, Chauhan N, Harrington MW, Nelson KD, Blumenthal DJ. Integrated photonic molecule Brillouin laser with a high-power sub-100-mHz fundamental linewidth. OPTICS LETTERS 2024; 49:45-48. [PMID: 38134148 DOI: 10.1364/ol.503126] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/05/2023] [Indexed: 12/24/2023]
Abstract
Photonic integrated lasers with an ultra-low fundamental linewidth and a high output power are important for precision atomic and quantum applications, high-capacity communications, and fiber sensing, yet wafer-scale solutions have remained elusive. Here we report an integrated stimulated Brillouin laser (SBL), based on a photonic molecule coupled resonator design, that achieves a sub-100-mHz fundamental linewidth with greater than 10-mW output power in the C band, fabricated on a 200-mm silicon nitride (Si3N4) CMOS-foundry compatible wafer-scale platform. The photonic molecule design is used to suppress the second-order Stokes (S2) emission, allowing the primary lasing mode to increase with the pump power without phase noise feedback from higher Stokes orders. The nested waveguide resonators have a 184 million intrinsic and 92 million loaded Q, over an order of magnitude improvement over prior photonic molecules, enabling precision resonance splitting of 198 MHz at the S2 frequency. We demonstrate S2-suppressed single-mode SBL with a minimum fundamental linewidth of 71±18 mHz, corresponding to a 23±6-mHz2/Hz white-frequency-noise floor, over an order of magnitude lower than prior integrated SBLs, with an ∼11-mW output power and 2.3-mW threshold power. The frequency noise reaches the resonator-intrinsic thermo-refractive noise from 2-kHz to 1-MHz offset. The laser phase noise reaches -155 dBc/Hz at 10-MHz offset. The performance of this chip-scale SBL shows promise not only to improve the reliability and reduce size and cost but also to enable new precision experiments that require the high-speed manipulation, control, and interrogation of atoms and qubits. Realization in the silicon nitride ultra-low loss platform is adaptable to a wide range of wavelengths from the visible to infrared and enables integration with other components for systems-on-chip solutions for a wide range of precision scientific and engineering applications including quantum sensing, gravitometers, atom interferometers, precision metrology, optical atomic clocks, and ultra-low noise microwave generation.
Collapse
|
10
|
Moriya PH, Lee M, Hastie JE. Low phase noise operation of a cavity-stabilized 698 nm AlGaInP-based VECSEL. OPTICS EXPRESS 2023; 31:28018-28025. [PMID: 37710865 DOI: 10.1364/oe.494374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 09/16/2023]
Abstract
We report for the first time a high performance, single frequency AlGaInP-based VECSEL (vertical-external-cavity surface-emitting-laser) with emission at 698 nm, targeting the clock transition of neutral strontium atoms. Furthermore, we present comprehensive noise characterization of this class-A semiconductor laser, including the residual fast phase noise in addition to the frequency and relative intensity noise. The low noise VECSEL has output power at around 135 mW with an estimated linewidth of 115 Hz when frequency stabilized via the Pound-Drever-Hall (PDH) technique to a high finesse reference cavity, without intermediate stabilization. The phase noise is measured to be below -126 dBc/Hz for frequencies between 10 kHz and 15 MHz with a total integrated phase noise of 3.2 mrad, suitable not only for ultra-cold neutral strontium-based quantum technologies, such as optical clocks, but also with potential for atom-interferometry applications.
Collapse
|
11
|
Shitikov AE, Galiev RR, Min'kov KN, Kondratiev NM, Cordette SJ, Lobanov VE, Bilenko IA. Red narrow-linewidth lasing and frequency comb from gain-switched self-injection-locked Fabry-Pérot laser diode. Sci Rep 2023; 13:9830. [PMID: 37330585 DOI: 10.1038/s41598-023-36229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
Narrow-linewidth lasers are in extensive demand for numerous cutting-edge applications. Such lasers operating at the visible range are of particular interest. Self-injection locking of a laser diode frequency to a high-Q whispering gallery mode is an effective and universal way to achieve superior laser performance. We demonstrate ultranarrow lasing with less than 10 Hz instantaneous linewidth for 20 [Formula: see text]s averaging time at 638 nm using a Fabry-Pérot laser diode locked to a crystalline MgF[Formula: see text] microresonator. The linewidth measured with a [Formula: see text]-separation line technique that characterizes 10 ms stability is as low as 1.4 kHz. Output power exceeds 80 mW. Demonstrated results are among the best for visible-range lasers in terms of linewidth combined with solid output power. We additionally report the first demonstration of a gain-switched regime for such stabilized Fabry-Pérot laser diode showing a high-contrast visible frequency comb generation. Tunable linespacing from 10 MHz to 3.8 GHz is observed. We demonstrated that the beatnote between the lines has sub-Hz linewidth and experiences spectral purification in the self-injection locking regime. This result might be of special importance for spectroscopy in the visible range.
Collapse
Affiliation(s)
| | - Ramzil R Galiev
- Directed Energy Research Centre, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | | | - Nikita M Kondratiev
- Directed Energy Research Centre, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Steevy J Cordette
- Directed Energy Research Centre, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | | | - Igor A Bilenko
- Russian Quantum Center, Skolkovo, Moscow, 143025, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
12
|
Chow DM, Yun SH. Pulsed stimulated Brillouin microscopy. OPTICS EXPRESS 2023; 31:19818-19827. [PMID: 37381389 PMCID: PMC10316751 DOI: 10.1364/oe.489158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023]
Abstract
Stimulated Brillouin scattering is an emerging technique for probing the mechanical properties of biological samples. However, the nonlinear process requires high optical intensities to generate sufficient signal-to-noise ratio (SNR). Here, we show that the SNR of stimulated Brillouin scattering can exceed that of spontaneous Brillouin scattering with the same average power levels suitable for biological samples. We verify the theoretical prediction by developing a novel scheme using low duty cycle, nanosecond pulses for the pump and probe. A shot noise-limited SNR over 1000 was measured with a total average power of 10 mW for 2 ms or 50 mW for 200 µs integration on water samples. High-resolution maps of Brillouin frequency shift, linewidth, and gain amplitude from cells in vitro are obtained with a spectral acquisition time of 20 ms. Our results demonstrate the superior SNR of pulsed stimulated Brillouin over spontaneous Brillouin microscopy.
Collapse
Affiliation(s)
- Desmond M. Chow
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Isichenko A, Chauhan N, Bose D, Wang J, Kunz PD, Blumenthal DJ. Photonic integrated beam delivery for a rubidium 3D magneto-optical trap. Nat Commun 2023; 14:3080. [PMID: 37248247 DOI: 10.1038/s41467-023-38818-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Cold atoms are important for precision atomic applications including timekeeping and sensing. The 3D magneto-optical trap (3D-MOT), used to produce cold atoms, will benefit from photonic integration to improve reliability and reduce size, weight, and cost. These traps require the delivery of multiple, large area, collimated laser beams to an atomic vacuum cell. Yet, to date, beam delivery using an integrated waveguide approach has remained elusive. Here we report the demonstration of a 87Rb 3D-MOT using a fiber-coupled photonic integrated circuit to deliver all beams to cool and trap > 1 ×106 atoms to near 200 μK. The silicon nitride photonic circuit transforms fiber-coupled 780 nm cooling and repump light via waveguides to three mm-width non-diverging free-space cooling and repump beams directly to the rubidium cell. This planar, CMOS foundry-compatible integrated beam delivery is compatible with other components, such as lasers and modulators, promising system-on-chip solutions for cold atom applications.
Collapse
Affiliation(s)
- Andrei Isichenko
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Nitesh Chauhan
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Debapam Bose
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jiawei Wang
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Paul D Kunz
- DEVCOM U.S. Army Research Laboratory, Adelphi, MD, 20783, USA
| | - Daniel J Blumenthal
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
14
|
Jin D, Bai Z, Li M, Yang X, Wang Y, Mildren RP, Lu Z. Modeling and characterization of high-power single frequency free-space Brillouin lasers. OPTICS EXPRESS 2023; 31:2942-2955. [PMID: 36785296 DOI: 10.1364/oe.476759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Free-space Brillouin lasers (BLs) are capable of generating high-power, narrow-linewidth laser outputs at specific wavelengths. Although there have been impressive experimental demonstrations of these lasers, there is an absence of a corresponding theory that describes the dynamic processes that occur within them. This paper presents a time-independent analytical model that describes the generation of the first-order Stokes field within free-space BLs. This model is based on the cavity resonance enhancement theory and coupled wave equations that govern the processes of stimulated Brillouin scattering (SBS). This model is validated using an experimental diamond BL to numerically simulate the influence of the cavity design parameters on the SBS threshold, pump enhancement characteristics, and power of the generated Stokes field. Specifically, the model is used to determine the SBS cavity coupler reflectance to yield the maximum Stokes field output power and efficiency, which is also a function of the pump power and other cavity design parameters. This analysis shows that the appropriate choice of Brillouin cavity coupler reflectance maximizes the Stokes field output power for a given pump power. Furthermore, the onset of higher-order Stokes fields that are undesirable in the context of single-frequency laser operation were inhibited. This study aids in understanding the relationship between the cavity parameters and resultant laser characteristics for the design and optimization of laser systems.
Collapse
|
15
|
Tran MA, Zhang C, Morin TJ, Chang L, Barik S, Yuan Z, Lee W, Kim G, Malik A, Zhang Z, Guo J, Wang H, Shen B, Wu L, Vahala K, Bowers JE, Park H, Komljenovic T. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 2022; 610:54-60. [PMID: 36171286 PMCID: PMC9534754 DOI: 10.1038/s41586-022-05119-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Integrated photonics has profoundly affected a wide range of technologies underpinning modern society1-4. The ability to fabricate a complete optical system on a chip offers unrivalled scalability, weight, cost and power efficiency5,6. Over the last decade, the progression from pure III-V materials platforms to silicon photonics has significantly broadened the scope of integrated photonics, by combining integrated lasers with the high-volume, advanced fabrication capabilities of the commercial electronics industry7,8. Yet, despite remarkable manufacturing advantages, reliance on silicon-based waveguides currently limits the spectral window available to photonic integrated circuits (PICs). Here, we present a new generation of integrated photonics by directly uniting III-V materials with silicon nitride waveguides on Si wafers. Using this technology, we present a fully integrated PIC at photon energies greater than the bandgap of silicon, demonstrating essential photonic building blocks, including lasers, amplifiers, photodetectors, modulators and passives, all operating at submicrometre wavelengths. Using this platform, we achieve unprecedented coherence and tunability in an integrated laser at short wavelength. Furthermore, by making use of this higher photon energy, we demonstrate superb high-temperature performance and kHz-level fundamental linewidths at elevated temperatures. Given the many potential applications at short wavelengths, the success of this integration strategy unlocks a broad range of new integrated photonics applications.
Collapse
Affiliation(s)
| | | | - Theodore J Morin
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Lin Chang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA.
| | | | - Zhiquan Yuan
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | - Joel Guo
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Heming Wang
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Boqiang Shen
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Lue Wu
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - Kerry Vahala
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - John E Bowers
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | | | | |
Collapse
|
16
|
Liu C, Abbaspour S, Rouki M, Tayebee R, Jarrahi M, Shahri EE. Synergistic promotion of the photocatalytic efficacy of CuO nanoparticles by heteropolyacid‐attached melem: Robust photocatalytic efficacy and anticancer performance. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changjiang Liu
- Department of Respiration, Jinan City People’s Hospital Jinan China
| | - Sedighe Abbaspour
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Mehdi Rouki
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Mahbube Jarrahi
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | | |
Collapse
|
17
|
Wang J, Liu K, Harrington MW, Rudy RQ, Blumenthal DJ. Silicon nitride stress-optic microresonator modulator for optical control applications. OPTICS EXPRESS 2022; 30:31816-31827. [PMID: 36242256 DOI: 10.1364/oe.467721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/30/2022] [Indexed: 06/16/2023]
Abstract
Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µm resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3 and 73.8 dB·Hz2/3 third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.
Collapse
|
18
|
Zhao Z, Bai Z, Jin D, Chen X, Qi Y, Ding J, Yan B, Wang Y, Lu Z, Mildren RP. The Influence of Noise Floor on the Measurement of Laser Linewidth Using Short-Delay-Length Self-Heterodyne/Homodyne Techniques. MICROMACHINES 2022; 13:1311. [PMID: 36014233 PMCID: PMC9416656 DOI: 10.3390/mi13081311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Delayed self-heterodyne/homodyne measurements based on an unbalanced interferometer are the most used methods for measuring the linewidth of narrow-linewidth lasers. They typically require the service of a delay of six times (or greater) than the laser coherence time to guarantee the Lorentzian characteristics of the beat notes. Otherwise, the beat notes are displayed as a coherent envelope. The linewidth cannot be directly determined from the coherence envelope. However, measuring narrow linewidths using traditional methods introduces significant errors due to the 1/f frequency noise. Here, a short fiber-based linewidth measurement scheme was proposed, and the influence of the noise floor on the measurement of the laser linewidth using this scheme was studied theoretically and experimentally. The results showed that this solution and calibration process is capable of significantly improving the measurement accuracy of narrow linewidth.
Collapse
Affiliation(s)
- Zhongan Zhao
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Zhenxu Bai
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Duo Jin
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Xiaojing Chen
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
| | - Yaoyao Qi
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Jie Ding
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Bingzheng Yan
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Yulei Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Zhiwei Lu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Richard P. Mildren
- MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
19
|
Lin HC, Lee YC, Lin CC, Ho YL, Xing D, Chen MH, Lin BW, Chen LY, Chen CW, Delaunay JJ. Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process. NANOSCALE 2022; 14:10075-10081. [PMID: 35792030 DOI: 10.1039/d2nr01611g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perovskite materials prepared in the form of solution-processed nanocrystals and used in top-down fabrication techniques are very attractive to develop low-cost and high-quality integrated optoelectronic circuits. Particularly, integrated miniaturized coherent light sources that can be connected to light-guiding structures on a chip are highly desired. To control light propagating on a small footprint with low-loss optical modes, long-range surface plasmon polariton (LRSPP) waveguides are employed. Herein, we demonstrate an on-chip fabricated photonic-plasmonic hybrid system consisting of a perovskite lasing structure coupled to an LRSPP waveguide achieving a low lasing threshold and a propagation length over 100 μm. Preventing perovskite material degradation and the formation of surface roughness of the laser cavity during fabrication is made possible by designing a fabrication technique without any etching step.
Collapse
Affiliation(s)
- Hsin-Chang Lin
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yang-Chun Lee
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Cheng-Chieh Lin
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Lun Ho
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Di Xing
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Mu-Hsin Chen
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Bo-Wei Lin
- School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Li-Yin Chen
- Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chun-Wei Chen
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
| | | |
Collapse
|
20
|
Liu K, Jin N, Cheng H, Chauhan N, Puckett MW, Nelson KD, Behunin RO, Rakich PT, Blumenthal DJ. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing. OPTICS LETTERS 2022; 47:1855-1858. [PMID: 35363753 DOI: 10.1364/ol.454392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
We demonstrate 0.034 dB/m loss waveguides in a 200-mm wafer-scale, silicon nitride (Si3N4) CMOS-foundry-compatible integration platform. We fabricate resonators that measure up to a 720 million intrinsic Q resonator at 1615 nm wavelength with a 258 kHz intrinsic linewidth. This resonator is used to realize a Brillouin laser with an energy-efficient 380 µW threshold power. The performance is achieved by reducing scattering losses through a combination of single-mode TM waveguide design and an etched blanket-layer low-pressure chemical vapor deposition (LPCVD) 80 nm Si3N4 waveguide core combined with thermal oxide lower and tetraethoxysilane plasma-enhanced chemical vapor deposition (TEOS-PECVD) upper oxide cladding. This level of performance will enable photon preservation and energy-efficient generation of the spectrally pure light needed for photonic integration of a wide range of future precision scientific applications, including quantum, precision metrology, and optical atomic clocks.
Collapse
|
21
|
Qin Y, Ding S, Zhang M, Wang Y, Shi Q, Li Z, Wen J, Xiao M, Jiang X. High-power, low-noise Brillouin laser on a silicon chip. OPTICS LETTERS 2022; 47:1638-1641. [PMID: 35363697 DOI: 10.1364/ol.455369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
We realize a chip-based Brillouin microlaser with remarkable features of high power and low noise using a microtoroid resonator. Our Brillouin microlaser is able to output a power of up to 126 mW with a fundamental linewidth down to 245 mHz. Additionally, in the course of Brillouin lasing we observe an intriguing power saturation-like effect, which can be attributed to complex thermo-optic-effect-induced mode mismatch between the pump and Brillouin modes. To have a quantitative understanding of this phenomenon, we develop a model by simultaneously considering Brillouin lasing and the thermo-optic effect occurring in the microcavity. Of importance, our theoretical results match well with experimentally measured data.
Collapse
|
22
|
Yang F, Gyger F, Godet A, Chrétien J, Zhang L, Pang M, Beugnot JC, Thévenaz L. Large evanescently-induced Brillouin scattering at the surrounding of a nanofibre. Nat Commun 2022; 13:1432. [PMID: 35301307 PMCID: PMC8931049 DOI: 10.1038/s41467-022-29051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Brillouin scattering has been widely exploited for advanced photonics functionalities such as microwave photonics, signal processing, sensing, lasing, and more recently in micro- and nano-photonic waveguides. Most of the works have focused on the opto-acoustic interaction driven from the core region of micro- and nano-waveguides. Here we observe, for the first time, an efficient Brillouin scattering generated by an evanescent field nearby a single-pass sub-wavelength waveguide embedded in a pressurised gas cell, with a maximum gain coefficient of 18.90 ± 0.17 m-1W-1. This gain is 11 times larger than the highest Brillouin gain obtained in a hollow-core fibre and 79 times larger than in a standard single-mode fibre. The realisation of strong free-space Brillouin scattering from a waveguide benefits from the flexibility of confined light while providing a direct access to the opto-acoustic interaction, as required in free-space optoacoustics such as Brillouin spectroscopy and microscopy. Therefore, our work creates an important bridge between Brillouin scattering in waveguides, Brillouin spectroscopy and microscopy, and opens new avenues in light-sound interactions, optomechanics, sensing, lasing and imaging.
Collapse
Affiliation(s)
- Fan Yang
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Group for Fibre Optics, CH-1015, Lausanne, Switzerland.
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Flavien Gyger
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Group for Fibre Optics, CH-1015, Lausanne, Switzerland
- Max Planck Institute of Quantum Optics, Garching, Germany
| | - Adrien Godet
- FEMTO-ST Institute, UMR 6174, Université Bourgogne Franche-Comté, 25030, Besançon, France
| | - Jacques Chrétien
- FEMTO-ST Institute, UMR 6174, Université Bourgogne Franche-Comté, 25030, Besançon, France
| | - Li Zhang
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Group for Fibre Optics, CH-1015, Lausanne, Switzerland
| | - Meng Pang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, 201800, China
| | - Jean-Charles Beugnot
- FEMTO-ST Institute, UMR 6174, Université Bourgogne Franche-Comté, 25030, Besançon, France.
| | - Luc Thévenaz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Group for Fibre Optics, CH-1015, Lausanne, Switzerland
| |
Collapse
|
23
|
Chauhan N, Wang J, Bose D, Liu K, Compton RL, Fertig C, Hoyt CW, Blumenthal DJ. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. OPTICS EXPRESS 2022; 30:6960-6969. [PMID: 35299469 DOI: 10.1364/oe.448938] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Atomic, molecular and optical (AMO) visible light systems are the heart of precision applications including quantum, atomic clocks and precision metrology. As these systems scale in terms of number of lasers, wavelengths, and optical components, their reliability, space occupied, and power consumption will push the limits of using traditional laboratory-scale lasers and optics. Visible light photonic integration is critical to advancing AMO based sciences and applications, yet key performance aspects remain to be addressed, most notably waveguide losses and laser phase noise and stability. Additionally, a visible light integrated solution needs to be wafer-scale CMOS compatible and capable of supporting a wide array of photonic components. While the regime of ultra-low loss has been achieved at telecommunication wavelengths, progress at visible wavelengths has been limited. Here, we report the lowest waveguide losses and highest resonator Qs to date in the visible range, to the best of our knowledge. We report waveguide losses at wavelengths associated with strontium transitions in the 461 nm to 802 nm wavelength range, of 0.01 dB/cm to 0.09 dB/cm and associated intrinsic resonator Q of 60 Million to 9.5 Million, a decrease in loss by factors of 6x to 2x and increase in Q by factors of 10x to 1.5x over this visible wavelength range. Additionally, we measure an absorption limited loss and Q of 0.17 dB/m and 340 million at 674 nm. This level of performance is achieved in a wafer-scale foundry compatible Si3N4 platform with a 20 nm thick core and TEOS-PECVD deposited upper cladding oxide, and enables waveguides for different wavelengths to be fabricated on the same wafer with mask-only changes per wavelength. These results represent a significant step forward in waveguide platforms that operate in the visible, opening up a wide range of integrated applications that utilize atoms, ions and molecules including sensing, navigation, metrology and clocks.
Collapse
|
24
|
Lin Y, Mak JCC, Chen H, Mu X, Stalmashonak A, Jung Y, Luo X, Lo PGQ, Sacher WD, Poon JKS. Low-loss broadband bi-layer edge couplers for visible light. OPTICS EXPRESS 2021; 29:34565-34576. [PMID: 34809243 DOI: 10.1364/oe.435669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/13/2021] [Indexed: 05/25/2023]
Abstract
Low-loss broadband fiber-to-chip coupling is currently challenging for visible-light photonic-integrated circuits (PICs) that need both high confinement waveguides for high-density integration and a minimum feature size above foundry lithographical limit. Here, we demonstrate bi-layer silicon nitride (SiN) edge couplers that have ≤ 4 dB/facet coupling loss with the Nufern S405-XP fiber over a broad optical wavelength range from 445 to 640 nm. The design uses a thin layer of SiN to expand the mode at the facet and adiabatically transfers the input light into a high-confinement single-mode waveguide (150-nm thick) for routing, while keeping the minimum nominal lithographic feature size at 150 nm. The achieved fiber-to-chip coupling loss is about 3 to 5 dB lower than that of single-layer designs with the same waveguide confinement and minimum feature size limitation.
Collapse
|
25
|
Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh MR, De Silva T, Yu N, Adachi MM. Free-Standing Multilayer Molybdenum Disulfide Memristor for Brain-Inspired Neuromorphic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45843-45853. [PMID: 34542262 DOI: 10.1021/acsami.1c11359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) have attracted great interest in electronic and opto-electronic devices for high-integration-density applications such as data storage due to their small vertical dimension and high data storage capability. Here, we report a memristor based on free-standing multilayer molybdenum disulfide (MoS2) with a high current on/off ratio of ∼103 and a stable retention for at least 3000 s. Through light modulation of the carrier density in the suspended MoS2 channel, the on/off ratio can be further increased to ∼105. Moreover, the essential photosynaptic functions with short- and long-term memory (STM and LTM) behaviors are successfully mimicked by such devices. These results also indicate that STM can be transferred to LTM by increasing the light stimuli power, pulse duration, and number of pulses. The electrical measurements performed under vacuum and ambient air conditions propose that the observed resistive switching is due to adsorbed oxygen and water molecules on both sides of the MoS2 channel. Thus, our free-standing 2D multilayer MoS2-based memristors propose a simple approach for fabrication of a low-power-consumption and reliable resistive switching device for neuromorphic applications.
Collapse
Affiliation(s)
- Amin Abnavi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Ribwar Ahmadi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Amirhossein Hasani
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Mirette Fawzy
- Department of Physics, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | | | - Thushani De Silva
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Niannian Yu
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Michael M Adachi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| |
Collapse
|