1
|
Kabonick SG, Verma K, Modesto JL, Pearce VH, Winokur KM, Groisman EA, Townsend GE. Hierarchical glycolytic pathways control the carbohydrate utilization regulator in human gut Bacteroides. Nat Commun 2025; 16:4488. [PMID: 40368925 PMCID: PMC12078602 DOI: 10.1038/s41467-025-59704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Human dietary choices control the gut microbiome. Industrialized populations consume abundant amounts of glucose and fructose, resulting in microbe-dependent intestinal disorders. Simple sugars inhibit the carbohydrate utilization regulator (Cur), a transcription factor in members of the prominent gut bacterial phylum, Bacteroidetes. Cur controls products necessary for carbohydrate utilization, host immunomodulation, and intestinal colonization. Here, we demonstrate how simple sugars decrease Cur activity in the mammalian gut. Our findings in two Bacteroides species show that ATP-dependent fructose-1,6-bisphosphate (FBP) synthesis is necessary for glucose or fructose to inhibit Cur, but dispensable for growth because of an essential pyrophosphate (PPi)-dependent enzyme. Furthermore, we show that ATP-dependent FBP synthesis is required to regulate Cur in the gut but does not contribute to fitness when cur is absent, indicating PPi is sufficient to drive glycolysis in these bacteria. Our findings reveal how sugar-rich diets inhibit Cur, thereby disrupting Bacteroides fitness and diminishing products that are beneficial to the host.
Collapse
Affiliation(s)
- Seth G Kabonick
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Kamalesh Verma
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Jennifer L Modesto
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Victoria H Pearce
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Kailyn M Winokur
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | | | - Guy E Townsend
- Penn State College of Medicine, Hershey, PA, USA.
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA.
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
2
|
Kabonick SG, Verma K, Modesto JL, Pearce VH, Winokur KM, Groisman EA, Townsend GE. Hierarchical glycolytic pathways control the carbohydrate utilization regulator in human gut Bacteroides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.13.623061. [PMID: 39605394 PMCID: PMC11601483 DOI: 10.1101/2024.11.13.623061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Human dietary choices control the gut microbiome. Industrialized populations consume abundant amounts of glucose and fructose, resulting in microbe-dependent intestinal disorders. Simple sugars inhibit the carbohydrate utilization regulator (Cur), a transcription factor in members of the prominent gut bacterial phylum, Bacteroidetes. Cur controls products necessary for carbohydrate utilization, host immunomodulation, and intestinal colonization. Here, we demonstrate how simple sugars decrease Cur activity in the mammalian gut. Our findings in two Bacteroides species show that ATP-dependent fructose-1,6-bisphosphate (FBP) synthesis is necessary for glucose or fructose to inhibit Cur, but dispensable for growth because of an essential pyrophosphate (PPi)-dependent enzyme. Furthermore, we show that ATP-dependent FBP synthesis is required to regulate Cur in the gut but does not contribute to fitness when cur is absent, indicating PPi is sufficient to drive glycolysis in these bacteria. Our findings reveal how sugar-rich diets inhibit Cur, thereby disrupting Bacteroides fitness and diminishing products that are beneficial to the host.
Collapse
Affiliation(s)
- Seth G. Kabonick
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Kamalesh Verma
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Jennifer L. Modesto
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Victoria H. Pearce
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Kailyn M. Winokur
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | | | - Guy E. Townsend
- Penn State College of Medicine, Hershey, PA, USA
- Penn State One Health Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
3
|
Zhang J, Zhang Y, Luo W, Wang Z, Lv P, Wang Z. A UHPLC-QE-MS-based metabolomics approach for the evaluation of fermented lipase by an engineered Escherichia coli. Prep Biochem Biotechnol 2025; 55:457-469. [PMID: 39648316 DOI: 10.1080/10826068.2024.2423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Using an engineered Escherichia coli to produce lipase and can easily achieve high-level expression. The investigation of biochemical processes during lipase fermentation, approached from a metabolomics perspective, will yield novel insights into the efficient secretion of recombinant proteins. In this study, the lipase batch fermentation was carried out first with enzyme activity of 36.83 U/mg cells. Then, differential metabolites and metabolic pathways were identified using an untargeted metabolomics approach through comparative analysis of various fermentation periods. In total, 574 metabolites were identified: 545 were up-regulated and 29 were down-regulated, mainly in 153 organic acids and derivatives, 160 organoheterocyclic compounds, 64 lipids and lipid-like molecules, and 58 organic oxygen compounds. Through metabolic pathways and network analysis, it could be found that tryptophan metabolism was of great significance to lipase production, which could affect the secretion and synthesis of recombinant protein. In addition, the promotion effects of cell growth by varying concentrations of indole acetic acid serve to validate the results obtained from tryptophan metabolism. This study offers valuable insights into metabolic regulation of engineered E. coli, indicating that its fermentation bioprocess can be systematically designed according to metabolomics findings to enhance recombinant protein production.
Collapse
Affiliation(s)
- Jun Zhang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ying Zhang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Wen Luo
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyuan Wang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Pengmei Lv
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Zhongming Wang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Zhu D, Feng Z, He B, Li J, Zhu DZ, Xiong J, Yao Z. Keystone bacterial groups dominate Escherichia coli O157:H7 survival in long-term reclaimed water headwater stream. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125738. [PMID: 39855455 DOI: 10.1016/j.envpol.2025.125738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Escherichia coli (E. coli) O157:H7 is a highly pathogenic zoonotic bacterium, with water serving as a key medium for its environmental transmission. However, the survival characteristics of E. coli O157:H7 in reclaimed water environments remain poorly understood, which has, to some extent, hindered the development of water reuse technologies. This study examined the survival dynamics of E. coli O157:H7 in a long-term reclaimed water headwater stream through inoculation experiments and identified its main drivers. The results showed that the survival time of E. coli O157:H7 was the longest in the headwater upstream (up to 62 days), gradually decreased as it flowed downstream. Among physicochemical factors, chloride ion, potential of hydrogen, and electrical conductivity were the main factors affecting the survival of E. coli O157:H7. The microbial diversity shown by the alpha diversity index had no significant impact on the E. coli O157:H7 survival. Meanwhile, certain keystone bacterial groups, such as Polynucleobacter, Roseomonas, and Luteolibacter, which are primarily involved in the decomposition of organic matter, suppressed E. coli O157:H7 survival in this stream, while Nitrospira, Dechloromonas, and Sphingomonas promoted the survival of E. coli O157:H7. Overall, the biotic factors have a more direct impact on the E. coli O157:H7 survival compared to abiotic factors in the reclaimed water-replenished stream and deserve more attention. Our research revealed higher biological risks in the upstream sections of the long-term reclaimed water headwater stream, which helped deepen our understanding of pathogen survival in water environments and enhancing our awareness of the biological safety of reclaimed water in ecological replenishment processes.
Collapse
Affiliation(s)
- Di Zhu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Zhangheng Feng
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Bin He
- Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jinyi Li
- Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jinbo Xiong
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Zhiyuan Yao
- Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Chu F, Lin A. Detecting Human Contaminant Genetically Variant Peptides in Nonhuman Samples. J Proteome Res 2025; 24:579-588. [PMID: 39705712 DOI: 10.1021/acs.jproteome.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
During proteomics data analysis, experimental spectra are searched against a user-defined protein database consisting of proteins that are reasonably expected to be present in the sample. Typically, this database contains the proteome of the organism under study concatenated with expected contaminants, such as trypsin and human keratins. However, there are additional contaminants that are not commonly added to the database. In this study, we describe a new set of protein contaminants and provide evidence that they can be detected in mass spectrometry-based proteomics data. Specifically, we provide evidence that human genetically variant peptides (GVPs) can be detected in nonhuman samples. GVPs are peptides that contain single amino acid polymorphisms that result from nonsynonymous single nucleotide polymorphisms in protein-coding regions of DNA. We reanalyzed previously collected nonhuman data-dependent acquisition (DDA) and data-independent acquisition (DIA) data sets and detected between 0 and 135 GVPs per data set. In addition, we show that GVPs are unlikely to originate from nonhuman sources and that a subset of eight GVPs are commonly detected across data sets.
Collapse
Affiliation(s)
- Fanny Chu
- Chemical and Biological Signatures, Pacific Northwest National Laboratory, Seattle, Washington 98109, United States
| | - Andy Lin
- Chemical and Biological Signatures, Pacific Northwest National Laboratory, Seattle, Washington 98109, United States
| |
Collapse
|
6
|
Huang Y, Jia KZ, Zhao W, Zhu LW. Insights into the regulatory mechanisms and application prospects of the transcription factor Cra. Appl Environ Microbiol 2024; 90:e0122824. [PMID: 39494897 PMCID: PMC11577769 DOI: 10.1128/aem.01228-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Cra (catabolite repressor/activator) is a global transcription factor (TF) that plays a pleiotropic role in controlling the transcription of several genes involved in carbon utilization and energy metabolism. Multiple studies have investigated the regulatory mechanism of Cra and its rational use for metabolic regulation, but due to the complexity of its regulation, there remain challenges in the efficient use of Cra. Here, the structure, mechanism of action, and regulatory function of Cra in carbon and nitrogen flow are reviewed. In addition, this paper highlights the application of Cra in metabolic engineering, including the promotion of metabolite biosynthesis, the regulation of stress tolerance and virulence, the use of a Cra-based biosensor, and its coupling with other transcription factors. Finally, the prospects of Cra-related regulatory strategies are discussed. This review provides guidance for the rational design and construction of Cra-based metabolic regulation systems.
Collapse
Affiliation(s)
- Ying Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Kai-Zhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Wei Zhao
- State Key Laboratory of MicrobialTechnology, University, Qingdao, China
| | - Li-Wen Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
7
|
Kim GY, Yang J, Han YH, Seo SW. Synthetic redesign of Escherichia coli W for faster metabolism of sugarcane molasses. Microb Cell Fact 2024; 23:242. [PMID: 39252026 PMCID: PMC11382391 DOI: 10.1186/s12934-024-02520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Sugarcane molasses, rich in sucrose, glucose, and fructose, offers a promising carbon source for industrial fermentation due to its abundance and low cost. However, challenges arise from the simultaneous utilization of multiple sugars and carbon catabolite repression (CCR). Despite its nutritional content, sucrose metabolism in Escherichia coli, except for W strain, remains poorly understood, hindering its use in microbial fermentation. In this study, E. coli W was engineered to enhance sugar consumption rates and overcome CCR. This was achieved through the integration of a synthetically designed csc operon and the optimization of glucose and fructose co-utilization pathways. These advancements facilitate efficient utilization of sugarcane molasses for the production of 3-hydroxypropionic acid (3-HP), contributing to sustainable biochemical production processes. RESULTS In this study, we addressed challenges associated with sugar metabolism in E. coli W, focusing on enhancing sucrose consumption and improving glucose-fructose co-utilization. Through targeted engineering of the sucrose utilization system, we achieved accelerated sucrose consumption rates by modulating the expression of the csc operon components, cscB, cscK, cscA, and cscR. Our findings revealed that monocistronic expression of the csc genes with the deletion of cscR, led to optimal sucrose utilization without significant growth burden. Furthermore, we successfully alleviated fructose catabolite repression by modulating the binding dynamics of FruR with the fructose PTS regulon, enabling near-equivalent co-utilization of glucose and fructose. To validate the industrial applicability of our engineered strain, we pursued 3-HP production from sugarcane molasses. By integrating heterologous genes and optimizing metabolic pathways, we achieved improvements in 3-HP titers compared to previous studies. Additionally, glyceraldehyde-3-phosphate dehydrogenase (gapA) repression aids in carbon flux redistribution, enhancing molasses conversion to 3-HP. CONCLUSIONS Despite limitations in sucrose metabolism, the redesigned E. coli W strain, adept at utilizing sugarcane molasses, is a valuable asset for industrial fermentation. Its synthetic csc operon enhances sucrose consumption, while mitigating CCR improves glucose-fructose co-utilization. These enhancements, coupled with repression of gapA, aim to efficiently convert sugarcane molasses into 3-HP, addressing limitations in sucrose and fructose metabolism for industrial applications.
Collapse
Affiliation(s)
- Gi Yeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- School of Biological Sciences and Biotechnology, Graduate School, and School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju, 61186, South Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Chemical Processes, and Bio-MAX Institute, and Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
8
|
Fan Z, Jia W, Du A, Shi L. Complex pectin metabolism by Lactobacillus and Streptococcus suggests an effective control approach for Maillard harmful products in brown fermented milk. FUNDAMENTAL RESEARCH 2024; 4:1171-1184. [PMID: 39431140 PMCID: PMC11489481 DOI: 10.1016/j.fmre.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Harmful Maillard reaction products (HMRPs) derived from brown fermented milk pose a potential threat to human health, but the conversion mechanism during the manufacturing process remains elusive and urgently needs to be controlled. Acrylamide (FC 2.14, adjusted p-value = 0.041), 5-hydroxymethylfurfural (FC 2.61, adjusted p-value = 0.026) and methylglyoxal (FC 2.07, adjusted p-value = 0.019) were identified as the significantly increased HMRPs after browning in this study and the analysis of proteomics integrated with untargeted metabolomics demonstrated that the degradation of HMRPs was jointly accomplished by Streptococcus thermophilus and Lactobacillus bulgaricus. The galactose oligosaccharide metabolism in Streptococcus thermophilus was identified as a key biochemical reaction for HMRPs degradation, and the hydrolysates of pectin could be utilized as prebiotics for Streptococcus thermophilus. Eighteen classes of enzymes of L. bulgaricus and Streptococcus thermophilus related to energy metabolism were upregulated in the pectin-added group, indicating that the entry of acrylamide and methylglyoxal into the tricarboxylic acid cycle was accelerated. NAD-aldehyde dehydrogenase and alanine dehydrogenase are enzymes belonging to Streptococcus thermophilus, and their downregulation accelerated the efflux of acetate, which was beneficial for the proliferation of L. bulgaricus and prevented the conversion of pyruvate to l-alanine, thus facilitating the energy metabolism. The recoveries and relative standard deviations of the intraday and interday precision experiments were 89.1%-112.5%, 1.3%-8.4% and 2.1%-9.4%, respectively, indicating that the developed approach was credible. Sensory evaluation results revealed that the brown fermented milk added with pectin had a better flavor, which was due to the fact that the supplement of polysaccharide promoted the fatty acid metabolism of lactic acid bacteria and increased the aroma substances including octoic acid and valeric acid. This study provided an insight into the formation and degradation mechanism of HMRPs in brown fermented milk, aiming to reduce the intake of advanced glycation end products in the diet.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
9
|
Law RC, Nurwono G, Park JO. A parallel glycolysis provides a selective advantage through rapid growth acceleration. Nat Chem Biol 2024; 20:314-322. [PMID: 37537378 PMCID: PMC10987256 DOI: 10.1038/s41589-023-01395-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Glycolysis is a universal metabolic process that breaks down glucose to produce adenosine triphosphate (ATP) and biomass precursors. The Entner-Doudoroff (ED) pathway is a glycolytic pathway that parallels textbook glycolysis but yields half as much ATP. Accordingly, in organisms that possess both glycolytic pathways (for example, Escherichia coli), its raison d'être remains a mystery. In this study, we found that the ED pathway provides a selective advantage during growth acceleration. Upon carbon and nitrogen upshifts, E. coli accelerates growth faster with than without the ED pathway. Concurrent isotope tracing reveals that the ED pathway flux increases faster than that of textbook glycolysis. We attribute the fast response time of the ED pathway to its strong thermodynamic driving force and streamlining of glucose import. Intermittent nutrient supply manifests the evolutionary advantage of the parallel glycolysis; thus, the dynamic nature of an ostensibly redundant pathway's role in promoting rapid adaptation constitutes a metabolic design principle.
Collapse
Affiliation(s)
- Richard C Law
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Glenn Nurwono
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Brenzinger S, Airoldi M, Ogunleye AJ, Jugovic K, Amstalden MK, Brochado AR. The Vibrio cholerae CBASS phage defence system modulates resistance and killing by antifolate antibiotics. Nat Microbiol 2024; 9:251-262. [PMID: 38172623 DOI: 10.1038/s41564-023-01556-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Toxic bacterial modules such as toxin-antitoxin systems hold antimicrobial potential, though successful applications are rare. Here we show that in Vibrio cholerae the cyclic-oligonucleotide-based anti-phage signalling system (CBASS), another example of a toxic module, increases sensitivity to antifolate antibiotics up to 10×, interferes with their synergy and ultimately enables bacterial lysis by these otherwise classic bacteriostatic antibiotics. Cyclic-oligonucleotide production by the CBASS nucleotidyltransferase DncV upon antifolate treatment confirms full CBASS activation under these conditions, and suggests that antifolates release DncV allosteric inhibition by folates. Consequently, the CBASS-antifolate interaction is specific to CBASS systems with closely related nucleotidyltransferases and similar folate-binding pockets. Last, antifolate resistance genes abolish the CBASS-antifolate interaction by bypassing the effects of on-target antifolate activity, thereby creating potential for their coevolution with CBASS. Altogether, our findings illustrate how toxic modules can impact antibiotic activity and ultimately confer bactericidal activity to classical bacteriostatic antibiotics.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martina Airoldi
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | | | - Karl Jugovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ana Rita Brochado
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany.
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Hackley RK, Vreugdenhil-Hayslette A, Darnell CL, Schmid AK. A conserved transcription factor controls gluconeogenesis via distinct targets in hypersaline-adapted archaea with diverse metabolic capabilities. PLoS Genet 2024; 20:e1011115. [PMID: 38227606 PMCID: PMC10817205 DOI: 10.1371/journal.pgen.1011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
Timely regulation of carbon metabolic pathways is essential for cellular processes and to prevent futile cycling of intracellular metabolites. In Halobacterium salinarum, a hypersaline adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and other biosynthetic pathways. Notably, Hbt. salinarum does not utilize carbohydrates for energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional regulator in a saccharolytic generalist, Haloarcula hispanica, to investigate whether the targets and function of TrmB, or its regulon, is conserved in related species with distinct metabolic capabilities. In Har. hispanica, TrmB binds to 15 sites in the genome and induces the expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An important regulatory control point in Hbt. salinarum, activation of ppsA and repression of pykA, is absent in Har. hispanica. Contrary to its role in Hbt. salinarum and saccharolytic hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or catabolism of other carbon sources in Har. hispanica. Cumulatively, these findings suggest rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea.
Collapse
Affiliation(s)
- Rylee K. Hackley
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | | | - Cynthia L. Darnell
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Amy K. Schmid
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
12
|
Zhang Y, Yun J, Zhang G, Parvez A, Zhou L, Zabed HM, Li J, Qi X. Efficient biosynthesis of 3-hydroxypropionic acid from glucose through multidimensional engineering of Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 389:129822. [PMID: 37805087 DOI: 10.1016/j.biortech.2023.129822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
3-Hydroxypropionic acid (3-HP) is a top value-added chemical with multifaceted application in chemical, material, and food field. However, limited availability of robust strains and elevated fermentation costs currently impose constraints on sustainable biosynthesis of 3-HP. Herein, transporter engineering, metabolic dynamic modulation, and enzyme engineering were combined to address above limitations. First, a glucose-utilizing 3-HP biosynthetic pathway was constructed in Escherichia coli, followed by recruiting alternative glucose transport system to overcome center metabolism overflow. Next, the Cra (a transcription factor)-dependent switch was applied to autonomously fine-tune carbon flux, which alleviated growth retardation and improved the 3-HP production. Subsequently, inactivation of glycerol facilitator (GlpF) increased intracellular glycerol levels and boosted 3-HP biosynthesis, but caused toxic intermediate 3-hydroxypropionaldehyde (3-HPA) accumulation. Furthermore, semi-rational design of aldehyde dehydrogenase (YdcW) increased its activity and eliminated 3-HPA accumulation. Finally, fed-batch fermentation of the final strain resulted in 52.73 g/L 3-HP, with a yield of 0.59 mol/mol glucose.
Collapse
Affiliation(s)
- Yufei Zhang
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Amreesh Parvez
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Lei Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China
| | - Jia Li
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
13
|
Li Z, Gao C, Ye C, Guo L, Liu J, Chen X, Song W, Wu J, Liu L. Systems engineering of Escherichia coli for high-level shikimate production. Metab Eng 2023; 75:1-11. [PMID: 36328295 DOI: 10.1016/j.ymben.2022.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
To further increase the production efficiency of microbial shikimate, a valuable compound widely used in the pharmaceutical and chemical industries, ten key target genes contributing to shikimate production were identified by exploiting the enzyme constraint model ec_iML1515, and subsequently used for promoting metabolic flux towards shikimate biosynthesis in the tryptophan-overproducing strain Escherichia coli TRP0. The engineered E. coli SA05 produced 78.4 g/L shikimate via fed-batch fermentation. Deletion of quinate dehydrogenase and introduction of the hydroaromatic equilibration-alleviating shikimate dehydrogenase mutant AroET61W/L241I reduced the contents of byproducts quinate (7.5 g/L) and 3-dehydroshikimic acid (21.4 g/L) by 89.1% and 52.1%, respectively. Furthermore, a high concentration shikimate responsive promoter PrpoS was recruited to dynamically regulate the expression of the tolerance target ProV to enhance shikimate productivity by 23.2% (to 2 g/L/h). Finally, the shikimate titer was increased to 126.4 g/L, with a yield of 0.50 g/g glucose and productivity of 2.63 g/L/h, using a 30-L fermenter and the engineered strain E. coli SA09. This is, to the best of our knowledge, the highest reported shikimate titer and productivity in E. coli.
Collapse
Affiliation(s)
- Zhendong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
14
|
Wang Z, Liu X, Wang W, Xu J, Sun H, Wei J, Yu Y, Zhao Y, Wang X, Liao Z, Sun W, Jia L, Zhang Y. UPLC-MS based integrated plasma proteomic and metabolomic profiling of TSC-RAML and its relationship with everolimus treatment. Front Mol Biosci 2023; 10:1000248. [PMID: 36891236 PMCID: PMC9986496 DOI: 10.3389/fmolb.2023.1000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Aim: To profile the plasma proteomics and metabolomics of patients with renal cysts, sporadic angiomyolipoma (S-AML) and tuberous sclerosis complex related angiomyolipoma (TSC-RAML) before and after everolimus treatment, and to find potential diagnostic and prognostic biomarkers as well as reveal the underlying mechanism of TSC tumorigenesis. Materials and Methods: We retrospectively measured the plasma proteins and metabolites from November 2016 to November 2017 in a cohort of pre-treatment and post-treatment TSC-RAML patients and compared them with renal cyst and S-AML patients by ultra-performance liquid chromatography-mass spectrometer (UPLC-MS). The tumor reduction rates of TSC-RAML were assessed and correlated with the plasma protein and metabolite levels. In addition, functional analysis based on differentially expressed molecules was performed to reveal the underlying mechanisms. Results: Eighty-five patients with one hundred and ten plasma samples were enrolled in our study. Multiple proteins and metabolites, such as pre-melanosome protein (PMEL) and S-adenosylmethionine (SAM), demonstrated both diagnostic and prognostic effects. Functional analysis revealed many dysregulated pathways, including angiogenesis synthesis, smooth muscle proliferation and migration, amino acid metabolism and glycerophospholipid metabolism. Conclusion: The plasma proteomics and metabolomics pattern of TSC-RAML was clearly different from that of other renal tumors, and the differentially expressed plasma molecules could be used as prognostic and diagnostic biomarkers. The dysregulated pathways, such as angiogenesis and amino acid metabolism, may shed new light on the treatment of TSC-RAML.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiyu Xu
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Haidan Sun
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wei
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuncui Yu
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yang Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xu Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhangcheng Liao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Lulu Jia
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|