1
|
Hou S, Tang H, Dong Z, Zhou W. eIF6: a promising therapeutic target for gastric carcinoma via PI3K/AKT pathway modulation. World J Surg Oncol 2025; 23:113. [PMID: 40170052 PMCID: PMC11963666 DOI: 10.1186/s12957-025-03746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Gastric carcinoma (GC) is a leading cause of cancer-related deaths, with a dire prognosis for advanced stages. The molecular mechanisms underlying GC progression are not fully understood, necessitating research into novel biomarkers and therapeutic targets. This study investigates the role of eukaryotic translation initiation factor 6 (eIF6) in GC, focusing on its potential as a prognostic indicator and its impact on tumor biology. METHODS We analyzed eIF6 expression in GC tissues using data from TCGA and GEO databases. Experiments included western blot, IHC staining, and cell culture assays on GC cell lines to evaluate the effect of eIF6 on cell proliferation, invasion, and apoptosis. Statistical analyses were performed using Student's t-tests and ANOVA, with significance set at p < 0.05. RESULTS eIF6 was found to be significantly overexpressed in GC tissues, associated with advanced tumor stage and poor patient survival. Functional assays demonstrated that eIF6 knockdown inhibits GC cell proliferation and invasion while promoting apoptosis. Transcriptomic analysis linked eIF6 to the PI3K/AKT pathway, a critical regulator in cancer. CONCLUSIONS eIF6's overexpression in GC suggests its role in tumor progression, highlighting its potential as a therapeutic target. The study provides a foundation for developing targeted therapies against eIF6 and emphasizes the need for further research into its regulatory mechanisms in GC.
Collapse
Affiliation(s)
- Shuang Hou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hao Tang
- Department of Pharmacy, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikun Dong
- The First Clinical Medical Collegeofaq , Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Xia Y, Wang Y, Xiong Q, He J, Wang H, Islam M, Zhou X, Kim A, Zhang H, Huang H, Tsung A. Neutrophil extracellular traps promote MASH fibrosis by metabolic reprogramming of HSC. Hepatology 2025; 81:947-961. [PMID: 38266270 PMCID: PMC11881075 DOI: 10.1097/hep.0000000000000762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatohepatitis (MASH) fibrosis is a reversible stage of liver disease accompanied by inflammatory cell infiltration. Neutrophils extrude a meshwork of chromatin fibers to establish neutrophil extracellular traps (NETs), which play important roles in inflammatory response regulation. Our previous work demonstrated that NETs promote HCC in MASH. However, it is still unknown if NETs play a role in the molecular mechanisms of liver fibrosis. APPROACH AND RESULTS Following 12 weeks of Western diet/carbon tetrachloride, MASH fibrosis was identified in C57BL/6 mice with increased NET formation. However, NET depletion using DNase I treatment or mice knocked out for peptidyl arginine deaminase type IV significantly attenuated the development of MASH fibrosis. NETs were demonstrated to induce HSCs activation, proliferation, and migration through augmented mitochondrial and aerobic glycolysis to provide additional bioenergetic and biosynthetic supplies. Metabolomic analysis revealed markedly an altered metabolic profile upon NET stimulation of HSCs that were dependent on arachidonic acid metabolism. Mechanistically, NET stimulation of toll-like receptor 3 induced cyclooxygenase-2 activation and prostaglandin E2 production with subsequent HSC activation and liver fibrosis. Inhibiting cyclooxygenase-2 with celecoxib reduced fibrosis in our MASH model. CONCLUSIONS Our findings implicate NETs playing a critical role in the development of MASH hepatic fibrosis by inducing metabolic reprogramming of HSCs through the toll-like receptor 3/cyclooxygenase-2/cyclooxygenase-2 pathway. Therefore, NET inhibition may represent an attractive treatment target for MASH liver fibrosis.
Collapse
Affiliation(s)
- Yujia Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yu Wang
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Xiong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiayi He
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mozaffarul Islam
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xinyu Zhou
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Alex Kim
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Zhu M, Wu SCM, Tam WK, Wong CK, Liao P, Cheah KS, Chan D, James AW, Leung VY. Biglycan fragment modulates TGF-β activity in intervertebral disc via an eIF6-coupled intracellular path. SCIENCE ADVANCES 2025; 11:eadq8545. [PMID: 39951526 PMCID: PMC11827866 DOI: 10.1126/sciadv.adq8545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025]
Abstract
Biglycan, a pericellular small leucine-rich proteoglycan, is crucial in skeletal development and regeneration. Intervertebral disc degeneration (IDD) contributes to back pain and disability. Previous studies have shown that biglycan promotes hypoxic survival of disc progenitor cells, while its depletion accelerates IDD. An association of pathological tissue remodeling with a biglycan fragment 344YWEVQPATFR, termed Bgm1, has been reported, however its role is yet to be defined. Using a custom antibody, we detected Bgm1 in human and mouse nucleus pulposus, with prominent intracellular expression in notochordal cells. Proteomic analysis revealed that Bgm1 interacts with eukaryotic translation initiation factor 6 (eIF6), a key player in ribosome biogenesis. Bgm1 dysregulates eIF6 localization in notochordal cells, affecting nucleocytoplasmic transport. Induced IDD in mice showed elevated nuclear eIF6 expression and reduced Bgm1 in degenerating nucleus pulposus. Transcriptome analysis suggests that Bgm1 regulates fatty acid metabolism and glycolysis in a transforming growth factor-β-dependent manner, highlighting its potential role in metabolic control in spinal joint homeostasis.
Collapse
Affiliation(s)
- Manyu Zhu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stanley Chun Ming Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Wai-Kit Tam
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chun Kit Wong
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peng Liao
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kathryn S Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Victor Y Leung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Zhang Z, Yuan S, Yang Z, Liu Y, Liu S, Chen L, Wu B. Hepatotoxicity of Three Common Liquid Crystal Monomers in Mus musculus: Differentiation of Actions Across Different Receptors and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1519-1529. [PMID: 39804792 DOI: 10.1021/acs.est.4c08945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liquid crystal monomers (LCMs) of different chemical structures were widely detected in various environmental matrices. However, their health risk evaluation is lacking. Herein, three representative LCMs were selected from 74 LCM candidates upon literature review and acute cytotoxicity evaluation, then Mus musculus were exposed to the three LCMs for 42 days at doses of 0.5 and 50 μg/kg/d to investigate hepatotoxicity and mechanisms. Phenotypic and histopathological results showed that the three LCMs (DTMDPB, MeO3bcH, and 5OCB) induced hepatomegaly, and only 5OCB induced fatty liver. DTMDPB and MeO3bcH decreased the total cholesterol (TCHO) and triglyceride (TG) content, whereas 5OCB increased the TCHO, TG, and alanine aminotransferase levels. Transcriptome and molecular docking analysis revealed that DTMDPB induced hepatotoxicity by agonizing the farnesoid X receptor, resulting in the disruption of unsaturated fatty acid biosynthesis, ascorbic acid and antioxidant pathways, and circadian clock homeostasis. MeO3bcH promoted inflammation and altered unsaturated fatty acid, primary bile acid biosynthesis, and circadian rhythm by antagonizing the aryl hydrocarbon receptor. 5OCB antagonized peroxisome proliferator-activated receptors, leading to fatty liver caused by the disruption of steroid, cholesterol, and terpenoid backbone biosynthesis pathways. This study provides references for understanding the hepatotoxicity of LCMs with different structures and the selection of priority control LCMs.
Collapse
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Shengjie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhongchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yafeng Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Su Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Shen C, Peng C, Zhang S, Li R, Liu S, Kuang Y, Su F, Liu Y, Liang L, Xiao Y, Xu H. Eukaryotic translation initiation factor 6-mediated ribosome biogenesis promotes synovial aggression and inflammation by increasing the translation of SP1 in rheumatoid arthritis. Int Immunopharmacol 2024; 142:113164. [PMID: 39288622 DOI: 10.1016/j.intimp.2024.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Fibroblast-like synoviocytes (FLSs) play critical roles in synovial inflammation and aggression in rheumatoid arthritis (RA). Here, we explored the role of eukaryotic translation initiation factor 6 (eIF6) in regulating the biological behaviors of FLSs from patients with RA. METHODS FLSs were isolated from the synovial tissues of RA patients. Gene expression was assessed via RT-qPCR, and protein expression was evaluated via Western blotting or immunohistochemistry. Proliferation and nascent peptide synthesis were evaluated via EdU incorporation and HPG labeling, respectively. Cell migration and invasion were observed via Transwell assays. Polysome profiling was conducted to analyze the distribution of ribosomes and combined mRNAs. The in vivo effect of eIF6 inhibition was evaluated in a collagen-induced arthritis (CIA) rat model. RESULTS We found that eIF6 expression was elevated in FLSs and synovial tissues from RA patients compared to those from healthy controls and osteoarthritis patients. Knockdown of eIF6 inhibited the migration, invasion, inflammation, and proliferation of FLSs from patients with RA. Mechanistically, eIF6 knockdown downregulated ribosome biogenesis in FLSs from with RA, leading to a decrease in the proportion of polysome-associated specificity protein 1 (SP1) mRNA and a subsequent reduction in the translation initiation efficiency of SP1 mRNA. Thus, eIF6 controls SP1 expression through translation-mediated mechanisms. Interestingly, intra-articular eIF6 siRNA treatment attenuated symptoms and histological manifestations in CIA rats. CONCLUSIONS Our findings suggest that an increase in synovial eIF6 might contribute to rheumatoid synovial inflammation and aggression and that targeting eIF6 may have therapeutic potential in RA patients.
Collapse
Affiliation(s)
- Chuyu Shen
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Chenxi Peng
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Shuoyang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Ruiru Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Suling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Yu Kuang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Fan Su
- Department of Geriatrics, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Yingli Liu
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China.
| |
Collapse
|
6
|
Wang Z, Yang S, Tong L, Li X, Mao W, Yuan H, Chen Y, Zhang S, Zhang H, Chen R. eIF6 deficiency regulates gut microbiota, decreases systemic inflammation, and alleviates atherosclerosis. mSystems 2024; 9:e0059524. [PMID: 39225466 PMCID: PMC11494895 DOI: 10.1128/msystems.00595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
Altered composition of the gut microbiota affects immunity and metabolism. This study previously found that eIF6 gene knockdown changes the composition of the intestinal flora in the eIF6 gene knockdown mouse model. Lactobacillus acidophilus is significantly increased in the model. This study was designed to investigate the role of L. acidophilus in the pathogenesis of atherosclerosis. Transcriptomic data from 117 patients with coronary artery disease (CAD) and 79 healthy individuals were obtained. ApoE-/- and ApoE-/-/eIF6+/- mice on normal chow diet or a high-fat diet were treated for 16 weeks; eIF6 deficiency was evaluated atherosclerosis. ApoE-/- mice on normal chow diet or a high-fat diet were treated with L. acidophilus by daily oral gavage for 16 weeks. Moreover, one group was treated with lipopolysaccharide at 12 weeks. The levels of eIF6, RNASE3, and RSAD2 were notably higher in the patients with CAD than in the healthy individuals. eIF6 deficiency altered the composition of gut microbiota. eIF6 deficiency reduced the atherosclerotic lesion formation in ApoE-/-/eIF6+/- mice compared with the ApoE-/- mice. The microbial sequencing and metabolomics analysis demonstrated some beneficial bacterial (L. acidophilus, Ileibacterium, and Bifidobacterium) and metabolic levels significantly had deference in ApoE-/-/eIF6+/- mice compared with the ApoE-/- mice. Correlational studies indicated that L. acidophilus had close correlations with low-density lipoprotein cholesterol, lesion area, and necrotic area. L. acidophilus inhibited high-fat diet-induced inflammation and atherosclerotic lesion, increasing the expression of tight junction proteins (ZO-1 and claudin-1) and reducing the gut permeability. However, lipopolysaccharide reversed the protective effect of L. acidophilus against atherosclerosis. eIF6 deficiency protected against atherosclerosis by regulating the composition of gut microbiota and metabolites. L. acidophilus attenuated atherosclerotic lesions by reducing inflammation and increasing gut permeability.IMPORTANCEeIF6 deficiency modulates the gut microbiota and multiple metabolites in atherosclerotic ApoE-/- mice. L. acidophilus was reduced in the gut of atherosclerotic ApoE-/- mice, but administration of Lactobacillus acidophilus reversed intestinal barrier dysfunction and vascular inflammation. Our findings suggest that targeting individual species is a beneficial therapeutic strategy to prevent inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Shuai Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linglin Tong
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Li
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weiyi Mao
- School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, China
| | - Honghua Yuan
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shenyang Zhang
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - He Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Sehrawat U. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets. Int J Mol Sci 2024; 25:10835. [PMID: 39409166 PMCID: PMC11477148 DOI: 10.3390/ijms251910835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Eukaryotic protein translation has slowly gained the scientific community's attention for its advanced and powerful therapeutic potential. However, recent technical developments in studying ribosomes and global translation have revolutionized our understanding of this complex multistep process. These developments have improved and deepened the current knowledge of mRNA translation, sparking excitement and new possibilities in this field. Translation factors are crucial for maintaining protein synthesis homeostasis. Since actively proliferating cancer cells depend on protein synthesis, dysregulated protein translation is central to tumorigenesis. Translation factors and their abnormal expressions directly affect multiple oncogenes and tumor suppressors. Recently, small molecules have been used to target translation factors, resulting in translation inhibition in a gene-specific manner, opening the door for developing translation inhibitors that can lead to novel chemotherapeutic drugs for treating multiple cancer types caused by dysregulated translation machinery. This review comprehensively summarizes the involvement of translation factors in tumor progression and oncogenesis. Also, it sheds light on the evolution of translation factors as novel drug targets for developing future therapeutic drugs for treating cancer.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab 2024; 36:1945-1962. [PMID: 39232280 PMCID: PMC11586076 DOI: 10.1016/j.cmet.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
Collapse
Affiliation(s)
- Stefano Biffo
- National Institute of Molecular Genetics and Biosciences Department, University of Milan, Milan, Italy.
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
9
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Guptta P, Sakthivel S, Teo WW, Naing YT, Arul K, Tikno K, Park SH, Wu Y, Wang L, Bay BH, Sun L, Giguere V, Chow PKH, Ghosh S, McDonnell DP, Yen PM, Singh BK. Esrra regulates Rplp1-mediated translation of lysosome proteins suppressed in metabolic dysfunction-associated steatohepatitis and reversed by alternate day fasting. Mol Metab 2024; 87:101997. [PMID: 39032642 PMCID: PMC11327444 DOI: 10.1016/j.molmet.2024.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE Currently, little is known about the mechanism(s) regulating global and specific protein translation during metabolic dysfunction-associated steatohepatitis (MASH; previously known as non-alcoholic steatohepatitis, NASH). METHODS Unbiased label-free quantitative proteome, puromycin-labelling and polysome profiling were used to understand protein translation activity in vitro and in vivo. RESULTS We observed a global decrease in protein translation during lipotoxicity in human primary hepatocytes, mouse hepatic AML12 cells, and livers from a dietary mouse model of MASH. Interestingly, proteomic analysis showed that Rplp1, which regulates ribosome and translation pathways, was one of the most downregulated proteins. Moreover, decreased Esrra expression and binding to the Rplp1 promoter, diminished Rplp1 gene expression during lipotoxicity. This, in turn, reduced global protein translation and Esrra/Rplp1-dependent translation of lysosome (Lamp2, Ctsd) and autophagy (sqstm1, Map1lc3b) proteins. Of note, Esrra did not increase its binding to these gene promoters or their gene transcription, confirming its regulation of their translation during lipotoxicity. Notably, hepatic Esrra-Rplp1-dependent translation of lysosomal and autophagy proteins also was impaired in MASH patients and liver-specific Esrra knockout mice. Remarkably, alternate day fasting induced Esrra-Rplp1-dependent expression of lysosomal proteins, restored autophagy, and reduced lipotoxicity, inflammation, and fibrosis in hepatic cell culture and in vivo models of MASH. CONCLUSIONS Esrra regulation of Rplp1-mediated translation of lysosome/autolysosome proteins was downregulated during MASH. Alternate day fasting activated this novel pathway and improved MASH, suggesting that Esrra and Rplp1 may serve as therapeutic targets for MASH. Our findings also provided the first example of a nuclear hormone receptor, Esrra, to not only regulate transcription but also protein translation, via induction of Rplp1.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie 69364 Lyon Cedex 07, France
| | - Reddemma Sandireddy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Priyanka Guptta
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Suganya Sakthivel
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Wei Wen Teo
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Kabilesh Arul
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Keziah Tikno
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS 117594, Singapore
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA 70808, USA
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS 117594, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Pierce K H Chow
- Dept of Surgery, Singapore General Hospital and Dept. of Surgical Oncology, National Cancer Centre 169608, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA 70808, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Duke Molecular Physiology Institute and Dept. of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| |
Collapse
|
10
|
D’Andrea G, Deroma G, Miluzio A, Biffo S. The Paradox of Ribosomal Insufficiency Coupled with Increased Cancer: Shifting the Perspective from the Cancer Cell to the Microenvironment. Cancers (Basel) 2024; 16:2392. [PMID: 39001453 PMCID: PMC11240629 DOI: 10.3390/cancers16132392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ribosomopathies are defined as inherited diseases in which ribosomal factors are mutated. In general, they present multiorgan symptoms. In spite of the fact that in cellular models, ribosomal insufficiency leads to a reduced rate of oncogenic transformation, patients affected by ribosomopathies present a paradoxical increase in cancer incidence. Several hypotheses that explain this paradox have been formulated, mostly on the assumption that altered ribosomes in a stem cell induce compensatory changes that lead to a cancer cell. For instance, the lack of a specific ribosomal protein can lead to the generation of an abnormal ribosome, an oncoribosome, that itself leads to altered translation and increased tumorigenesis. Alternatively, the presence of ribosomal stress may induce compensatory proliferation that in turns selects the loss of tumor suppressors such as p53. However, modern views on cancer have shifted the focus from the cancer cell to the tumor microenvironment. In particular, it is evident that human lymphocytes are able to eliminate mutant cells and contribute to the maintenance of cancer-free tissues. Indeed, many tumors develop in conditions of reduced immune surveillance. In this review, we summarize the current evidence and attempt to explain cancer and ribosomopathies from the perspective of the microenvironment.
Collapse
Affiliation(s)
- Giacomo D’Andrea
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giorgia Deroma
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Annarita Miluzio
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
| | - Stefano Biffo
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
11
|
Zhang J, Zhang Z, Wu Z, Wang Y, Zhang Z, Xia L. The switch triggering the invasion process: Lipid metabolism in the metastasis of hepatocellular carcinoma. Chin Med J (Engl) 2024; 137:1271-1284. [PMID: 38738689 PMCID: PMC11191009 DOI: 10.1097/cm9.0000000000003144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 05/14/2024] Open
Abstract
ABSTRACT In humans, the liver is a central metabolic organ with a complex and unique histological microenvironment. Hepatocellular carcinoma (HCC), which is a highly aggressive disease with a poor prognosis, accounts for most cases of primary liver cancer. As an emerging hallmark of cancers, metabolic reprogramming acts as a runaway mechanism that disrupts homeostasis of the affected organs, including the liver. Specifically, rewiring of the liver metabolic microenvironment, including lipid metabolism, is driven by HCC cells, propelling the phenotypes of HCC cells, including dissemination, invasion, and even metastasis in return. The resulting formation of this vicious loop facilitates various malignant behaviors of HCC further. However, few articles have comprehensively summarized lipid reprogramming in HCC metastasis. Here, we have reviewed the general situation of the liver microenvironment and the physiological lipid metabolism in the liver, and highlighted the effects of different aspects of lipid metabolism on HCC metastasis to explore the underlying mechanisms. In addition, we have recapitulated promising therapeutic strategies targeting lipid metabolism and the effects of lipid metabolic reprogramming on the efficacy of HCC systematical therapy, aiming to offer new perspectives for targeted therapy.
Collapse
Affiliation(s)
- Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhicheng Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
12
|
Yuan Y, Xu J, Jiang Q, Yang C, Wang N, Liu X, Piao HL, Lu S, Zhang X, Han L, Liu Z, Cai J, Liu F, Chen S, Liu J. Ficolin 3 promotes ferroptosis in HCC by downregulating IR/SREBP axis-mediated MUFA synthesis. J Exp Clin Cancer Res 2024; 43:133. [PMID: 38698462 PMCID: PMC11067213 DOI: 10.1186/s13046-024-03047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Targeting ferroptosis has been identified as a promising approach for the development of cancer therapies. Monounsaturated fatty acid (MUFA) is a type of lipid that plays a crucial role in inhibiting ferroptosis. Ficolin 3 (FCN3) is a component of the complement system, serving as a recognition molecule against pathogens in the lectin pathway. Recent studies have reported that FCN3 demonstrates inhibitory effects on the progression of certain tumors. However, whether FCN3 can modulate lipid metabolism and ferroptosis remains largely unknown. METHODS Cell viability, BODIPY-C11 staining, and MDA assay were carried out to detect ferroptosis. Primary hepatocellular carcinoma (HCC) and xenograft models were utilized to investigate the effect of FCN3 on the development of HCC in vivo. A metabonomic analysis was conducted to assess alterations in intracellular and HCC intrahepatic lipid levels. RESULTS Our study elucidates a substantial decrease in the expression of FCN3, a component of the complement system, leads to MUFA accumulation in human HCC specimens and thereby significantly promotes ferroptosis resistance. Overexpression of FCN3 efficiently sensitizes HCC cells to ferroptosis, resulting in the inhibition of the oncogenesis and progression of both primary HCC and subcutaneous HCC xenograft. Mechanistically, FCN3 directly binds to the insulin receptor β (IR-β) and its pro-form (pro-IR), inhibiting pro-IR cleavage and IR-β phosphorylation, ultimately resulting in IR-β inactivation. This inactivation of IR-β suppresses the expression of sterol regulatory element binding protein-1c (SREBP1c), which subsequently suppresses the transcription of genes related to de novo lipogenesis (DNL) and lipid desaturation, and consequently downregulates intracellular MUFA levels. CONCLUSIONS These findings uncover a novel regulatory mechanism by which FCN3 enhances the sensitivity of HCC cells to ferroptosis, indicating that targeting FCN3-induced ferroptosis is a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Yanmei Yuan
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junting Xu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Quanxin Jiang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ning Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaolong Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sijia Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xianjing Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhiyan Liu
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Shanghai, 200032, China.
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
13
|
Oliveto S, Ritter P, Deroma G, Miluzio A, Cordiglieri C, Benvenuti MR, Mutti L, Raimondi MT, Biffo S. The Impact of 3D Nichoids and Matrix Stiffness on Primary Malignant Mesothelioma Cells. Genes (Basel) 2024; 15:199. [PMID: 38397189 PMCID: PMC10887956 DOI: 10.3390/genes15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Malignant mesothelioma is a type of cancer that affects the mesothelium. It is an aggressive and deadly form of cancer that is often caused by exposure to asbestos. At the molecular level, it is characterized by a low number of genetic mutations and high heterogeneity among patients. In this work, we analyzed the plasticity of gene expression of primary mesothelial cancer cells by comparing their properties on 2D versus 3D surfaces. First, we derived from primary human samples four independent primary cancer cells. Then, we used Nichoids, which are micro-engineered 3D substrates, as three-dimensional structures. Nichoids limit the dimension of adhering cells during expansion by counteracting cell migration between adjacent units of a substrate with their microarchitecture. Tumor cells grow effectively on Nichoids, where they show enhanced proliferation. We performed RNAseq analyses on all the samples and compared the gene expression pattern of Nichoid-grown tumor cells to that of cells grown in a 2D culture. The PCA analysis showed that 3D samples were more transcriptionally similar compared to the 2D ones. The 3D Nichoids induced a transcriptional remodeling that affected mainly genes involved in extracellular matrix assembly. Among these genes responsible for collagen formation, COL1A1 and COL5A1 exhibited elevated expression, suggesting changes in matrix stiffness. Overall, our data show that primary mesothelioma cells can be effectively expanded in Nichoids and that 3D growth affects the cells' tensegrity or the mechanical stability of their structure.
Collapse
Affiliation(s)
- Stefania Oliveto
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (S.O.); (G.D.)
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
| | - Paolo Ritter
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy;
| | - Giorgia Deroma
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (S.O.); (G.D.)
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
| | - Annarita Miluzio
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
| | - Chiara Cordiglieri
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
| | - Mauro Roberto Benvenuti
- Thoracic Surgery Unit, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Medical Oncology, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Luciano Mutti
- Department of Applied Clinical Sciences and Biotechnology, DISCAB, Aquila University, 67100 L’ Aquila, Italy;
- Department of Biotechnology, SHRO, Temple University, Philadelphia, PA 19122, USA
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy;
| | - Stefano Biffo
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (S.O.); (G.D.)
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
| |
Collapse
|
14
|
Fligor SC, Tsikis ST, Hirsch TI, Pan A, Moskowitzova K, Rincon-Cruz L, Whitlock AE, Mitchell PD, Nedder AP, Gura KM, Fraser DA, Puder M. A Medium-Chain Fatty Acid Analogue Prevents Intestinal Failure-Associated Liver Disease in Preterm Yorkshire Piglets. Gastroenterology 2023; 165:733-745.e9. [PMID: 37263310 PMCID: PMC10527514 DOI: 10.1053/j.gastro.2023.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS At least 20%-30% of patients with intestinal failure receiving long-term parenteral nutrition will develop intestinal failure-associated liver disease (IFALD), for which there are few therapeutic options. SEFA-6179 is a first-in-class structurally engineered medium-chain fatty acid analogue that acts through GPR84, PPARα, and PPARγ agonism. We hypothesized that SEFA-6179 would prevent biochemical and histologic liver injury in a preterm piglet model of IFALD. METHODS Preterm Yorkshire piglets were delivered by cesarean section, and parenteral nutrition was provided for 14 days via implanted central venous catheters. Animals were treated with either medium-chain triglyceride vehicle control or SEFA-6179. RESULTS Compared to medium-chain triglyceride vehicle at day of life 15, SEFA-6179 prevented biochemical cholestasis (direct bilirubin: 1.9 vs <0.2 mg/dL, P = .01; total bilirubin: 2.7 vs 0.4 mg/dL, P = .02; gamma glutamyl transferase: 172 vs 30 U/L, P = .01). SEFA-6179 also prevented steatosis (45.6 vs 13.9 mg triglycerides/g liver tissue, P = .009), reduced bile duct proliferation (1.6% vs 0.5% area cytokeratin 7 positive, P = .009), and reduced fibrosis assessed by a masked pathologist (median Ishak score: 3 vs 1, P = 0.007). RNA sequencing of liver tissue demonstrated that SEFA-6179 broadly impacted inflammatory, metabolic, and fibrotic pathways, consistent with its in vitro receptor activity (GPR84/PPARα/PPARγ agonist). CONCLUSIONS In a preterm piglet model of IFALD, SEFA-6179 treatment prevented biochemical cholestasis and steatosis and reduced bile duct proliferation and fibrosis. SEFA-6179 is a promising first-in-class therapy for the prevention and treatment of IFALD that will be investigated in an upcoming phase II clinical trial.
Collapse
Affiliation(s)
- Scott C Fligor
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Savas T Tsikis
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Thomas I Hirsch
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Amy Pan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Kamila Moskowitzova
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Lorena Rincon-Cruz
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Ashlyn E Whitlock
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts
| | - Arthur P Nedder
- Animal Resources Children's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - Kathleen M Gura
- Harvard Medical School, Boston, Massachusetts; Department of Pharmacy and the Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts
| | | | - Mark Puder
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
15
|
Translational Control of Metabolism and Cell Cycle Progression in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24054885. [PMID: 36902316 PMCID: PMC10002961 DOI: 10.3390/ijms24054885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The liver is a metabolic hub characterized by high levels of protein synthesis. Eukaryotic initiation factors, eIFs, control the first phase of translation, initiation. Initiation factors are essential for tumor progression and, since they regulate the translation of specific mRNAs downstream of oncogenic signaling cascades, may be druggable. In this review, we address the issue of whether the massive translational machinery of liver cells contributes to liver pathology and to the progression of hepatocellular carcinoma (HCC); it represents a valuable biomarker and druggable target. First, we observe that the common markers of HCC cells, such as phosphorylated ribosomal protein S6, belong to the ribosomal and translational apparatus. This fact is in agreement with observations that demonstrate a huge amplification of the ribosomal machinery during the progression to HCC. Some translation factors, such as eIF4E and eIF6, are then harnessed by oncogenic signaling. In particular, the action of eIF4E and eIF6 is particularly important in HCC when driven by fatty liver pathologies. Indeed, both eIF4E and eIF6 amplify at the translational level the production and accumulation of fatty acids. As it is evident that abnormal levels of these factors drive cancer, we discuss their therapeutic value.
Collapse
|
16
|
Shen Y, Zhang R, Li X. Identification of eIF6 as a prognostic factor that drives tumor progression and predicts arsenic trioxide efficacy in lung adenocarcinoma. Mol Biol Rep 2023; 50:1167-1180. [PMID: 36435920 PMCID: PMC9889454 DOI: 10.1007/s11033-022-07917-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality worldwide. Dysregulation of mRNA translation can contribute to the development and progression of cancer whilst also having an impact on the prognosis of different types of malignancies. Eukaryotic translation initiation factors (eIFs) have been reported to serve a key role in the initiation of mRNA translation. However, little was known about the association between eIF6 and lung adenocarcinoma (LUAD) progression. We aimed to elucidate the roles of eIF6 in LUAD tumorigenesis. METHODS Bioinformatic analysis was conducted to assess the clinical significance of eIF6 in LUAD. CCK-8, colony formation assays were used to evaluate the biological roles of eIF6. The subcutaneous model was used to assess the in vivo roles of eIF6. RESULTS In the present study, it was found that eIF6 expression was significantly higher in LUAD samples compared with that in normal lung tissues. Higher expression levels of eIF6 were found to be associated with more advanced clinical stages of LUAD and poorer prognoses in patients with LUAD. Subsequently, overexpression of eIF6 was demonstrated to promote LUAD cell proliferation, migration and invasion, which are features of metastasis, in vitro. By contrast, inhibition of eIF6 induced cell cycle arrest and apoptosis in LUAD cells. Further bioinformatics analysis and experimental assays revealed that eIF6 expression positively correlated with the mRNA expression of stemness-associated genes in LUAD cells. Targeting eIF6 suppressed the sphere formation capacity of LUAD cells. In addition, data from the subcutaneous xenograft model in vivo also suggested that eIF6 deficiency could significantly delay tumor growth and improve the prognosis of mice. Targeting eIF6 rendered LUAD cells sensitive to arsenic trioxide treatment. CONCLUSION The present study suggest that eIF6 can serve as a prognostic biomarker and a potential therapeutic target for patients with LUAD.
Collapse
Affiliation(s)
- Yan Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu P.R. China
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University School of Medicine, 200000 Shanghai, P.R. China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu P.R. China
| |
Collapse
|
17
|
Meng W, Xiao H, Mei P, Chen J, Wang Y, Zhao R, Liao Y. Critical Roles of METTL3 in Translation Regulation of Cancer. Biomolecules 2023; 13:biom13020243. [PMID: 36830614 PMCID: PMC9953158 DOI: 10.3390/biom13020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Aberrant translation, a characteristic feature of cancer, is regulated by the complex and sophisticated RNA binding proteins (RBPs) in the canonical translation machinery. N6-methyladenosine (m6A) modifications are the most abundant internal modifications in mRNAs mediated by methyltransferase-like 3 (METTL3). METTL3 is commonly aberrantly expressed in different tumors and affects the mRNA translation of many oncogenes or dysregulated tumor suppressor genes in a variety of ways. In this review, we discuss the critical roles of METTL3 in translation regulation and how METTL3 and m6A reader proteins in collaboration with RBPs within the canonical translation machinery promote aberrant translation in tumorigenesis, providing an overview of recent efforts aiming to 'translate' these results to the clinic.
Collapse
Affiliation(s)
- Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
18
|
Muñoz-Ayala A, Chimal-Vega B, García-González V. Translation initiation and its relationship with metabolic mechanisms in cancer development, progression and chemoresistance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:111-141. [PMID: 36088073 DOI: 10.1016/bs.apcsb.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pathways that regulate protein homeostasis (proteostasis) in cells range from mRNA processing to protein degradation; perturbations in regulatory mechanisms of these pathways can lead to oncogenic cellular processes. Protein synthesis modulation failures are common phenomena in cancer cells, wherein specific conditions that promote the translation of protein factors promoting carcinogenesis are present. These specific conditions may be favored by metabolic lipid alterations like those found in metabolic syndrome and obesity. Protein translation modifications have been described in obesity, favoring the translation of protein targets that benefit lipid accumulation; a determining factor is the activity of the cap-binding eukaryotic translation initiation factor 4E (eIF4E), a crosstalk in protein translation and lipogenesis. Besides, alterations of protein translation initiation steps are critical participants for the development of both pathogenic conditions, cancer, and obesity. This chapter is focused on the regulation of recognition and processing of carcinogenic-mRNA and the connections among lipid metabolism and cell signaling pathways that promote oncogenesis, tumoral microenvironment generation and potentially the development of chemoresistance. We performed an in-depth analysis of events, such as those occurring in obesity and dyslipidemias, that may influence protein translation, driving the recognition of certain mRNAs and favoring cancer development and chemoresistance.
Collapse
Affiliation(s)
- Andrea Muñoz-Ayala
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México.
| |
Collapse
|
19
|
Scagliola A, Miluzio A, Mori G, Ricciardi S, Oliveto S, Manfrini N, Biffo S. Inhibition of eIF6 Activity Reduces Hepatocellular Carcinoma Growth: An In Vivo and In Vitro Study. Int J Mol Sci 2022; 23:ijms23147720. [PMID: 35887068 PMCID: PMC9319760 DOI: 10.3390/ijms23147720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids in the liver. Given the high prevalence of NAFLD, its evolution to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) is of global concern. Therapies for managing NASH-driven HCC can benefit from targeting factors that play a continuous role in NAFLD evolution to HCC. Recent work has shown that postprandial liver translation exacerbates lipid accumulation through the activity of a translation factor, eukaryotic initiation factor 6 (eIF6). Here, we test the effect of eIF6 inhibition on the progression of HCC. Mice heterozygous for eIF6 express half the level of eIF6 compared to wt mice and are resistant to the formation of HCC nodules upon exposure to a high fat/high sugar diet combined with liver damage. Histology showed that nodules in eIF6 het mice were smaller with reduced proliferation compared to wt nodules. By using an in vitro model of human HCC, we confirm that eIF6 depletion reduces the growth of HCC spheroids. We also tested three pharmacological inhibitors of eIF6 activity—eIFsixty-1, eIFsixty-4, and eIFsixty-6—and all three reduced eIF6 binding to 60S ribosomes and limited the growth of HCC spheroids. Thus, inhibition of eIF6 activity is feasible and limits HCC formation.
Collapse
Affiliation(s)
- Alessandra Scagliola
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Annarita Miluzio
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
| | - Giada Mori
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
| | - Sara Ricciardi
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Nicola Manfrini
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Biffo
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Via Sforza 35, 20122 Milan, Italy; (A.S.); (A.M.); (G.M.); (S.R.); (S.O.); (N.M.)
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
20
|
Gao Y, Yuan L, Zeng J, Li F, Li X, Tan F, Liu X, Wan H, Kui X, Liu X, Ke C, Pei Z. eIF6 is potential diagnostic and prognostic biomarker that associated with 18F-FDG PET/CT features and immune signatures in esophageal carcinoma. Lab Invest 2022; 20:303. [PMID: 35794622 PMCID: PMC9258187 DOI: 10.1186/s12967-022-03503-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Background Although eukaryotic initiation factor 6 (eIF6) is a novel therapeutic target, data on its importance in the development of esophageal carcinoma (ESCA) remains limited. This study evaluated the correlation between eIF6 expression and metabolic analysis using fluorine-18 fluorodeoxyglucose (18F-FDG) -Positron emission tomography (PET) and immune gene signatures in ESCA. Methods This study employed The Cancer Genome Atlas (TCGA) to analyze the expression and prognostic value of eIF6, as well as its relationship with the immune gene signatures in ESCA patients. The qRT-PCR and Western blot analyses were used to profile the expression of eIF6 in ESCA tissues and different ESCA cell lines. The expression of tumor eIF6 and glucose transporter 1 (GLUT1) was examined using immunohistochemical tools in fifty-two ESCA patients undergoing routine 18F-FDG PET/CT before surgery. In addition, the cellular responses to eIF6 knockdown in human ESCA cells were assessed via the MTS, EdU, flow cytometry and wound healing assays. Results Our data demonstrated that compared with the normal esophageal tissues, eIF6 expression was upregulated in ESCA tumor tissues and showed a high diagnostic value with an area under curve of 0.825 for predicting ESCA. High eIF6 expression was significantly correlated with shorter overall survival of patients with esophagus adenocarcinoma (p = 0.038), but not in squamous cell carcinoma of the esophagus (p = 0.078). In addition, tumor eIF6 was significantly associated with 18F-FDG PET/CT parameters: maximal and mean standardized uptake values (SUVmax and SUVmean) and total lesion glycolysis (TLG) (rho = 0.458, 0.460, and 0.300, respectively, p < 0.01) as well as GLUT1 expression (rho = 0.453, p < 0.001). A SUVmax cutoff of 18.2 led to prediction of tumor eIF6 expression with an accuracy of 0.755. Functional analysis studies demonstrated that knockdown of eIF6 inhibited ESCA cell growth and migration, and fueled cell apoptosis. Moreover, the Bulk RNA gene analysis revealed a significant inverse association between eIF6 and the tumor-infiltrating immune cells (macrophages, T cells, or Th1 cells) and immunomodulators in the ESCA microenvironment. Conclusion Our study suggested that eIF6 might serve as a potential prognostic biomarker associated with metabolic variability and immune gene signatures in ESCA tumor microenvironment.
Collapse
|
21
|
Soares NC, Ali A, Srinivasulu V, Sharaf BM, Giddey AD, Okendo J, Al-Hroub HM, Semreen MH, Hamad M, Al-Tel TH. Unveiling the mechanism of action of nature-inspired anti-cancer compounds using a multi-omics approach. J Proteomics 2022; 265:104660. [PMID: 35728772 DOI: 10.1016/j.jprot.2022.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The 2020 global cancer registry has ranked breast cancer (BCa) as the most commonly diagnosed type of cancer and the most common cause of cancer-related deaths in women worldwide. Increasing resistance and significant side effects continue to limit the efficacy of anti-BCa drugs, hence the need to identify new drug targets and to develop novel compounds to overcome these limitations. Nature-inspired anti-cancer compounds are becoming increasingly popular since they often provide a relatively safe and effective alternative. In this study, we employed multi-omics techniques to gain insights into the relevant mechanism of action of two recently identified new nature-inspired anti-cancer compounds (SIMR3066 and SIMR3058). Discovery proteomics analysis combined with LC-MS/MS-based untargeted metabolomics analysis was performed on compound-treated vs DMSO-treated (control) MCF-7 cells. Downstream protein functional enrichment analysis showed that most of the responsive proteins were functionally associated with antigen processing and neutrophil degranulation, RNA catabolism and protein folding as well as cytoplasmic vesicle lumen and mitochondrial matrix formation. Consistent with the proteomics findings, metabolomic pathway analysis suggested that the differentially abundant compounds indicated altered metabolic pathways such as glycolysis, the Krebs cycle and oxidative phosphorylation. Furthermore, metabolomics-based enriched-for-action pathway analysis showed that the two compounds associate with mercaptopurine, thioguanine and azathioprine related pathways. Lastly, integrated proteomics and metabolomics analysis revealed that treatment of BCa with SIMR3066 disrupts several signaling pathways including p53-mediated apoptosis and the circadian entertainment pathway. Overall, the multi-omics approach we used in this study indicated that it is a powerful tool in probing the mechanism of action of lead drug candidates. SIGNIFICANCE: In this study we adopted a multi-omics (proteomics and metabolomics) strategy to learn more about the molecular mechanisms of action of nature-inspired potential anticancer drugs. Following treatment with SIMR3066 or SIMR3058, the integration of these multi-omics data sets revealed which biological pathways are altered in BCa cells. This study demonstrates that combining proteomics with metabolomics is a powerful method to investigate the mechanism of action of potential anticancer lead drug candidates.
Collapse
Affiliation(s)
- Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, United Arab Emirates.
| | - Amjad Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Basma M Sharaf
- College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Alexander D Giddey
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Javan Okendo
- Systems and Chemical Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Hamza M Al-Hroub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, United Arab Emirates
| |
Collapse
|
22
|
Zhang F, Waheed S, Armato U, Wu J, Zhang C, Li Z. eIF6 as a Promising Diagnostic and Prognostic Biomarker for Poorer Survival of Cutaneous Melanoma. Front Oncol 2022; 12:848346. [PMID: 35707354 PMCID: PMC9189357 DOI: 10.3389/fonc.2022.848346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is the deadliest skin cancer and has the most rapidly increasing incidences among all cancer types. Previous research elucidated that melanoma can only be successfully treated with surgical abscission in the early stage. Therefore, reliable and specific biomarkers are crucial to melanoma diagnosis since it often looks like nevi in the clinical manifestations. Moreover, identifying key genes contributing to melanoma progression is also highly regarded as a potential strategy for melanoma therapy. In this respect, translation initiator eIF6 has been proved as a pro-tumor factor in several cancers. However, the role of eIF6 in the skin cutaneous melanoma progression and its potential as a prognostic marker is still unexplored. Methods The immunochemical analysis of clinical specimens were served to assess eIF6 expression levels. Gene Expression Profiling Interactive Analysis (GEPIA) database consultations allowed us to find the survival rates of the eIF6-overexpressed patients. eIF6 cellular effects were evaluated in an eIF6-overexpressed A375 cell line constructed with a lentivirus. The analysis of down-stream effectors or pathways was conducted using C-Bioportal and STRING databases. Results Our results revealed that eIF6 was highly over-expressed in melanomas compared to normal skin specimens, and thus the abnormally high level of eIF6 can be a diagnostic marker for melanoma. The in silica analysis indicated that patients with eIF6 over-expression had lower survival rates than that low-expression in SKCM. Meanwhile, similar results also could be found in the other four types of cancers. In vitro, over-expression of eIF6 increased the proliferation and migration of melanoma cells. Correspondingly, pan-cancer clustering analysis indicated the expression level of intermediate filament proteins was correlated with that of eIF6 expression. In our study, all over-expressed keratin proteins, in accordance with over-expressed eIF6, had a negative correlation with melanoma prognosis. Moreover, the decreased methylation level of keratin genes suggested a new potential regulation mode of eIF6. Conclusions The up-regulated eIF6 could be a potential diagnostic and prognostic biomarker of melanoma. This study also provides insights into the potential role of eIF6 in pan-cancer epigenetic regulation.
Collapse
Affiliation(s)
- Fangyingnan Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Saquib Waheed
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Ubaldo Armato
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhibin Li, ; Chao Zhang,
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- *Correspondence: Zhibin Li, ; Chao Zhang,
| |
Collapse
|
23
|
Kovalski JR, Kuzuoglu‐Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J 2022; 41:e109823. [PMID: 35315941 PMCID: PMC9016353 DOI: 10.15252/embj.2021109823] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.
Collapse
Affiliation(s)
- Joanna R Kovalski
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Duygu Kuzuoglu‐Ozturk
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
24
|
AlSudais H, Rajgara R, Saleh A, Wiper-Bergeron N. C/EBPβ promotes the expression of atrophy-inducing factors by tumours and is a central regulator of cancer cachexia. J Cachexia Sarcopenia Muscle 2022; 13:743-757. [PMID: 35014202 PMCID: PMC8818591 DOI: 10.1002/jcsm.12909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor whose high expression in human cancers is associated with tumour aggressiveness and poor outcomes. Most advanced cancer patients will develop cachexia, characterized by loss of skeletal muscle mass. In response to secreted factors from cachexia-inducing tumours, C/EBPβ is stimulated in muscle, leading to both myofibre atrophy and the inhibition of muscle regeneration. Involved in the regulation of immune responses, C/EBPβ induces the expression of many secreted factors, including cytokines. Because tumour-secreted factors drive cachexia and aggressive tumours have higher expression of C/EBPβ, we examined a potential role for C/EBPβ in the expression of tumour-derived cachexia-inducing factors. METHODS We used gain-of-function and loss-of-function approaches in vitro and in vivo to evaluate the role of tumour C/EBPβ expression on the secretion of cachexia-inducing factors. RESULTS We report that C/EBPβ overexpression up-regulates the expression of 260 secreted protein genes, resulting in a secretome that inhibits myogenic differentiation (-31%, P < 0.05) and myotube maturation [-38% (fusion index) and -25% (myotube diameter), P < 0.05]. We find that knockdown of C/EBPβ in cachexia-inducing Lewis lung carcinoma cells restores myogenic differentiation (+25%, P < 0.0001) and myotube diameter (+90%, P < 0.0001) in conditioned medium experiments and, in vivo, prevents muscle wasting (-51% for small myofibres vs. controls, P < 0.01; +140% for large myofibres, P < 0.01). Conversely, overexpression of C/EBPβ in non-cachectic tumours converts their secretome into a cachexia-inducing one, resulting in reduced myotube diameter (-41%, P < 0.0001, EL4 model) and inhibition of differentiation in culture (-26%, P < 0.01, EL4 model) and muscle wasting in vivo (+98% small fibres, P < 0.001; -76% large fibres, P < 0.001). Comparison of the differently expressed transcripts coding for secreted proteins in C/EBPβ-overexpressing myoblasts with the secretome from 27 different types of human cancers revealed ~18% similarity between C/EBPβ-regulated secreted proteins and those secreted by highly cachectic tumours (brain, pancreatic, and stomach cancers). At the protein level, we identified 16 novel secreted factors that are present in human cancer secretomes and are up-regulated by C/EBPβ. Of these, we tested the effect of three factors (SERPINF1, TNFRSF11B, and CD93) on myotubes and found that all had atrophic potential (-33 to -36% for myotube diameter, P < 0.01). CONCLUSIONS We find that C/EBPβ is necessary and sufficient to induce the secretion of cachexia-inducing factors by cancer cells and loss of C/EBPβ in tumours attenuates muscle atrophy in an animal model of cancer cachexia. Our findings establish C/EBPβ as a central regulator of cancer cachexia and an important therapeutic target.
Collapse
Affiliation(s)
- Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashida Rajgara
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aisha Saleh
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|