1
|
Chuong CM, Wu P, Yu Z, Liang YC, Widelitz RB. Organizational principles of integumentary organs: Maximizing variations for effective adaptation. Dev Biol 2025; 522:171-195. [PMID: 40113027 DOI: 10.1016/j.ydbio.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
The integument serves as the interface between an organism and its environment. It primarily comprises ectoderm-derived epithelium and mesenchyme derived from various embryonic sources. These integumentary organs serve as a barrier defining the physiological boundary between the internal and exterior environments and fulfill diverse functions. How does the integument generate such a large diversity? Here, we attempt to decipher the organizational principles. We focus on amniotes and use appendage follicles as the primary examples. The integument begins as a simple planar sheet of coupled epithelial and mesenchymal cells, then becomes more complex through the following patterning processes. 1) De novo Turing periodic patterning process: This process converts the integument into multiple skin appendage units. 2) Adaptive patterning process: Dermal muscle, blood vessels, adipose tissue, and other components are assembled and organized around appendage follicles when present. 3) Cyclic renewal: Skin appendage follicles contain stem cells and their niches, enabling physiological molting and regeneration in the adult animal. 4) Spatial variations: Multiple appendage units allow modulation of shape, size, keratin types, and color patterns of feathers and hairs across the animal's surface. 5) Temporal phenotypic plasticity: Cyclic renewal permits temporal transition of appendage phenotypes, i.e. regulatory patterning or integumentary metamorphosis, throughout an animal's lifetime. The diversities in (4) and (5) can be generated epigenetically within the same animal. Over the evolutionary timescale, different species can modulate the number, size, and distributions of existing ectodermal organs in the context of micro-evolution, allowing effective adaptation to new climates as seen in the variation of hair length among mammals. Novel ectodermal organs can also emerge in the context of macro-evolution, enabling animals to explore new ecological niches, as seen in the emergence of feathers on dinosaurs. These principles demonstrate how multi-scale organ adaption in the amniotes can maximize diverse and flexible integumentary organ phenotypes, producing a vast repertoire for natural selection and thereby providing effective adaptation and evolutionary advantages.
Collapse
Affiliation(s)
- Cheng Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
2
|
Galipot P. Colour pattern studies: the SE (せ) method, a shape-centred approach to explore biodiversity and avoid aesthetic biases. QUANTITATIVE PLANT BIOLOGY 2025; 6:e10. [PMID: 40297239 PMCID: PMC12035780 DOI: 10.1017/qpb.2025.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 02/05/2025] [Accepted: 02/22/2025] [Indexed: 04/30/2025]
Abstract
The preference towards colourful patterns generates many aesthetic biases, including in Biology research, leading to taxonomic preferences and understudied groups, including many plant taxa. After reviewing the importance of aesthetics in Turing colour pattern studies and the relative nature of the sense of beauty in Biology, I present a method called SE (せ) that strongly reduces taxonomic preferences in colour pattern formation studies, together with allowing the exploration of colour patterns biodiversity and facilitating the discovery of new morphogenesis processes.
Collapse
|
3
|
Lagcher E, Lensing K, Bosse M, Fischer K, Camacho G, McManus J, Tensen L. Red, gold, and green: comparative genomics of polymorphic leopards from South Africa. Evolution 2025; 79:442-456. [PMID: 39659233 DOI: 10.1093/evolut/qpae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/10/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
An important goal of comparative and functional genomics is to connect genetic polymorphisms to phenotypic variation. Leopards (Panthera pardus) from northern South Africa are particularly diverse, as here a unique color morph occurs, as well as two deeply diverged southern (SA) and central African (CA) mitochondrial clades, stemming from Pleistocene refugia. Here, we present the first whole genomes of a red leopard and a black (captive) leopard, and wildtypes belonging to the CA and SA mitochondrial clades, to evaluate genome-wide diversity, divergence, and high-impact mutations that may relate to their phenotype. In the black leopard, we found long runs of homozygosity (ROHs), low nucleotide diversity across the genome, and a large number of homozygous structural variants, likely resulting from inbreeding to maintain this color morph in captivity. In red leopards, runs of homozygosity were slightly longer compared to wildtype leopards, with potential deleterious mutations relating to its phenotype, including impaired vision. When assessing population structure, we found no divergence between CA and SA leopards and the rest of Africa, whether comparing single nucleotide or structural variants. This illustrates the homogenizing effect of introgression, and highlights that although leopards in northern South Africa may be phenotypically unique, they are not genetically different.
Collapse
Affiliation(s)
- Elina Lagcher
- Section Ecology & Evolution, Wageningen University and Research-Animal Breeding and Genomics, Wageningen, Netherlands
| | - Kim Lensing
- Section Ecology & Evolution, Wageningen University and Research-Animal Breeding and Genomics, Wageningen, Netherlands
| | - Mirte Bosse
- Section Ecology & Evolution, Wageningen University and Research-Animal Breeding and Genomics, Wageningen, Netherlands
- Animal Breeding and Genomics, Amsterdam Institute of Life & Environment (A-Life), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Klaus Fischer
- Department of Biology, Institute for Integrated Natural Sciences, Zoology, University of Koblenz-Landau, Koblenz, Germany
| | - Gerrie Camacho
- Mpumalanga Tourism and Parks Agency, Nelspruit, South Africa
| | - Jeannine McManus
- Research Department Landmark Foundation, Riversdale, South Africa
- Biodiversity and Conservation Biology Department, University of the Western Cape, Bellville, South Africa
| | - Laura Tensen
- Section of Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
4
|
Galipot P. And growth on form? How tissue expansion generates novel shapes, colours and enhance biological functions of Turing colour patterns of Eukaryotes. PLoS One 2025; 20:e0305921. [PMID: 39899565 PMCID: PMC11790173 DOI: 10.1371/journal.pone.0305921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/04/2024] [Indexed: 02/05/2025] Open
Abstract
Evidenced in zebrafishes skin and Mimulus petal, Turing-like mechanisms are probably responsible for many periodic color patterns of Eukaryotes. They are characterized by the mathematical relationships linking their cellular or molecular actors, the periodicity and the geometrical range of the patterns they produce: spots, stripes or mazes. Nevertheless, some periodic patterns such as leopard iconic rosettes required additional ingredients to explain their formation. Growth being the main candidate, we extensively explore its multiple facets, at the Eukaryotes scale. We show that far beyond the particular feline coat pattern, putative-growth Turing color patterns are present in many diverse lineages of plants and animals and seem absent in Fungi and unicellular lineages. Using models, we show the many ways growth can induce new shapes and colors, and that putative-growth pattern locations correlates with tissue hot spots of growth, suggesting the latter as the underlying mechanism. By reverse reasoning, we show that growth effects could reveal crucial information about pattern formation. We show how putative growth patterns can contribute to influence organisms visibility, thereby improving camouflage or aposematism. Our results demonstrate the range of morphogenetic roles that tissue expansion can take, by interacting with a scale-sensitive mechanism, here Turing-like patterning. Considering this extensive overview of its biological importance, both qualitatively and quantitatively, links between growth and form might more than ever needed to be explored.
Collapse
Affiliation(s)
- Pierre Galipot
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, OSUR, Université de Rennes 1, Bâtiment, Rennes Cedex, France
| |
Collapse
|
5
|
Liang M, Ringham L, Ye C, Yan X, Schaumburger N, Cieslak M, Blinov M, Prusinkiewicz P, Yuan YW. From spots to stripes: Evolution of pigmentation patterns in monkeyflowers via modulation of a reaction-diffusion system and its prepatterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632501. [PMID: 39829766 PMCID: PMC11741427 DOI: 10.1101/2025.01.10.632501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The reaction-diffusion (RD) system is widely assumed to account for many complex, self-organized pigmentation patterns in natural organisms. However, the specific configurations of such RD networks and how RD systems interact with positional information (i.e., prepatterns) that may specify the initiation conditions for the RD operation remain largely unknown. Here, we introduced a three-substance RD system underlying the formation of repetitive pigment spots and stripes in Mimulus flowers. It consists of an R2R3-MYB activator (NEGAN), an R3-MYB inhibitor (RTO), and a coactivator represented by two paralogous bHLH proteins. Through fine-scale genetic analyses, transgenic experiments, and computer simulations, we identified the causal loci contributing to the evolutionary transition from sparsely dispersed spots to longitudinal stripes. Genetic changes at these loci modulate the prepatterns of the activator and coactivator expression and the promoter activities of the inhibitor and one of the coactivator paralogs. Our findings highlight the importance of prepatterns towards a realistic description of RD systems in natural organisms, and reveal the genetic mechanism generating pattern variation through modulation of the kinetics of the RD system and its prepatterns.
Collapse
Affiliation(s)
- Mei Liang
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- These authors contributed equally
| | - Lee Ringham
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
- These authors contributed equally
| | - Changning Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Nathan Schaumburger
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael Blinov
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Lead contact
| |
Collapse
|
6
|
Nguyen NM, Farge E. Mechanical induction in metazoan development and evolution: from earliest multi-cellular organisms to modern animal embryos. Nat Commun 2024; 15:10695. [PMID: 39702750 PMCID: PMC11659590 DOI: 10.1038/s41467-024-55100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
The development and origin of animal body forms have long been intensely explored, from the analysis of morphological traits during antiquity to Newtonian mechanical conceptions of morphogenesis. Advent of molecular biology then focused most interests on the biochemical patterning and genetic regulation of embryonic development. Today, a view is arising of development of multicellular living forms as a phenomenon emerging from non-hierarchical, reciprocal mechanical and mechanotransductive interactions between biochemical patterning and biomechanical morphogenesis. Here we discuss the nature of these processes and put forward findings on how early biochemical and biomechanical patterning of metazoans may have emerged from a primitive behavioural mechanotransducive feeding response to marine environment which might have initiated the development of first animal multicellular organisms.
Collapse
Affiliation(s)
- Ngoc Minh Nguyen
- Mechanics and Genetics of Embryonic Development group, Institut Curie, Centre OCAV PSL Research University, Sorbonne University, CNRS UMR168 Physics of Cells and Cancer, Inserm, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic Development group, Institut Curie, Centre OCAV PSL Research University, Sorbonne University, CNRS UMR168 Physics of Cells and Cancer, Inserm, 11 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
7
|
Kaelin CB, McGowan KA, Trotman JC, Koroma DC, David VA, Menotti-Raymond M, Graff EC, Schmidt-Küntzel A, Oancea E, Barsh GS. Molecular and genetic characterization of sex-linked orange coat color in the domestic cat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624608. [PMID: 39605675 PMCID: PMC11601623 DOI: 10.1101/2024.11.21.624608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The Sex-linked orange mutation in domestic cats causes variegated patches of reddish/yellow hair and is a defining signature of random X-inactivation in female tortoiseshell and calico cats. Unlike the situation for most coat color genes, there is no apparent homolog for Sex-linked orange in other mammals. We show that the Sex-linked orange is caused by a 5 kb deletion that leads to ectopic and melanocyte-specific expression of the Rho GTPase Activating Protein 36 ( Arhgap36 ) gene. Single cell RNA-seq studies from fetal cat skin reveal that red/yellow hair color is caused by reduced expression of melanogenic genes that are normally activated by the Melanocortin 1 receptor (Mc1r)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, but the Mc1r gene and its ability to stimulate cAMP accumulation is intact. Instead, we show that increased expression of Arhgap36 in melanocytes leads to reduced levels of the PKA catalytic subunit (PKA C ); thus, Sex-linked orange is genetically and biochemically downstream of Mc1r . Our findings solve a comparative genomic conundrum, provide in vivo evidence for the ability of Arhgap36 to inhibit PKA, and reveal a molecular explanation for a charismatic color pattern with a rich genetic history.
Collapse
|
8
|
Staddon MF. How the zebra got its stripes: Curvature-dependent diffusion orients Turing patterns on three-dimensional surfaces. Phys Rev E 2024; 110:034402. [PMID: 39425380 DOI: 10.1103/physreve.110.034402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/18/2024] [Indexed: 10/21/2024]
Abstract
Many animals have patterned fur, feathers, or scales, such as the stripes of a zebra. Turing models, or reaction-diffusion systems, are a class of mathematical models of interacting species that have been successfully used to generate animal-like patterns for many species. When diffusion of the inhibitor is high enough relative to the activator, a diffusion-driven instability can spontaneously form patterns. However, it is not just the type of pattern but also the orientation that matters, and it remains unclear how patterns are oriented in practice. Here, we propose a mechanism by which the curvature of the surface influences the rate of diffusion, and can recapture the correct orientation of stripes on models of a zebra and of a cat in numerical simulations. Previous work has shown how anisotropic diffusion can give stripe forming reaction-diffusion systems a bias in orientation. From the observation that zebra stripes run around the direction of highest curvature, that is around the torso and legs, we apply this result by modifying the anisotropic diffusion rates based on the local curvature. These results show how local geometry can influence the reaction dynamics to give robust, global-scale patterns. Overall, this model proposes a coupling between the system geometry and reaction-diffusion dynamics that can give global control over the patterning by using only local curvature information. Such a model can give shape and positioning information in animal development without the need for spatially dependent morphogen gradients.
Collapse
|
9
|
Xiong S, Cui D, Yu N, He R, Zhu H, Wei J, Wang M, Duan W, Huang X, Ge L, Guo Y. Exploring the Maintaining Period and the Differentially Expressed Genes between the Yellow and Black Stripes of the Juvenile Stripe in the Offspring of Wild Boar and Duroc. Animals (Basel) 2024; 14:2109. [PMID: 39061571 PMCID: PMC11274008 DOI: 10.3390/ani14142109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coloration is a crucial trait that allows species to adapt and survive in different environments. Wild boars exhibit alternating black (dark) and yellow (light) longitudinal stripes on their back during their infancy (juvenile stripes), and as adults, they transform into uniform wild-type coat color. Aiming to record the procedure of juvenile stripes disappearing, piglets (WD) with juvenile stripes were produced by crossing a wild boar with Duroc sows, and photos of their coat color were taken from 20 d to 220 d. The pigments in the hairs from the black and yellow stripes were determined. Furthermore, the differentially expressed genes between the black and yellow stripes were investigated in 5 WD with the age of 30 d using whole-transcriptome sequencing to explore the genetic mechanism of the juvenile stripes. The juvenile stripes started to disappear at about 70 d, and stripes were not distinguished with the naked eye at about 160 d; that is, the juvenile stripe completely disappeared. A hotspot of a differentially expressing (DE) region was found on chromosome 13, containing/covering 2 of 13 DE genes and 8 of 10 DE lncRNAs in this region. A network among ZIC4, ssc-miR-532-3p, and ENSSSCG00000056225 might regulate the formation of juvenile stripes. Altogether, this study provides new insights into spatiotemporal coat color pattern.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuanmei Guo
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
10
|
Bond DM, Veale A, Alexander A, Hore TA. Coat colour in marsupials: genetic variants at the ASIP locus determine grey and black fur of the brushtail possum. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240806. [PMID: 39086822 PMCID: PMC11288674 DOI: 10.1098/rsos.240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
The possession of fur or hair is a defining characteristic of mammals and can occur in a variety of colours and patterns. While genetic determinants of coat colour are well described in eutherian 'placental' mammals, the other major mammalian infraclass, marsupials, is grossly understudied. The fur of the common brushtail possum (Trichosurus vulpecula), an iconic native mammal found throughout Australia and introduced into Aotearoa New Zealand, possesses two main colour morphs: grey and black. To identify genetic variants associated with coat colour, we performed a genome-wide association study (GWAS) with genotype by sequencing (GBS) data. Single nucleotide variants (SNVs) on chromosome 3, close to the agouti signalling protein (ASIP) gene that controls the temporal and spatial distribution of pigments in eutherian mammals, were identified. Fine-mapping identified a C>T variant at chr3:100483705 that results in a ASIP:p.Arg115Cys missense substitution, and animals homozygous for this variant have black fur. In addition to uncovering the first genetic determinant of coat colour in a natural marsupial population, comparative analysis of ASIP in divergent marsupial species identified the dasyurids as having accelerated evolution, reflecting their well described diversity of coat colour and pattern.
Collapse
Affiliation(s)
- Donna M. Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Andrew Veale
- Manaaki Whenua—Landcare Research, Lincoln, New Zealand
| | - Alana Alexander
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Murphy WJ, Harris AJ. Toward telomere-to-telomere cat genomes for precision medicine and conservation biology. Genome Res 2024; 34:655-664. [PMID: 38849156 PMCID: PMC11216403 DOI: 10.1101/gr.278546.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Genomic data from species of the cat family Felidae promise to stimulate veterinary and human medical advances, and clarify the coherence of genome organization. We describe how interspecies hybrids have been instrumental in the genetic analysis of cats, from the first genetic maps to propelling cat genomes toward the T2T standard set by the human genome project. Genotype-to-phenotype mapping in cat models has revealed dozens of health-related genetic variants, the molecular basis for mammalian pigmentation and patterning, and species-specific adaptations. Improved genomic surveillance of natural and captive populations across the cat family tree will increase our understanding of the genetic architecture of traits, population dynamics, and guide a future of genome-enabled biodiversity conservation.
Collapse
Affiliation(s)
- William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA;
- Department of Biology, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Andrew J Harris
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| |
Collapse
|
12
|
Ramos R, Swedlund B, Ganesan AK, Morsut L, Maini PK, Monuki ES, Lander AD, Chuong CM, Plikus MV. Parsing patterns: Emerging roles of tissue self-organization in health and disease. Cell 2024; 187:3165-3186. [PMID: 38906093 PMCID: PMC11299420 DOI: 10.1016/j.cell.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/22/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024]
Abstract
Patterned morphologies, such as segments, spirals, stripes, and spots, frequently emerge during embryogenesis through self-organized coordination between cells. Yet, complex patterns also emerge in adults, suggesting that the capacity for spontaneous self-organization is a ubiquitous property of biological tissues. We review current knowledge on the principles and mechanisms of self-organized patterning in embryonic tissues and explore how these principles and mechanisms apply to adult tissues that exhibit features of patterning. We discuss how and why spontaneous pattern generation is integral to homeostasis and healing of tissues, illustrating it with examples from regenerative biology. We examine how aberrant self-organization underlies diverse pathological states, including inflammatory skin disorders and tumors. Lastly, we posit that based on such blueprints, targeted engineering of pattern-driving molecular circuits can be leveraged for synthetic biology and the generation of organoids with intricate patterns.
Collapse
Affiliation(s)
- Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Benjamin Swedlund
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anand K Ganesan
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA; Department of Dermatology, University of California, Irvine, Irvine, CA, USA
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Edwin S Monuki
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
13
|
Sudderick ZR, Glover JD. Periodic pattern formation during embryonic development. Biochem Soc Trans 2024; 52:75-88. [PMID: 38288903 PMCID: PMC10903485 DOI: 10.1042/bst20230197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
During embryonic development many organs and structures require the formation of series of repeating elements known as periodic patterns. Ranging from the digits of the limb to the feathers of the avian skin, the correct formation of these embryonic patterns is essential for the future form and function of these tissues. However, the mechanisms that produce these patterns are not fully understood due to the existence of several modes of pattern generation which often differ between organs and species. Here, we review the current state of the field and provide a perspective on future approaches to studying this fundamental process of embryonic development.
Collapse
Affiliation(s)
- Zoe R. Sudderick
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, U.K
| | - James D. Glover
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
14
|
Johnson MR, Li S, Guerrero-Juarez CF, Miller P, Brack BJ, Mereby SA, Moreno JA, Feigin CY, Gaska J, Rivera-Perez JA, Nie Q, Ploss A, Shvartsman SY, Mallarino R. A multifunctional Wnt regulator underlies the evolution of rodent stripe patterns. Nat Ecol Evol 2023; 7:2143-2159. [PMID: 37813945 PMCID: PMC10839778 DOI: 10.1038/s41559-023-02213-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/27/2023] [Indexed: 10/11/2023]
Abstract
Animal pigment patterns are excellent models to elucidate mechanisms of biological organization. Although theoretical simulations, such as Turing reaction-diffusion systems, recapitulate many animal patterns, they are insufficient to account for those showing a high degree of spatial organization and reproducibility. Here, we study the coat of the African striped mouse (Rhabdomys pumilio) to uncover how periodic stripes form. Combining transcriptomics, mathematical modelling and mouse transgenics, we show that the Wnt modulator Sfrp2 regulates the distribution of hair follicles and establishes an embryonic prepattern that foreshadows pigment stripes. Moreover, by developing in vivo gene editing in striped mice, we find that Sfrp2 knockout is sufficient to alter the stripe pattern. Strikingly, mutants exhibited changes in pigmentation, revealing that Sfrp2 also regulates hair colour. Lastly, through evolutionary analyses, we find that striped mice have evolved lineage-specific changes in regulatory elements surrounding Sfrp2, many of which may be implicated in modulating the expression of this gene. Altogether, our results show that a single factor controls coat pattern formation by acting both as an orienting signalling mechanism and a modulator of pigmentation. More broadly, our work provides insights into how spatial patterns are established in developing embryos and the mechanisms by which phenotypic novelty originates.
Collapse
Affiliation(s)
- Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sha Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Christian F Guerrero-Juarez
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Pearson Miller
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Benjamin J Brack
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sarah A Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jorge A Moreno
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jenna Gaska
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Fraga Delfino Kunz C, Gerisch A, Glover J, Headon D, Painter KJ, Matthäus F. Novel Aspects in Pattern Formation Arise from Coupling Turing Reaction-Diffusion and Chemotaxis. Bull Math Biol 2023; 86:4. [PMID: 38038776 PMCID: PMC10692013 DOI: 10.1007/s11538-023-01225-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Recent experimental studies on primary hair follicle formation and feather bud morphogenesis indicate a coupling between Turing-type diffusion driven instability and chemotactic patterning. Inspired by these findings we develop and analyse a mathematical model that couples chemotaxis to a reaction-diffusion system exhibiting diffusion-driven (Turing) instability. While both systems, reaction-diffusion systems and chemotaxis, can independently generate spatial patterns, we were interested in how the coupling impacts the stability of the system, parameter region for patterning, pattern geometry, as well as the dynamics of pattern formation. We conduct a classical linear stability analysis for different model structures, and confirm our results by numerical analysis of the system. Our results show that the coupling generally increases the robustness of the patterning process by enlarging the pattern region in the parameter space. Concerning time scale and pattern regularity, we find that an increase in the chemosensitivity can speed up the patterning process for parameters inside and outside of the Turing space, but generally reduces spatial regularity of the pattern. Interestingly, our analysis indicates that pattern formation can also occur when neither the Turing nor the chemotaxis system can independently generate pattern. On the other hand, for some parameter settings, the coupling of the two processes can extinguish the pattern formation, rather than reinforce it. These theoretical findings can be used to corroborate the biological findings on morphogenesis and guide future experimental studies. From a mathematical point of view, this work sheds a light on coupling classical pattern formation systems from the parameter space perspective.
Collapse
Affiliation(s)
- Camile Fraga Delfino Kunz
- Frankfurt Institute for Advanced Studies and Department of Computer Science and Mathematics, Goethe-University Frankfurt, Ruth-Moufang-Str. 1, 60438, Frankfurt, Germany
| | - Alf Gerisch
- Department of Mathematics, Technical University Darmstadt, Darmstadt, Germany
| | - James Glover
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Denis Headon
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kevin John Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, Turin, Italy
| | - Franziska Matthäus
- Frankfurt Institute for Advanced Studies and Department of Computer Science and Mathematics, Goethe-University Frankfurt, Ruth-Moufang-Str. 1, 60438, Frankfurt, Germany.
| |
Collapse
|
16
|
Abstract
Vertebrates exhibit a wide range of color patterns, which play critical roles in mediating intra- and interspecific communication. Because of their diversity and visual accessibility, color patterns offer a unique and fascinating window into the processes underlying biological organization. In this review, we focus on describing many of the general principles governing the formation and evolution of color patterns in different vertebrate groups. We characterize the types of patterns, review the molecular and developmental mechanisms by which they originate, and discuss their role in constraining or facilitating evolutionary change. Lastly, we outline outstanding questions in the field and discuss different approaches that can be used to address them. Overall, we provide a unifying conceptual framework among vertebrate systems that may guide research into naturally evolved mechanisms underlying color pattern formation and evolution.
Collapse
Affiliation(s)
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
17
|
Staps M, Miller PW, Tarnita CE, Mallarino R. Development shapes the evolutionary diversification of rodent stripe patterns. Proc Natl Acad Sci U S A 2023; 120:e2312077120. [PMID: 37871159 PMCID: PMC10636316 DOI: 10.1073/pnas.2312077120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023] Open
Abstract
Vertebrate groups have evolved strikingly diverse color patterns. However, it remains unknown to what extent the diversification of such patterns has been shaped by the proximate, developmental mechanisms that regulate their formation. While these developmental mechanisms have long been inaccessible empirically, here we take advantage of recent insights into rodent pattern formation to investigate the role of development in shaping pattern diversification across rodents. Based on a broad survey of museum specimens, we first establish that various rodents have independently evolved diverse patterns consisting of longitudinal stripes, varying across species in number, color, and relative positioning. We then interrogate this diversity using a simple model that incorporates recent molecular and developmental insights into stripe formation in African striped mice. Our results suggest that, on the one hand, development has facilitated pattern diversification: The diversity of patterns seen across species can be generated by a single developmental process, and small changes in this process suffice to recapitulate observed evolutionary changes in pattern organization. On the other hand, development has constrained diversification: Constraints on stripe positioning limit the scope of evolvable patterns, and although pattern organization appears at first glance phylogenetically unconstrained, development turns out to impose a cryptic constraint. Altogether, this work reveals that pattern diversification in rodents can in part be explained by the underlying development and illustrates how pattern formation models can be leveraged to interpret pattern evolution.
Collapse
Affiliation(s)
- Merlijn Staps
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Pearson W. Miller
- Center for Computational Biology, Flatiron Institute, New York, NY10010
| | - Corina E. Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| |
Collapse
|
18
|
Dao UM, Lederer I, Tabor RL, Shahid B, Graves CW, Seidel HS. Stripes and loss of color in ball pythons (Python regius) are associated with variants affecting endothelin signaling. G3 (BETHESDA, MD.) 2023; 13:jkad063. [PMID: 37191439 PMCID: PMC10320763 DOI: 10.1093/g3journal/jkad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Color patterns in nonavian reptiles are beautifully diverse, but little is known about the genetics and development of these patterns. Here, we investigated color patterning in pet ball pythons (Python regius), which have been bred to show color phenotypes that differ dramatically from the wildtype form. We report that several color phenotypes in pet animals are associated with putative loss-of-function variants in the gene encoding endothelin receptor EDNRB1: (1) frameshift variants in EDNRB1 are associated with conversion of the normal mottled color pattern to skin that is almost fully white, (2) missense variants affecting conserved sites of the EDNRB1 protein are associated with dorsal, longitudinal stripes, and (3) substitutions at EDNRB1 splice donors are associated with subtle changes in patterning compared to wildtype. We propose that these phenotypes are caused by loss of specialized color cells (chromatophores), with loss ranging from severe (fully white) to moderate (dorsal striping) to mild (subtle changes in patterning). Our study is the first to describe variants affecting endothelin signaling in a nonavian reptile and suggests that reductions in endothelin signaling in ball pythons can produce a variety of color phenotypes, depending on the degree of color cell loss.
Collapse
Affiliation(s)
- Uyen M Dao
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Izabella Lederer
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Ray L Tabor
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Basmah Shahid
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Chiron W Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
19
|
Hunter P. Of Turing and zebras: Turing diffusion inspires applications in nature and beyond: Turing diffusion inspires applications in nature and beyond. EMBO Rep 2023; 24:e57405. [PMID: 37183890 PMCID: PMC10240180 DOI: 10.15252/embr.202357405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
The Turing diffusion model emerges as an explanation for pattern formation in many species and across biological scales.
Collapse
|
20
|
Schlindwein X, Werneburg I. Comparative embryogenesis in ungulate domesticated species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:495-504. [PMID: 35915572 DOI: 10.1002/jez.b.23172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
We compared embryogenesis of five species of domesticated even-toed and one odd-toed ungulate and used a phylogenetic framework to contextualize such comparison. Organ systems that occur relatively earlier in embryogenesis generally have more time to develop and therefore are found to be more mature at birth when compared to structures that appear later in development. We hypothesized that the less mature the animals' organs are at birth, the more they are susceptible to artificial selection. The horse had the most mature organs at birth, followed by cattle, reindeer, sheep/goat, and pig. This pattern of maturity could be observed almost during the entire development. Heterochronic shifts among species were observed only after fur starts to develop. Changes in the fur coloration are one of the first observable signs of domestication and the heterochrony of this trait may be related to the effects on neural crest-derived pigment cells by artificial selection. The six ungulate species also differ in the relative duration of their weaning period and the potential extent of its artificial shortening. We put all these traits in the context of their inherited evolutionary characteristics and artificial domestication process. Related to their altriciality, carnivoran domesticates, which also belong to Scrotifera, are less mature at birth than all domesticated ungulates. Although we detected clear character correlations to life history traits, it is impossible based on the present data, to trace specific exaptations to the domestication process. We hypothesize a deep time developmental penetration of adult characters into embryogenesis.
Collapse
Affiliation(s)
- Xenia Schlindwein
- Fachbereich Geowissenschaften an der Eberhard-Karls-Universität Tübingen, Tübingen, Baden-Württemberg, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment an der Universität Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Ingmar Werneburg
- Fachbereich Geowissenschaften an der Eberhard-Karls-Universität Tübingen, Tübingen, Baden-Württemberg, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment an der Universität Tübingen, Tübingen, Baden-Württemberg, Germany
| |
Collapse
|
21
|
Smyth LK, Balme GA, Tyzack-Pitman R, Bishop JM, Justin O’Riain M. Like mother like daughter: quantifying the relationship between relatedness and phenotypic similarity in leopard pelage patterns. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Hidalgo M, Curantz C, Quenech’Du N, Neguer J, Beck S, Mohammad A, Manceau M. A conserved molecular template underlies color pattern diversity in estrildid finches. SCIENCE ADVANCES 2022; 8:eabm5800. [PMID: 36044564 PMCID: PMC9432839 DOI: 10.1126/sciadv.abm5800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/13/2022] [Indexed: 05/05/2023]
Abstract
The color patterns that adorn animals' coats not only exhibit extensive diversity linked to various ecological functions but also display recurrences in geometry, orientation, or body location. How processes of pattern formation shape such phenotypic trends remains a mystery. Here, we surveyed plumage color patterns in passerine finches displaying extreme apparent variation and identified a conserved set of color domains. We linked these domains to putative embryonic skin regions instructed by early developmental tissues and outlined by the combinatory expression of few genetic markers. We found that this embryonic prepattern is largely conserved in birds displaying drastic color differences in the adult, interspecies variation resulting from the masking or display of each domain depending on their coloration. This work showed that a simple molecular landscape serves as common spatial template to extensive color pattern variation in finches, revealing that early conserved landmarks and molecular pathways are a major cause of phenotypic trends.
Collapse
Affiliation(s)
- Magdalena Hidalgo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Curantz
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne University, UPMC Paris VI, Paris, France
| | - Nicole Quenech’Du
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Neguer
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Samantha Beck
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ammara Mohammad
- Genomic Facility, Institute of Biology of the Ecole Normale Supérieure, CNRS, INSERM Paris, France
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
23
|
Sage SE, Nicholson P, Peters LM, Leeb T, Jagannathan V, Gerber V. Single-cell gene expression analysis of cryopreserved equine bronchoalveolar cells. Front Immunol 2022; 13:929922. [PMID: 36105804 PMCID: PMC9467276 DOI: 10.3389/fimmu.2022.929922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 12/21/2022] Open
Abstract
The transcriptomic profile of a cell population can now be studied at the cellular level using single-cell mRNA sequencing (scRNA-seq). This novel technique provides the unprecedented opportunity to explore the cellular composition of the bronchoalveolar lavage fluid (BALF) of the horse, a species for which cell type markers are poorly described. Here, scRNA-seq technology was applied to cryopreserved equine BALF cells. Analysis of 4,631 cells isolated from three asthmatic horses in remission identified 16 cell clusters belonging to six major cell types: monocytes/macrophages, T cells, B/plasma cells, dendritic cells, neutrophils and mast cells. Higher resolution analysis of the constituents of the major immune cell populations allowed deep annotation of monocytes/macrophages, T cells and B/plasma cells. A significantly higher lymphocyte/macrophage ratio was detected with scRNA-seq compared to conventional cytological differential cell count. For the first time in horses, we detected a transcriptomic signature consistent with monocyte-lymphocyte complexes. Our findings indicate that scRNA-seq technology is applicable to cryopreserved equine BALF cells, allowing the identification of its major (cytologically differentiated) populations as well as previously unexplored T cell and macrophage subpopulations. Single-cell gene expression analysis has the potential to facilitate understanding of the immunological mechanisms at play in respiratory disorders of the horse, such as equine asthma.
Collapse
Affiliation(s)
- Sophie E. Sage
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Sophie E. Sage,
| | - Pamela Nicholson
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
| | - Laureen M. Peters
- Clinical Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Blotched stripe patterns in fishing cats of Godavari delta region, India. MAMMAL RES 2022. [DOI: 10.1007/s13364-022-00645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
25
|
Abstract
AbstractWe studied the relationship between the variability and contemporary distribution of pelage phenotypes in one of most widely distributed felid species and an array of environmental and demographic conditions. We collected 672 photographic georeferenced records of the Eurasian lynx throughout Eurasia. We assigned each lynx coat to one of five phenotypes. Then we fitted the coat patterns to different environmental and anthropogenic variables, as well as the effective geographic distances from inferred glacial refugia. A majority of lynx were either of the large spotted (41.5%) or unspotted (uniform, 36.2%) phenotype. The remaining patterns (rosettes, small spots and pseudo-rosettes) were represented in 11.0%, 7.4%, and 3.9% of samples, respectively. Although various environmental variables greatly affected lynx distribution and habitat suitability, it was the effect of least-cost distances from locations of the inferred refugia during the Last Glacial Maximum that explained the distribution of lynx coat patterns the best. Whereas the occurrence of lynx phenotypes with large spots was explained by the proximity to refugia located in the Caucasus/Middle East, the uniform phenotype was associated with refugia in the Far East and Central Asia. Despite the widely accepted hypothesis of adaptive functionality of coat patterns in mammals and exceptionally high phenotypic polymorphism in Eurasian lynx, we did not find well-defined signs of habitat matching in the coat pattern of this species. Instead, we showed how the global patterns of morphological variability in this large mammal and its environmental adaptations may have been shaped by past climatic change.
Collapse
|
26
|
Broad tiger stripes in a small habitat patch. Proc Natl Acad Sci U S A 2021; 118:2114685118. [PMID: 34620715 DOI: 10.1073/pnas.2114685118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
|