1
|
Qiao Y, Li C, Yan F, Liu Z, Wang X, Xie J, Shi G, Wei J, Zhao J, Zhang L, Luo F. Synergistic Enhancement Effects of Heterogeneous Isomorphism Clusters in Response to Irradiation: Sub-10 nm Nanolithography and Nanoscale Etching Transfer. NANO LETTERS 2025; 25:7732-7739. [PMID: 40305466 DOI: 10.1021/acs.nanolett.5c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The advancement of integrated circuit manufacturing has continuously relied on lithography technology as a fundamental driving force. However, the development of photoresists faces a resolution-line edge roughness-sensitivity (RLS) trade-off, hindering simultaneous optimization. To address this issue, we propose a collaborative strategy for heterogeneous isomorphism cluster photoresists with different radiation responses. The Ti4M4-oxo cluster platform [Ti4Zr4O6(OBu)4(OMc)16] (T4Z4), with higher sensitivity, was applied as a photosensitizer for a higher resolution photoresist of [Ti4Hf4O6(OBu)4(OMc)16] (T4H4), allowing the hybrid photoresist to effectively induce cluster cross-linking at low exposure doses, synergistically producing high-resolution patterns. This achieved an e-beam resolution enhancement from 16 to 7.5 nm, with successful fabrication of intricate patterns under 10 nm. The hybrid photoresist also exhibits the capability to etch transfer patterns below 20 nm onto silicon dioxide substrates, highlighting its potential for future device manufacturing. This work presents a new perspective on photoresist design to effectively tackle RLS trade-off limitations.
Collapse
Affiliation(s)
- Yang Qiao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Changliang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengbo Yan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhaochao Liu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xingkun Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianan Xie
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guangyue Shi
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jian Wei
- Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Jun Zhao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Lei Zhang
- Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Feng Luo
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Pei X, Feng Y, Wu Y, Zhang J, Li J, Jiang S, Huang H, Qin P, Li G, Guo X, Liu M, Wang C, Gao H. Morphology Effect of Puffball Spores on Hemostasis: A Promising Solution for Hemostatic Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417566. [PMID: 40019388 PMCID: PMC12021107 DOI: 10.1002/advs.202417566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/10/2025] [Indexed: 03/01/2025]
Abstract
Hemostatic materials play a crucial role in wound healing by promoting blood concentration or releasing procoagulant factors. While hydrophilic hemostatic materials are effective, they may cause excessive blood loss and difficulty removing from the wound. Conversely, hydrophobic hemostatic materials avoid these issues but may hinder blood concentration and the release of procoagulant factors due to their water-repellent nature. This study investigates the hemostatic properties and underlying mechanism of puffball (Bovistella sp.) spores, a traditional hemostatic material. The unique hollow ball-rod morphology and strong water affinity of puffball spores enable efficient water removal, leading to improved blood clotting without the drawbacks typically associated with hydrophilic hemostatic materials. Further analysis reveals that the nano-protrusions on the spore surface create a textured hydrophobic surface due to the pinning effect, which prevents adhesion to the wound after clotting. Overall, puffball spores exhibit hemostatic efficacy comparable to the commercial agent QuikClot, with enhanced safety and reduced side effects. Their characteristic morphology, physicochemical properties, and chemical compositions offer inspiration for advancing hemostatic materials and addressing current challenges in wound healing. Additionally, this work provides new perspectives for insight into the pharmacological substance basis of traditional medicine, expanding beyond the conventional component-focused mentality to a material-based insight.
Collapse
Affiliation(s)
- Xuechang Pei
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Yue Feng
- Department of Materials Science and EngineeringCollege of Chemistry and Materials ScienceJinan UniversityGuangzhouGuangdong511443P. R. China
| | - Yanru Wu
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Jie Zhang
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Jianlan Li
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Shutai Jiang
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Huijun Huang
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Ping Qin
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Guoqing Li
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Xinrui Guo
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Mingxian Liu
- Department of Materials Science and EngineeringCollege of Chemistry and Materials ScienceJinan UniversityGuangzhouGuangdong511443P. R. China
| | - Chuanxi Wang
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural ProductsCollege of PharmacyState Key Laboratory of Bioactive Molecules and Druggability AssessmentInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaGuangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan UniversityGuangzhouGuangdong510632P. R. China
| |
Collapse
|
4
|
Basu P, Verma J, Abhinav V, Ratnesh RK, Singla YK, Kumar V. Advancements in Lithography Techniques and Emerging Molecular Strategies for Nanostructure Fabrication. Int J Mol Sci 2025; 26:3027. [PMID: 40243625 PMCID: PMC11988993 DOI: 10.3390/ijms26073027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Lithography is crucial to semiconductor manufacturing, enabling the production of smaller, more powerful electronic devices. This review explores the evolution, principles, and advancements of key lithography techniques, including extreme ultraviolet (EUV) lithography, electron beam lithography (EBL), X-ray lithography (XRL), ion beam lithography (IBL), and nanoimprint lithography (NIL). Each method is analyzed based on its working principles, resolution, resist materials, and applications. EUV lithography, with sub-10 nm resolution, is vital for extending Moore's Law, leveraging high-NA optics and chemically amplified resists. EBL and IBL enable high-precision maskless patterning for prototyping but suffer from low throughput. XRL, using synchrotron radiation, achieves deep, high-resolution features, while NIL provides a cost-effective, high-throughput method for replicating nanostructures. Alignment marks play a key role in precise layer-to-layer registration, with innovations enhancing accuracy in advanced systems. The mask fabrication process is also examined, highlighting materials like molybdenum silicide for EUV and defect mitigation strategies such as automated inspection and repair. Despite challenges in resolution, defect control, and material innovation, lithography remains indispensable in semiconductor scaling, supporting applications in integrated circuits, photonics, and MEMS/NEMS devices. Various molecular strategies, mechanisms, and molecular dynamic simulations to overcome the fundamental lithographic limits are also highlighted in detail. This review offers insights into lithography's present and future, aiding researchers in nanoscale manufacturing advancements.
Collapse
Affiliation(s)
- Prithvi Basu
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA; (P.B.); (J.V.)
| | - Jyoti Verma
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA; (P.B.); (J.V.)
| | - Vishnuram Abhinav
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Ratneshwar Kumar Ratnesh
- Department of Electronics and Communication Engineering, Meerut Institute of Engineering and Technology, Meerut 250005, India;
| | - Yogesh Kumar Singla
- School of Engineering, Math and Technology, Navajo Technical University, Crownpoint, NM 87313, USA;
| | - Vibhor Kumar
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA; (P.B.); (J.V.)
| |
Collapse
|
5
|
Lee TY, Choi J, Lee S, Jeon H, Kim S. Recording and Revealing 2.5D Nanopatterned Hidden Information on Silk Protein Bioresists. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403169. [PMID: 38973079 DOI: 10.1002/smll.202403169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Nanopatterning on biomaterials has attracted significant attention as it can lead to the development of biomedical devices capable of performing diagnostic and therapeutic functions while being biocompatible. Among various nanopatterning techniques, electron-beam lithography (EBL) enables precise and versatile nanopatterning in desired shapes. Various biomaterials are successfully nanopatterned as bioresists by using EBL. However, the use of high-energy electron beams (e-beams) for high-resolutive patterning has incorporated functional materials and has caused adverse effects on biomaterials. Moreover, the scattering of electrons not absorbed by the bioresist leads to proximity effects, thus deteriorating pattern quality. Herein, EBL-based nanopatterning is reported by inducing molecular degradation of amorphous silk fibroin, followed by selectively inducing secondary structures. High-resolution EBL nanopatterning is achievable, even at low-energy e-beam (5 keV) and low doses, as it minimizes the proximity effect and enables precise 2.5D nanopatterning via grayscale lithography. Additionally, integrating nanophotonic structures into fluorescent material-containing silk allows for fluorescence amplification. Furthermore, this post-exposure cross-linking way indicates that the silk bioresist can maintain nanopatterned information stored in silk molecules in the amorphous state, utilizing for the secure storage of nanopatterned information as a security patch. Based on the fabrication technique, versatile biomaterial-based nanodevices for biomedical applications can be envisioned.
Collapse
Affiliation(s)
- Tae-Yun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
- Inter-university Semiconductor Research Centre, Seoul National University, Seoul, 08826, Republic of Korea
| | - Juwan Choi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Soohoon Lee
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heonsu Jeon
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
- Inter-university Semiconductor Research Centre, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunghwan Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
6
|
Dasgupta S, Ray K. Plasmon-enhanced fluorescence for biophotonics and bio-analytical applications. Front Chem 2024; 12:1407561. [PMID: 38988729 PMCID: PMC11233826 DOI: 10.3389/fchem.2024.1407561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
Fluorescence spectroscopy serves as an ultrasensitive sophisticated tool where background noises which serve as a major impediment to the detection of the desired signals can be safely avoided for detections down to the single-molecule levels. One such way of bypassing background noise is plasmon-enhanced fluorescence (PEF), where the interactions of fluorophores at the surface of metals or plasmonic nanoparticles are probed. The underlying condition is a significant spectral overlap between the localized surface plasmon resonance (LSPR) of the nanoparticle and the absorption or emission spectra of the fluorophore. The rationale being the coupling of the excited state of the fluorophore with the localized surface plasmon leads to an augmented emission, owing to local field enhancement. It is manifested in enhanced quantum yields concurrent with a decrease in fluorescence lifetimes, owing to an increase in radiative rate constants. This improvement in detection provided by PEF allows a significant scope of expansion in the domain of weakly emitting fluorophores which otherwise would have remained unperceivable. The concept of coupling of weak emitters with plasmons can bypass the problems of photobleaching, opening up avenues of imaging with significantly higher sensitivity and improved resolution. Furthermore, amplification of the emission signal by the coupling of free electrons of the metal nanoparticles with the electrons of the fluorophore provides ample opportunities for achieving lower detection limits that are involved in biological imaging and molecular sensing. One avenue that has attracted significant attraction in the last few years is the fast, label-free detection of bio-analytes under physiological conditions using plasmonic nanoparticles for point-of-care analysis. This review focusses on the applications of plasmonic nanomaterials in the field of biosensing, imaging with a brief introduction on the different aspects of LSPR and fabrication techniques.
Collapse
Affiliation(s)
- Souradip Dasgupta
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Chen Z, Cheng C, Liu L, Lin B, Xiong Y, Zhu W, Zheng K, He B. Tyrosine Mutation in the Characteristic Motif of the Amorphous Region of Spidroin for Self-Assembly Capability Enhancement. ACS OMEGA 2024; 9:22441-22449. [PMID: 38799334 PMCID: PMC11112579 DOI: 10.1021/acsomega.4c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Spidroin, with robust mechanical performance and good biocompatibility, could fulfill broad applications in material science and biomedical fields. Development of miniature spidroin has made abundant fiber production economically feasible, but the mechanical properties of artificial silk still fall short of natural silk. The mechanism behind mechanical properties of spidroin usually focuses on β-microcrystalline regions; the effect of amorphous regions was barely studied. In this study, residue tyrosines (Y) were designed to replace asparagine (N)/glutamic acid (Q) in the characteristic motifs (GGX)n in amorphous regions for performance enhancement of spidroin; the mutants presented lower free energy and significantly exhibited stronger van der Waals and electrostatic interactions, which might result from π-π stacking interactions between the phenyl rings in the side chain of tyrosine. Additionally, the soluble expressions of wild-type spidroin and mutant spidroin were achieved when heterologously expressed in E. coli, with yields of 560 mg/L (2REP), 590 mg/L (2REPM), 240 mg/L (4REP), and 280 mg/L (4REPM). Significantly, secondary structure analysis confirmed that the mutant spidroin more avidly forms more β-sheets than the wild-type spidroin, and aggregation morphology suggested that mutant spidroin displayed better self-assembly capacity and was easier to form artificial spider silk fibers; in particular, self-assembled 4REPM nanofibrils had an average modulus of 11.2 ± 0.35 GPa, about 2 times higher than self-assembled B. mori silk nanofibrils and almost the same as that of native spider dragline silk fibers (10-15 GPa). Thus, we first demonstrated a new influence mechanism of the amorphous region's characteristic motif on the self-assembly and material properties of spidroin. Our study provides a reference for the design of high-performance material proteins and their heterologous preparation.
Collapse
Affiliation(s)
- Ziyang Chen
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Cheng Cheng
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Li Liu
- Biomass
Molecular Engineering Center and Department of Materials Science and
Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Baoyang Lin
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Yongji Xiong
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Weiyu Zhu
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Ke Zheng
- Biomass
Molecular Engineering Center and Department of Materials Science and
Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bingfang He
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 Puzhu South Road, Nanjing 211816, China
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
8
|
Hu CF, Gan CY, Zhu YJ, Xia XX, Qian ZG. Modulating Polyalanine Motifs of Synthetic Spidroin for Controllable Preassembly and Strong Fiber Formation. ACS Biomater Sci Eng 2024; 10:2925-2934. [PMID: 38587986 DOI: 10.1021/acsbiomaterials.3c01784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.
Collapse
Affiliation(s)
- Chun-Fei Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chao-Yi Gan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ya-Jiao Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
9
|
Yi Y, An HW, Wang H. Intelligent Biomaterialomics: Molecular Design, Manufacturing, and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305099. [PMID: 37490938 DOI: 10.1002/adma.202305099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Materialomics integrates experiment, theory, and computation in a high-throughput manner, and has changed the paradigm for the research and development of new functional materials. Recently, with the rapid development of high-throughput characterization and machine-learning technologies, the establishment of biomaterialomics that tackles complex physiological behaviors has become accessible. Breakthroughs in the clinical translation of nanoparticle-based therapeutics and vaccines have been observed. Herein, recent advances in biomaterials, including polymers, lipid-like materials, and peptides/proteins, discovered through high-throughput screening or machine learning-assisted methods, are summarized. The molecular design of structure-diversified libraries; high-throughput characterization, screening, and preparation; and, their applications in drug delivery and clinical translation are discussed in detail. Furthermore, the prospects and main challenges in future biomaterialomics and high-throughput screening development are highlighted.
Collapse
Affiliation(s)
- Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Li M, Guo Q, Wen J, Zhan F, Shi M, Zhou N, Huang C, Wang L, Mao H. Oriented bouncing of droplets with a small Weber number on inclined one-dimensional nanoforests. NANOSCALE 2024; 16:5343-5351. [PMID: 38375552 DOI: 10.1039/d3nr05449g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Asymmetric superhydrophobic structures with anisotropic wettability can achieve directional bouncing of droplets and thus can have applications in directional self-cleaning, liquid transportation, and heat transfer. To achieve convenient large-scale preparation of asymmetric superhydrophobic surfaces, inclined nanoforests are prepared in this work using a technique of competitive ablation polymerization, which allows the control of the inclined angles, diameters, and heights of the nanostructures. In this study, such asymmetric structures with the smallest dimension (230 nm diameter) known are achieved by a simple etching method to guide droplet unidirectional bouncing. With such nanoforests, the mechanism of droplet bouncing on their surface is investigated, and controllable droplet bouncing over a long distance is achieved using droplets with a low Weber number. The proposed structure has a promising future in directional self-cleaning, liquid transportation and heat transfer.
Collapse
Affiliation(s)
- Mao Li
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiming Guo
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Wen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fei Zhan
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Meng Shi
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Na Zhou
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Rostami M, Marković A, Wang Y, Pernollet J, Zhang X, Liu X, Brugger J. Multi- and Gray-Scale Thermal Lithography of Silk Fibroin as Water-Developable Resist for Micro and Nanofabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303518. [PMID: 38234204 DOI: 10.1002/advs.202303518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Indexed: 01/19/2024]
Abstract
Silk fibroin (SF) is a natural material with polymorphic structures that determine its water solubility and biodegradability, which can be altered by exposing it to heat. Here, a hybrid thermal lithography method combining scalable microscale laser-based patterning with nanoscale patterning based on thermal scanning probe lithography is developed. The latter enables in addition grayscale patterns to be made. The resolution limit of the writing in silk fibroin is studied by using a nanoscale heat source from a scanned nanoprobe. The heat thereby induces local water solubility change in the film, which can subsequently be developed in deionized water. Nanopatterns and grayscale patterns down to 50 nm lateral resolution are successfully written in the silk fibroin that behaves like a positive tone resist. The resulting patterned silk fibroin is then applied as a mask for dry etching of SiO2 to form a hard mask for further nano-processing. A very high selectivity of 42:1 between SiO2 and silk fibroin is obtained allowing for high-aspect ratio structure to be fabricated. The fabricated nanostructures have very low line edge roughness of 5 ± 2 nm. The results demonstrate the potential of silk fibroin as a water-soluble resist for hybrid thermal lithography and precise micro/nanofabrication.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Aleksandra Marković
- Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Ya Wang
- Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
- Current affiliation: Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, China
| | - Joffrey Pernollet
- Center for Micro and Nanotechnology (CMi), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, China
| | - Xia Liu
- Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Juergen Brugger
- Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
12
|
Chen J, Shi W, Ren Y, Zhao K, Liu Y, Jia B, Zhao L, Li M, Liu Y, Su J, Ma C, Wang F, Sun J, Tian Y, Li J, Zhang H, Liu K. Strong Protein Adhesives through Lanthanide-enhanced Structure Folding and Stack Density. Angew Chem Int Ed Engl 2023; 62:e202304483. [PMID: 37670725 DOI: 10.1002/anie.202304483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Generating strong adhesion by engineered proteins has the potential for high technical applications. Current studies of adhesive proteins are primarily limited to marine organisms, e.g., mussel adhesive proteins. Here, we present a modular engineering strategy to generate a type of exotic protein adhesives with super strong adhesion behaviors. In the protein complexes, the lanmodulin (LanM) underwent α-helical conformational transition induced by lanthanides, thereby enhancing the stacking density and molecular interactions of adhesive protein. The resulting adhesives exhibited outstanding lap-shear strength of ≈31.7 MPa, surpassing many supramolecular and polymer adhesives. The extreme temperature (-196 to 200 °C) resistance capacity and underwater adhesion performance can significantly broaden their practical application scenarios. Ex vivo and in vivo experiments further demonstrated the persistent adhesion performance for surgical sealing and healing applications.
Collapse
Affiliation(s)
- Jing Chen
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Weiwei Shi
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yubin Ren
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yangyi Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| |
Collapse
|
13
|
Zhang Y, Xu Z, Wen J, Zhao X, Gao R, Wang Y. Honeycomb-like Ag Nanocavity Array for SERS Observations Using Plasmon-Mediated Chemical Reactions. MICROMACHINES 2023; 14:1811. [PMID: 37893248 PMCID: PMC10609216 DOI: 10.3390/mi14101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023]
Abstract
Organized two-dimensional polystyrene bead arrays perform ion etching, and protruding nanostructures are created on polystyrene beads due to the shadow effects from the ring beads, leading to nucleus selection and growth in Au nanostructure deposition. Ag nanostructures are prepared via plasmon-mediated chemical reactions (PMCRs), leading to the Ag nanocavity geometry of the honeycomb pattern when the etching time and Ag growth time are tuned. Due to the strong electromagnetic coupling, the Ag honeycomb-shaped nanocavity array works as the SERS substrate with high sensitivity and good repeatability, which is used to detect thiram pesticide residues with a concentration down to 10-9 M.
Collapse
Affiliation(s)
- Yongjun Zhang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.Z.)
| | - Zhen Xu
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.Z.)
| | - Jiahong Wen
- The College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaoyu Zhao
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.Z.)
- Zhejiang Laboratory, Hangzhou 311100, China
| | - Renxian Gao
- Department of Physics, Xiamen University, Xiamen 361005, China;
| | - Yaxin Wang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.Z.)
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
14
|
Tian KK, Qian ZG, Xia XX. Synthetic biology-guided design and biosynthesis of protein polymers for delivery. Adv Drug Deliv Rev 2023; 194:114728. [PMID: 36791475 DOI: 10.1016/j.addr.2023.114728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Vehicles derived from genetically engineered protein polymers have gained momentum in the field of biomedical engineering due to their unique designability, remarkable biocompatibility and excellent biodegradability. However, the design and production of these protein polymers with on-demand sequences and supramolecular architectures remain underexplored, particularly from a synthetic biology perspective. In this review, we summarize the state-of-the art strategies for constructing the highly repetitive genes encoding the protein polymers, and highlight the advanced approaches for metabolically engineering expression hosts towards high-level biosynthesis of the target protein polymers. Finally, we showcase the typical protein polymers utilized to fabricate delivery vehicles.
Collapse
Affiliation(s)
- Kai-Kai Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Lin B, Yuan L, Gao B, He B. Patterned Duplex Fabric Based on Genetically Modified Spidroin for Smart Wound Management. Adv Healthc Mater 2023; 12:e2202213. [PMID: 36349744 DOI: 10.1002/adhm.202202213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Indexed: 11/11/2022]
Abstract
The treatment of diabetic wounds remains a great challenge for the medical community. Here, a smart patterned DNA double helix (duplex)-like fabric based on genetically modified spider silk protein (PDF-S) which is inspired by soft plant tendrils, is proposed for diabetic wound treatment. Benefiting from spider silk protein (spidroin); PDF-S is equipped with high strength; high toughness, and excellent biocompatibility. Notably, the fabric crimped through the biomimetic DNA double-helix-like structure can effectively adapt to tensile impact and the maximum stretch rate reaches 1500%. A pattern-based microfluidic channel of PDF-S allowed wound secretion to flow spontaneously through the channel. Meanwhile; due to the optical properties of the introduced photonic crystal structure; PDF-S is equipped with fluorescence enhancement properties; enabling PDF-S to display color-sensitive behavior suitable for wound monitoring and guiding clinical treatment. In addition, to enable sensitive motion monitoring, microelectronic circuits are integrated on the surface of the PDF-S. These unique material features suggest that this study will lead to a new generation of biomimetic artificial spider silk materials for design and application in the biomedical field.
Collapse
Affiliation(s)
- Baoyang Lin
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Liquan Yuan
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bingbing Gao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
16
|
Xie M, Lian L, Mu X, Luo Z, Garciamendez-Mijares CE, Zhang Z, López A, Manríquez J, Kuang X, Wu J, Sahoo JK, González FZ, Li G, Tang G, Maharjan S, Guo J, Kaplan DL, Zhang YS. Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat Commun 2023; 14:210. [PMID: 36639727 PMCID: PMC9839706 DOI: 10.1038/s41467-023-35807-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Volumetric additive manufacturing (VAM) enables fast photopolymerization of three-dimensional constructs by illuminating dynamically evolving light patterns in the entire build volume. However, the lack of bioinks suitable for VAM is a critical limitation. This study reports rapid volumetric (bio)printing of pristine, unmodified silk-based (silk sericin (SS) and silk fibroin (SF)) (bio)inks to form sophisticated shapes and architectures. Of interest, combined with post-fabrication processing, the (bio)printed SS constructs reveal properties including reversible as well as repeated shrinkage and expansion, or shape-memory; whereas the (bio)printed SF constructs exhibit tunable mechanical performances ranging from a few hundred Pa to hundreds of MPa. Both types of silk-based (bio)inks are cytocompatible. This work supplies expanded bioink libraries for VAM and provides a path forward for rapid volumetric manufacturing of silk constructs, towards broadened biomedical applications.
Collapse
Affiliation(s)
- Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Liming Lian
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zhenrui Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Arturo López
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jennifer Manríquez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Federico Zertuche González
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Gang Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
17
|
An T, Wen J, Dong Z, Zhang Y, Zhang J, Qin F, Wang Y, Zhao X. Plasmonic Biosensors with Nanostructure for Healthcare Monitoring and Diseases Diagnosis. SENSORS (BASEL, SWITZERLAND) 2022; 23:445. [PMID: 36617043 PMCID: PMC9824517 DOI: 10.3390/s23010445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Nanophotonics has been widely utilized in enhanced molecularspectroscopy or mediated chemical reaction, which has major applications in the field of enhancing sensing and enables opportunities in developing healthcare monitoring. This review presents an updated overview of the recent exciting advances of plasmonic biosensors in the healthcare area. Manufacturing, enhancements and applications of plasmonic biosensors are discussed, with particular focus on nanolisted main preparation methods of various nanostructures, such as chemical synthesis, lithography, nanosphere lithography, nanoimprint lithography, etc., and describing their respective advances and challenges from practical applications of plasmon biosensors. Based on these sensing structures, different types of plasmonic biosensors are summarized regarding detecting cancer biomarkers, body fluid, temperature, gas and COVID-19. Last, the existing challenges and prospects of plasmonic biosensors combined with machine learning, mega data analysis and prediction are surveyed.
Collapse
Affiliation(s)
- Tongge An
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiahong Wen
- The College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Shangyu Institute of Science and Engineering, Hangzhou Dianzi University, Shaoxing 312000, China
| | - Zhichao Dong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yongjun Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jian Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Faxiang Qin
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yaxin Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaoyu Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
18
|
Mezenov YA, Bruyere S, Krasilin A, Khrapova E, Bachinin SV, Alekseevskiy PV, Shipiloskikh S, Boulet P, Hupont S, Nomine A, Vigolo B, Novikov AS, Belmonte T, Milichko VA. Insights into Solid-To-Solid Transformation of MOF Amorphous Phases. Inorg Chem 2022; 61:13992-14003. [PMID: 36001002 DOI: 10.1021/acs.inorgchem.2c01978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have been recently explored as crystalline solids for conversion into amorphous phases demonstrating non-specific mechanical, catalytic, and optical properties. The real-time control of such structural transformations and their outcomes still remain a challenge. Here, we use in situ high-resolution transmission electron microscopy with 0.01 s time resolution to explore non-thermal (electron induced) amorphization of a MOF single crystal, followed by transformation into an amorphous nanomaterial. By comparing a series of M-BTC (M: Fe3+, Co3+, Co2+, Ni2+, and Cu2+; BTC: 1,3,5-benzentricarboxylic acid), we demonstrate that the topology of a metal cluster of the parent MOFs determines the rate of formation and the chemistry of the resulting phases containing an intact ligand and metal or metal oxide nanoparticles. Confocal Raman and photoluminescence spectroscopies further confirm the integrity of the BTC ligand and coordination bond breaking, while high-resolution imaging with chemical and structural analysis over time allows for tracking the dynamics of solid-to-solid transformations. The revealed relationship between the initial and resulting structures and the stability of the obtained phase and its photoluminescence over time contribute to the design of new amorphous MOF-based optical nanomaterials.
Collapse
Affiliation(s)
- Yuri A Mezenov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101 Russia
| | - Stephanie Bruyere
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | | | | | - Semyon V Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101 Russia
| | - Pavel V Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg 197101 Russia
| | - Sergei Shipiloskikh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101 Russia
| | - Pascal Boulet
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | - Sebastien Hupont
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | - Alexandre Nomine
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | - Brigitte Vigolo
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, St. Petersburg 198504 Russia.,Peoples' Friendship University of Russia (RUDN University), Moscow 117198 Russia
| | - Thierry Belmonte
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101 Russia.,Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| |
Collapse
|
19
|
Luo Y, Sun C, Ma H, Wei M, Li J, Jian J, Zhong C, Chen Z, Tang R, Richardson KA, Lin H, Li L. Flexible passive integrated photonic devices with superior optical and mechanical performance. OPTICS EXPRESS 2022; 30:26534-26543. [PMID: 36236849 DOI: 10.1364/oe.464896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Flexible integrated photonics is a rapidly emerging technology with a wide range of possible applications in the fields of flexible optical interconnects, conformal multiplexing sensing, health monitoring, and biotechnology. One major challenge in developing mechanically flexible integrated photonics is the functional component within an integrated photonic circuit with superior performance. In this work, several essential flexible passive devices for such a circuit were designed and fabricated based on a multi-neutral-axis mechanical design and a monolithic integration technique. The propagation loss of the waveguide is calculated to be 4.2 dB/cm. In addition, we demonstrate a microring resonator, waveguide crossing, multimode interferometer (MMI), and Mach-Zehnder interferometer (MZI) for use at 1.55 µm, each exhibiting superior optical and mechanical performance. These results represent a significant step towards further exploring a complete flexible photonic integrated circuit.
Collapse
|
20
|
Chemically Amplified Resist Based on Dendritic Molecular Glass for Electron Beam Lithography. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Grebenko AK, Motovilov KA, Bubis AV, Nasibulin AG. Gentle Patterning Approaches toward Compatibility with Bio-Organic Materials and Their Environmental Aspects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200476. [PMID: 35315215 DOI: 10.1002/smll.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Advances in material science, bioelectronic, and implantable medicine combined with recent requests for eco-friendly materials and technologies inevitably formulate new challenges for nano- and micropatterning techniques. Overall, the importance of creating micro- and nanostructures is motivated by a large manifold of fundamental and applied properties accessible only at the nanoscale. Lithography is a crucial family of fabrication methods to create prototypes and produce devices on an industrial scale. The pure trend in the miniaturization of critical electronic semiconducting components has been recently enhanced by implementing bio-organic systems in electronics. So far, significant efforts have been made to find novel lithographic approaches and develop old ones to reach compatibility with delicate bio-organic systems and minimize the impact on the environment. Herein, such delicate materials and sophisticated patterning techniques are briefly reviewed.
Collapse
Affiliation(s)
- Artem K Grebenko
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Konstantin A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Anton V Bubis
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 2 Academician Ossipyan str., Chernogolovka, 142432, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| |
Collapse
|
22
|
Jin Q, Pan F, Hu CF, Lee SY, Xia XX, Qian ZG. Secretory production of spider silk proteins in metabolically engineered Corynebacterium glutamicum for spinning into tough fibers. Metab Eng 2022; 70:102-114. [DOI: 10.1016/j.ymben.2022.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
|