1
|
McDermott M, Mehta R, Roussos Torres ET, MacLean AL. Modeling the dynamics of EMT reveals genes associated with pan-cancer intermediate states and plasticity. NPJ Syst Biol Appl 2025; 11:31. [PMID: 40210876 PMCID: PMC11986130 DOI: 10.1038/s41540-025-00512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/28/2025] [Indexed: 04/12/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cell state transition co-opted by cancer that drives metastasis via stable intermediate states. Here we study EMT dynamics to identify marker genes of highly metastatic intermediate cells via mathematical modeling with single-cell RNA sequencing (scRNA-seq) data. Across multiple tumor types and stimuli, we identified genes consistently upregulated in EMT intermediate states, many previously unrecognized as EMT markers. Bayesian parameter inference of a simple EMT mathematical model revealed tumor-specific transition rates, providing a framework to quantify EMT progression. Consensus analysis of differential expression, RNA velocity, and model-derived dynamics highlighted SFN and NRG1 as key regulators of intermediate EMT. Independent validation confirmed SFN as an intermediate state marker. Our approach integrates modeling and inference to identify genes associated with EMT dynamics, offering biomarkers and therapeutic targets to modulate tumor-promoting cell state transitions driven by EMT.
Collapse
Affiliation(s)
- MeiLu McDermott
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Riddhee Mehta
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T Roussos Torres
- Department of Medicine, Division of Medical Oncology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Uthamacumaran A. Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks. Interdiscip Sci 2025; 17:59-85. [PMID: 39420135 DOI: 10.1007/s12539-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF α , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.
Collapse
Affiliation(s)
- Abicumaran Uthamacumaran
- Department of Physics (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
- Department of Psychology (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
- Oxford Immune Algorithmics, Reading, RG1 8EQ, UK.
| |
Collapse
|
3
|
Shin D, Gong J, Jeong SD, Cho Y, Kim H, Kim T, Cho K. Attractor Landscape Analysis Reveals a Reversion Switch in the Transition of Colorectal Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412503. [PMID: 39840939 PMCID: PMC11848608 DOI: 10.1002/advs.202412503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Indexed: 01/23/2025]
Abstract
A cell fate change such as tumorigenesis incurs critical transition. It remains a longstanding challenge whether the underlying mechanism can be unraveled and a molecular switch that can reverse such transition is found. Here a systems framework, REVERT, is presented with which can reconstruct the core molecular regulatory network model and a reversion switch based on single-cell transcriptome data over the transition process is identified. The usefulness of REVERT is demonstrated by applying it to single-cell transcriptome of patient-derived matched organoids of colon cancer and normal colon. REVERT is a generic framework that can be applied to investigate various cell fate transition phenomena.
Collapse
Affiliation(s)
- Dongkwan Shin
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Research InstituteNational Cancer CenterGoyang10408Republic of Korea
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyang10408Republic of Korea
| | - Jeong‐Ryeol Gong
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seoyoon D. Jeong
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Youngwon Cho
- Department of Molecular Medicine and Biopharmaceutical SciencesGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul03080Republic of Korea
| | - Hwang‐Phill Kim
- Department of Molecular Medicine and Biopharmaceutical SciencesGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul03080Republic of Korea
| | - Tae‐You Kim
- Department of Molecular Medicine and Biopharmaceutical SciencesGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul03080Republic of Korea
| | - Kwang‐Hyun Cho
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
4
|
Suppiah J, Md Sani SS, Hassan SS, Nadzar NIF, Ibrahim N'I, Thayan R, Mohd Zain R. Unraveling potential gene biomarkers for dengue infection through RNA sequencing. Virus Genes 2025; 61:26-37. [PMID: 39397194 PMCID: PMC11787201 DOI: 10.1007/s11262-024-02114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Dengue virus hijacks host cell mechanisms and immune responses in order to replicate efficiently. The interaction between the host and the virus affects the host's gene expression, which remains largely unexplored. This pilot study aimed to profile the host transcriptome as a potential strategy for identifying specific biomarkers for dengue prediction and detection. High-throughput RNA sequencing (RNA-seq) was employed to generate host transcriptome profiles in 16 dengue patients and 10 healthy controls. Differentially expressed genes (DEGs) were identified in patients with severe dengue and those with dengue with warning signs compared to healthy individuals. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to elucidate the functions of upregulated and downregulated genes. Compared to healthy controls, 6466 genes were significantly differentially expressed (p < 0.05) in the dengue with warning signs group and 3082 genes in the severe dengue group, with over half being upregulated. The major KEGG pathways implicated included transport and catabolism (14.4%-16.3%), signal transduction (6.6%-7.3%), global and overview maps (6.7%-7.1%), viral diseases (4.6%-4.8%), and the immune system (4.4%-4.6%). Several genes exhibited consistent and significant upregulation across all dengue patients, regardless of severity: Interferon alpha inducible protein 27 (IFI27), Potassium Channel Tetramerization Domain Containing 14 (KCTD14), Syndecan 1 (SDC1), DCC netrin 1 receptor (DCC), Ubiquitin C-terminal hydrolase L1 (UCHL1), Marginal zone B and B1 cell-specific protein (MZB1), Nestin (NES), C-C motif chemokine ligand 2 (CCL2), TNF receptor superfamily member 17 (TNFSF17), and TNF receptor superfamily member 13B (TNFRSF13B). Further analysis revealed potential biomarkers for severe dengue prediction, including TNF superfamily member 15 (TNFSF15), Plasminogen Activator Inhibitor-2 (SERPINB2), motif chemokine ligand 7 (CCL7), aconitate decarboxylase 1 (ACOD1), Metallothionein 1G (MT1G), and Myosin Light Chain Kinase (MYLK2), which were expressed 3.5 times, 2.9 times, 2.3 times, 2.1 times, 1.7 times, and 1.4 times greater, respectively, than dengue patients exhibiting warning signs. The identification of these host biomarkers through RNA-sequencing holds promising implications and potential to augment existing dengue detection algorithms, contributing significantly to improved diagnostic and prognostic capabilities.
Collapse
Affiliation(s)
- Jeyanthi Suppiah
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia.
| | | | - Safiah Sabrina Hassan
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| | - Nur Iman Fasohah Nadzar
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ravindran Thayan
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| | - Rozainanee Mohd Zain
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
Manchel A, Gee M, Vadigepalli R. From sampling to simulating: Single-cell multiomics in systems pathophysiological modeling. iScience 2024; 27:111322. [PMID: 39628578 PMCID: PMC11612781 DOI: 10.1016/j.isci.2024.111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As single-cell omics data sampling and acquisition methods have accumulated at an unprecedented rate, various data analysis pipelines have been developed for the inference of cell types, cell states and their distribution, state transitions, state trajectories, and state interactions. This presents a new opportunity in which single-cell omics data can be utilized to generate high-resolution, high-fidelity computational models. In this review, we discuss how single-cell omics data can be used to build computational models to simulate biological systems at various scales. We propose that single-cell data can be integrated with physiological information to generate organ-specific models, which can then be assembled to generate multi-organ systems pathophysiological models. Finally, we discuss how generic multi-organ models can be brought to the patient-specific level thus permitting their use in the clinical setting.
Collapse
Affiliation(s)
- Alexandra Manchel
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michelle Gee
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Wang Y, Dede M, Mohanty V, Dou J, Li Z, Chen K. A statistical approach for systematic identification of transition cells from scRNA-seq data. CELL REPORTS METHODS 2024; 4:100913. [PMID: 39644902 PMCID: PMC11704623 DOI: 10.1016/j.crmeth.2024.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/01/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions.
Collapse
Affiliation(s)
- Yuanxin Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Xu Y, Li M, Bai L. Pulmonary Epithelium Cell Fate Determination: Chronic Obstructive Pulmonary Disease, Lung Cancer, or Both. Am J Respir Cell Mol Biol 2024; 71:632-645. [PMID: 39078237 DOI: 10.1165/rcmb.2023-0448tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/30/2024] [Indexed: 07/31/2024] Open
Abstract
The concurrence of chronic obstructive pulmonary disease (COPD) and lung cancer has been widely reported and extensively addressed by pulmonologists and oncologists. However, most studies have focused on shared risk factors, DNA damage pathways, immune microenvironments, inflammation, and imbalanced proteases/antiproteases. In the present review, we explore the association between COPD and lung cancer in terms of airway pluripotent cell fate determination and discuss the various cell types and signaling pathways involved in the maintenance of lung epithelium homeostasis and their involvement in the pathogenesis of co-occurring COPD and lung cancer.
Collapse
Affiliation(s)
- Yu Xu
- Department of Clinical Oncology, Army Medical Center, and
| | - Mengxia Li
- Department of Clinical Oncology, Army Medical Center, and
| | - Li Bai
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Guo W, Li X, Wang D, Yan N, Hu Q, Yang F, Zhang X, Yao J, Gu J. scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes. Genome Biol 2024; 25:297. [PMID: 39574111 PMCID: PMC11583649 DOI: 10.1186/s13059-024-03436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.
Collapse
Affiliation(s)
- Wenbo Guo
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China
| | - Xinqi Li
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Nan Yan
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China
| | - Qifan Hu
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China
| | - Fan Yang
- AI Lab, Shenzhen, Tencent, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | | | - Jin Gu
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Kim J, Lee W, Cho KH. Recursive Self-Composite Approach Toward Structural Understanding of Boolean Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1775-1783. [PMID: 38885112 DOI: 10.1109/tcbb.2024.3415352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Boolean networks have been widely used in systems biology to study the dynamical characteristics of biological networks such as steady-states or cycles, yet there has been little attention to the dynamic properties of network structures. Here, we systematically reveal the core network structures using a recursive self-composite of the logic update rules. We find that all Boolean update rules exhibit repeated cyclic logic structures, where each converged logic leads to the same states, defined as kernel states. Consequently, the period of state cycles is upper bounded by the number of logics in the converged logic cycle. In order to uncover the underlying dynamical characteristics by exploiting the repeating structures, we propose leaping and filling algorithms. The algorithms provide a way to avoid large string explosions during the self-composition procedures. Finally, we present three examples-a simple network with a long feedback structure, a T-cell receptor network and a cancer network-to demonstrate the usefulness of the proposed algorithm.
Collapse
|
10
|
Calva Moreno JF, Jose G, Weaver YM, Weaver BP. UBR-5 and UBE2D mediate timely exit from stem fate via destabilization of poly(A)-binding protein PABP-2 in cell state transition. Proc Natl Acad Sci U S A 2024; 121:e2407561121. [PMID: 39405353 PMCID: PMC11513905 DOI: 10.1073/pnas.2407561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
UBR5 E3 ligase has been associated with cancer susceptibility and neuronal integrity, with functions in chromatin regulation and proteostasis. However, the functions of ubr5 within animals remain unclear due to lethality in both mammals and flies when disrupted. Using Caenorhabditis elegans, we show that UBR-5 E3 ligase is required for timely exit of stem fate and complete transition into multiple cell type descendants in an ectodermal blast lineage. Animals lacking intact UBR-5 function simultaneously exhibit both stem fate and differentiated fate in the same descendant cells. A functional screen of UBR-5 physical interactors allowed us to identify the UBE2D2/3 E2 conjugase LET-70 working with UBR-5 to exit stem fate. Strikingly, we revealed that another UBR-5 physical interactor, namely the nuclear poly(A)-binding protein PABPN1 ortholog PABP-2, worked antagonistically to UBR-5 and LET-70. Lowering pabp-2 levels restored normal transition of cell state out of stemness and promoted normal cell fusion when either ubr-5 or let-70 UBE2D function was compromised. The UBR-5-LET-70 and PABP-2 switch works independently of the stem pool size determined by pluripotency factors like lin-28. UBR-5 limits PABP-2 protein and reverses the PABP-2-dependent gene expression program including developmental, proteostasis, and innate immunity genes. Loss of ubr-5 rescues the developmental stall when pabp-2 is compromised. Disruption of ubr-5 elevates PABP-2 levels and prolongs expression of ectodermal and muscle stem markers at the transition to adulthood. Additionally, ubr-5 mutants exhibit an extended period of motility during aging and suppress pabp-2-dependent early onset of immobility.
Collapse
Affiliation(s)
| | - George Jose
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yi M. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Benjamin P. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
11
|
Barcenas M, Bocci F, Nie Q. Tipping points in epithelial-mesenchymal lineages from single-cell transcriptomics data. Biophys J 2024; 123:2849-2859. [PMID: 38504523 PMCID: PMC11393678 DOI: 10.1016/j.bpj.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Understanding cell fate decision-making during complex biological processes is an open challenge that is now aided by high-resolution single-cell sequencing technologies. Specifically, it remains challenging to identify and characterize transition states corresponding to "tipping points" whereby cells commit to new cell states. Here, we present a computational method that takes advantage of single-cell transcriptomics data to infer the stability and gene regulatory networks (GRNs) along cell lineages. Our method uses the unspliced and spliced counts from single-cell RNA sequencing data and cell ordering along lineage trajectories to train an RNA splicing multivariate model, from which cell-state stability along the lineage is inferred based on spectral analysis of the model's Jacobian matrix. Moreover, the model infers the RNA cross-species interactions resulting in GRNs and their variation along the cell lineage. When applied to epithelial-mesenchymal transition in ovarian and lung cancer-derived cell lines, our model predicts a saddle-node transition between the epithelial and mesenchymal states passing through an unstable, intermediate cell state. Furthermore, we show that the underlying GRN controlling epithelial-mesenchymal transition rearranges during the transition, resulting in denser and less modular networks in the intermediate state. Overall, our method represents a flexible tool to study cell lineages with a combination of theory-driven modeling and single-cell transcriptomics data.
Collapse
Affiliation(s)
- Manuel Barcenas
- Department of Mathematics, University of California Irvine, Irvine, California
| | - Federico Bocci
- Department of Mathematics, University of California Irvine, Irvine, California; NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, California.
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, California; NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, California.
| |
Collapse
|
12
|
Ramirez DA, Lu M. Dissecting reversible and irreversible single cell state transitions from gene regulatory networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610498. [PMID: 39257745 PMCID: PMC11384016 DOI: 10.1101/2024.08.30.610498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Understanding cell state transitions and their governing regulatory mechanisms remains one of the fundamental questions in biology. We develop a computational method, state transition inference using cross-cell correlations (STICCC), for predicting reversible and irreversible cell state transitions at single-cell resolution by using gene expression data and a set of gene regulatory interactions. The method is inspired by the fact that the gene expression time delays between regulators and targets can be exploited to infer past and future gene expression states. From applications to both simulated and experimental single-cell gene expression data, we show that STICCC-inferred vector fields capture basins of attraction and irreversible fluxes. By connecting regulatory information with systems' dynamical behaviors, STICCC reveals how network interactions influence reversible and irreversible state transitions. Compared to existing methods that infer pseudotime and RNA velocity, STICCC provides complementary insights into the gene regulation of cell state transitions.
Collapse
Affiliation(s)
- Daniel A. Ramirez
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Zhu L, Yang S, Zhang K, Wang H, Fang X, Wang J. Uncovering underlying physical principles and driving forces of cell differentiation and reprogramming from single-cell transcriptomics. Proc Natl Acad Sci U S A 2024; 121:e2401540121. [PMID: 39150785 PMCID: PMC11348339 DOI: 10.1073/pnas.2401540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 08/18/2024] Open
Abstract
Recent advances in single-cell sequencing technology have revolutionized our ability to acquire whole transcriptome data. However, uncovering the underlying transcriptional drivers and nonequilibrium driving forces of cell function directly from these data remains challenging. We address this by learning cell state vector fields from discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium driving forces as landscape and flux. From single-cell data, we quantified the Waddington landscape, showing that optimal paths for differentiation and reprogramming deviate from the naively expected landscape gradient paths and may not pass through landscape saddles at finite fluctuations, challenging conventional transition state estimation of kinetic rate for cell fate decisions due to the presence of the flux. A key insight from our study is that stem/progenitor cells necessitate greater energy dissipation for rapid cell cycles and self-renewal, maintaining pluripotency. We predict optimal developmental pathways and elucidate the nucleation mechanism of cell fate decisions, with transition states as nucleation sites and pioneer genes as nucleation seeds. The concept of loop flux quantifies the contributions of each cycle flux to cell state transitions, facilitating the understanding of cell dynamics and thermodynamic cost, and providing insights into optimizing biological functions. We also infer cell-cell interactions and cell-type-specific gene regulatory networks, encompassing feedback mechanisms and interaction intensities, predicting genetic perturbation effects on cell fate decisions from single-cell omics data. Essentially, our methodology validates the landscape and flux theory, along with its associated quantifications, offering a framework for exploring the physical principles underlying cellular differentiation and reprogramming and broader biological processes through high-throughput single-cell sequencing experiments.
Collapse
Affiliation(s)
- Ligang Zhu
- College of Physics, Jilin University, Changchun130021, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Songlin Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Hong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Xiaona Fang
- College of Chemistry, Northeast Normal University, Changchun130024, China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
- Department of Chemistry, Physics and Astronomy, Stony Brook University, Stony Brook, NY11794
| |
Collapse
|
14
|
Zitnik M, Li MM, Wells A, Glass K, Morselli Gysi D, Krishnan A, Murali TM, Radivojac P, Roy S, Baudot A, Bozdag S, Chen DZ, Cowen L, Devkota K, Gitter A, Gosline SJC, Gu P, Guzzi PH, Huang H, Jiang M, Kesimoglu ZN, Koyuturk M, Ma J, Pico AR, Pržulj N, Przytycka TM, Raphael BJ, Ritz A, Sharan R, Shen Y, Singh M, Slonim DK, Tong H, Yang XH, Yoon BJ, Yu H, Milenković T. Current and future directions in network biology. BIOINFORMATICS ADVANCES 2024; 4:vbae099. [PMID: 39143982 PMCID: PMC11321866 DOI: 10.1093/bioadv/vbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Summary Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation Not applicable.
Collapse
Affiliation(s)
- Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Michelle M Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Aydin Wells
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Deisy Morselli Gysi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Statistics, Federal University of Paraná, Curitiba, Paraná 81530-015, Brazil
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Wisconsin Institute for Discovery, Madison, WI 53715, United States
| | - Anaïs Baudot
- Aix Marseille Université, INSERM, MMG, Marseille, France
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- Department of Mathematics, University of North Texas, Denton, TX 76203, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Kapil Devkota
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Morgridge Institute for Research, Madison, WI 53715, United States
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Seattle, WA 98109, United States
| | - Pengfei Gu
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Pietro H Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | - Heng Huang
- Department of Computer Science, University of Maryland College Park, College Park, MD 20742, United States
| | - Meng Jiang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziynet Nesibe Kesimoglu
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, United States
| | - Nataša Pržulj
- Department of Computer Science, University College London, London, WC1E 6BT, England
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, 08010, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202, United States
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Hanghang Tong
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Xinan Holly Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, United States
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
15
|
Bilous M, Hérault L, Gabriel AA, Teleman M, Gfeller D. Building and analyzing metacells in single-cell genomics data. Mol Syst Biol 2024; 20:744-766. [PMID: 38811801 PMCID: PMC11220014 DOI: 10.1038/s44320-024-00045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
The advent of high-throughput single-cell genomics technologies has fundamentally transformed biological sciences. Currently, millions of cells from complex biological tissues can be phenotypically profiled across multiple modalities. The scaling of computational methods to analyze and visualize such data is a constant challenge, and tools need to be regularly updated, if not redesigned, to cope with ever-growing numbers of cells. Over the last few years, metacells have been introduced to reduce the size and complexity of single-cell genomics data while preserving biologically relevant information and improving interpretability. Here, we review recent studies that capitalize on the concept of metacells-and the many variants in nomenclature that have been used. We further outline how and when metacells should (or should not) be used to analyze single-cell genomics data and what should be considered when analyzing such data at the metacell level. To facilitate the exploration of metacells, we provide a comprehensive tutorial on the construction and analysis of metacells from single-cell RNA-seq data ( https://github.com/GfellerLab/MetacellAnalysisTutorial ) as well as a fully integrated pipeline to rapidly build, visualize and evaluate metacells with different methods ( https://github.com/GfellerLab/MetacellAnalysisToolkit ).
Collapse
Affiliation(s)
- Mariia Bilous
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1011, Lausanne, Switzerland
- Agora Cancer Research Centre, 1011, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Léonard Hérault
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1011, Lausanne, Switzerland
- Agora Cancer Research Centre, 1011, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Aurélie Ag Gabriel
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1011, Lausanne, Switzerland
- Agora Cancer Research Centre, 1011, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Matei Teleman
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1011, Lausanne, Switzerland
- Agora Cancer Research Centre, 1011, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1011, Lausanne, Switzerland.
- Agora Cancer Research Centre, 1011, Lausanne, Switzerland.
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland.
| |
Collapse
|
16
|
Puniya BL, Verma M, Damiani C, Bakr S, Dräger A. Perspectives on computational modeling of biological systems and the significance of the SysMod community. BIOINFORMATICS ADVANCES 2024; 4:vbae090. [PMID: 38948011 PMCID: PMC11213628 DOI: 10.1093/bioadv/vbae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/12/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Motivation In recent years, applying computational modeling to systems biology has caused a substantial surge in both discovery and practical applications and a significant shift in our understanding of the complexity inherent in biological systems. Results In this perspective article, we briefly overview computational modeling in biology, highlighting recent advancements such as multi-scale modeling due to the omics revolution, single-cell technology, and integration of artificial intelligence and machine learning approaches. We also discuss the primary challenges faced: integration, standardization, model complexity, scalability, and interdisciplinary collaboration. Lastly, we highlight the contribution made by the Computational Modeling of Biological Systems (SysMod) Community of Special Interest (COSI) associated with the International Society of Computational Biology (ISCB) in driving progress within this rapidly evolving field through community engagement (via both in person and virtual meetings, social media interactions), webinars, and conferences. Availability and implementation Additional information about SysMod is available at https://sysmod.info.
Collapse
Affiliation(s)
- Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Meghna Verma
- Systems Medicine, Clinical Pharmacology and Quantitative Pharmacology, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD 20878, United States
| | - Chiara Damiani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Shaimaa Bakr
- Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA 94305-5479, United States
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen 72076, Germany
- Data Analytics and Bioinformatics, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| |
Collapse
|
17
|
Zhou P, Bocci F, Li T, Nie Q. Spatial transition tensor of single cells. Nat Methods 2024; 21:1053-1062. [PMID: 38755322 PMCID: PMC11166574 DOI: 10.1038/s41592-024-02266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
Spatial transcriptomics and messenger RNA splicing encode extensive spatiotemporal information for cell states and transitions. The current lineage-inference methods either lack spatial dynamics for state transition or cannot capture different dynamics associated with multiple cell states and transition paths. Here we present spatial transition tensor (STT), a method that uses messenger RNA splicing and spatial transcriptomes through a multiscale dynamical model to characterize multistability in space. By learning a four-dimensional transition tensor and spatial-constrained random walk, STT reconstructs cell-state-specific dynamics and spatial state transitions via both short-time local tensor streamlines between cells and long-time transition paths among attractors. Benchmarking and applications of STT on several transcriptome datasets via multiple technologies on epithelial-mesenchymal transitions, blood development, spatially resolved mouse brain and chicken heart development, indicate STT's capability in recovering cell-state-specific dynamics and their associated genes not seen using existing methods. Overall, STT provides a consistent multiscale description of single-cell transcriptome data across multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Peijie Zhou
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Center for Machine Learning Research, Peking University, Beijing, China
- AI for Science Institute, Beijing, China
- National Engineering Laboratory for Big Data Analysis and Applications, Beijing, China
| | - Federico Bocci
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Tiejun Li
- LMAM and School of Mathematical Sciences, Peking University, Beijing, China
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- Department of Cell and Developmental Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
18
|
A transition tensor for quantifying spatial transcriptome attractors. Nat Methods 2024; 21:942-943. [PMID: 38778208 DOI: 10.1038/s41592-024-02267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
|
19
|
Hong T, Xing J. Data- and theory-driven approaches for understanding paths of epithelial-mesenchymal transition. Genesis 2024; 62:e23591. [PMID: 38553870 PMCID: PMC11017362 DOI: 10.1002/dvg.23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial-mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT.
Collapse
Affiliation(s)
- Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville TN, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Zhu L, Wang J. Quantifying Landscape-Flux via Single-Cell Transcriptomics Uncovers the Underlying Mechanism of Cell Cycle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308879. [PMID: 38353329 DOI: 10.1002/advs.202308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Recent developments in single-cell sequencing technology enable the acquisition of entire transcriptome data. Understanding the underlying mechanism and identifying the driving force of transcriptional regulation governing cell function directly from these data remains challenging. This study reconstructs a continuous vector field of the cell cycle based on discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium dynamic landscape-flux. It reveals that large fluctuations disrupt the global landscape and genetic perturbations alter landscape-flux, thus identifying key genes in maintaining cell cycle dynamics and predicting associated functional effects. Additionally, it quantifies the fundamental energy cost of the cell cycle initiation and unveils that sustaining the cell cycle requires curl flux and dissipation to maintain the oscillatory phase coherence. This study enables the inference of the cell cycle gene regulatory networks directly from the single-cell transcriptomic data, including the feedback mechanisms and interaction intensity. This provides a golden opportunity to experimentally verify the landscape-flux theory and also obtain its associated quantifications. It also offers a unique framework for combining the landscape-flux theory and single-cell high-through sequencing experiments for understanding the underlying mechanisms of the cell cycle and can be extended to other nonequilibrium biological processes, such as differentiation development and disease pathogenesis.
Collapse
Affiliation(s)
- Ligang Zhu
- College of Physics, Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
- Department of Chemistry, Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
21
|
Ranek JS, Stallaert W, Milner JJ, Redick M, Wolff SC, Beltran AS, Stanley N, Purvis JE. DELVE: feature selection for preserving biological trajectories in single-cell data. Nat Commun 2024; 15:2765. [PMID: 38553455 PMCID: PMC10980758 DOI: 10.1038/s41467-024-46773-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package: https://github.com/jranek/delve .
Collapse
Affiliation(s)
- Jolene S Ranek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wayne Stallaert
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Justin Milner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Margaret Redick
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel C Wolff
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adriana S Beltran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Natalie Stanley
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Huynh T, Cang Z. Topological and geometric analysis of cell states in single-cell transcriptomic data. Brief Bioinform 2024; 25:bbae176. [PMID: 38632952 PMCID: PMC11024518 DOI: 10.1093/bib/bbae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/29/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) enables dissecting cellular heterogeneity in tissues, resulting in numerous biological discoveries. Various computational methods have been devised to delineate cell types by clustering scRNA-seq data, where clusters are often annotated using prior knowledge of marker genes. In addition to identifying pure cell types, several methods have been developed to identify cells undergoing state transitions, which often rely on prior clustering results. The present computational approaches predominantly investigate the local and first-order structures of scRNA-seq data using graph representations, while scRNA-seq data frequently display complex high-dimensional structures. Here, we introduce scGeom, a tool that exploits the multiscale and multidimensional structures in scRNA-seq data by analyzing the geometry and topology through curvature and persistent homology of both cell and gene networks. We demonstrate the utility of these structural features to reflect biological properties and functions in several applications, where we show that curvatures and topological signatures of cell and gene networks can help indicate transition cells and the differentiation potential of cells. We also illustrate that structural characteristics can improve the classification of cell types.
Collapse
Affiliation(s)
- Tram Huynh
- Department of Mathematics and Center for Research in Scientific Computation, North Carolina State University, NC 27695, USA
| | - Zixuan Cang
- Department of Mathematics and Center for Research in Scientific Computation, North Carolina State University, NC 27695, USA
| |
Collapse
|
23
|
Liu J, Li C. Data-driven energy landscape reveals critical genes in cancer progression. NPJ Syst Biol Appl 2024; 10:27. [PMID: 38459043 PMCID: PMC10923824 DOI: 10.1038/s41540-024-00354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
The evolution of cancer is a complex process characterized by stable states and transitions among them. Studying the dynamic evolution of cancer and revealing the mechanisms of cancer progression based on experimental data is an important topic. In this study, we aim to employ a data-driven energy landscape approach to analyze the dynamic evolution of cancer. We take Kidney renal clear cell carcinoma (KIRC) as an example. From the energy landscape, we introduce two quantitative indicators (transition probability and barrier height) to study critical shifts in KIRC cancer evolution, including cancer onset and progression, and identify critical genes involved in these transitions. Our results successfully identify crucial genes that either promote or inhibit these transition processes in KIRC. We also conduct a comprehensive biological function analysis on these genes, validating the accuracy and reliability of our predictions. This work has implications for discovering new biomarkers, drug targets, and cancer treatment strategies in KIRC.
Collapse
Affiliation(s)
- Juntan Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, 200433, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, 200433, China.
- School of Mathematical Sciences and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
24
|
Banerjee M, Srivastava S, Rai SN, States JC. Chronic arsenic exposure induces malignant transformation of human HaCaT cells through both deterministic and stochastic changes in transcriptome expression. Toxicol Appl Pharmacol 2024; 484:116865. [PMID: 38373578 PMCID: PMC10994602 DOI: 10.1016/j.taap.2024.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Biological processes are inherently stochastic, i.e., are partially driven by hard to predict random probabilistic processes. Carcinogenesis is driven both by stochastic and deterministic (predictable non-random) changes. However, very few studies systematically examine the contribution of stochastic events leading to cancer development. In differential gene expression studies, the established data analysis paradigms incentivize expression changes that are uniformly different across the experimental versus control groups, introducing preferential inclusion of deterministic changes at the expense of stochastic processes that might also play a crucial role in the process of carcinogenesis. In this study, we applied simple computational techniques to quantify: (i) The impact of chronic arsenic (iAs) exposure as well as passaging time on stochastic gene expression and (ii) Which genes were expressed deterministically and which were expressed stochastically at each of the three stages of cancer development. Using biological coefficient of variation as an empirical measure of stochasticity we demonstrate that chronic iAs exposure consistently suppressed passaging related stochastic gene expression at multiple time points tested, selecting for a homogenous cell population that undergo transformation. Employing multiple balanced removal of outlier data, we show that chronic iAs exposure induced deterministic and stochastic changes in the expression of unique set of genes, that populate largely unique biological pathways. Together, our data unequivocally demonstrate that both deterministic and stochastic changes in transcriptome-wide expression are critical in driving biological processes, pathways and networks towards clonal selection, carcinogenesis, and tumor heterogeneity.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA
| | - Sudhir Srivastava
- Department of Bioinformatics and Biostatistics, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA
| | - Shesh N Rai
- Department of Bioinformatics and Biostatistics, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Biostatistics and Informatics Facility Core, Center for Integrative Environmental Health Sciences, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA.
| |
Collapse
|
25
|
Xiao H, Shiu J, Chen CF, Wu J, Zhou P, Telang SS, Ruiz-Vega R, Nie Q, Lander AD, Ganesan AK. Uncovering Minimal Pathways in Melanoma Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570336. [PMID: 38106189 PMCID: PMC10723457 DOI: 10.1101/2023.12.08.570336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cutaneous melanomas are clinically and histologically heterogeneous. Most display activating mutations in Braf or Nras and complete loss of function of one or more tumor suppressor genes. Mouse models that replicate such mutations produce fast-growing, pigmented tumors. However, mice that combine Braf activation with only heterozygous loss of Pten also produce tumors and, as we show here, in an Albino background this occurs even with Braf activation alone. Such tumors arise rarely, grow slowly, and express low levels of pigmentation genes. The timing of their appearance was consistent with a single step stochastic event, but no evidence could be found that it required de novo mutation, suggesting instead the involvement of an epigenetic transition. Single-cell transcriptomic analysis revealed such tumors to be heterogeneous, including a minor cell type we term LNM ( L ow-pigment, N eural- and extracellular M atrix-signature) that displays gene expression resembling "neural crest"-like cell subsets detected in the fast-growing tumors of more heavily-mutated mice, as well as in human biopsy and xenograft samples. We provide evidence that LNM cells pre-exist in normal skin, are expanded by Braf activation, can transition into malignant cells, and persist with malignant cells through multiple rounds of transplantation. We discuss the possibility that LNM cells not only serve as a pre-malignant state in the production of some melanomas, but also as an important intermediate in the development of drug resistance.
Collapse
|
26
|
Wang P, Wen X, Li H, Lang P, Li S, Lei Y, Shu H, Gao L, Zhao D, Zeng J. Deciphering driver regulators of cell fate decisions from single-cell transcriptomics data with CEFCON. Nat Commun 2023; 14:8459. [PMID: 38123534 PMCID: PMC10733330 DOI: 10.1038/s41467-023-44103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Single-cell technologies enable the dynamic analyses of cell fate mapping. However, capturing the gene regulatory relationships and identifying the driver factors that control cell fate decisions are still challenging. We present CEFCON, a network-based framework that first uses a graph neural network with attention mechanism to infer a cell-lineage-specific gene regulatory network (GRN) from single-cell RNA-sequencing data, and then models cell fate dynamics through network control theory to identify driver regulators and the associated gene modules, revealing their critical biological processes related to cell states. Extensive benchmarking tests consistently demonstrated the superiority of CEFCON in GRN construction, driver regulator identification, and gene module identification over baseline methods. When applied to the mouse hematopoietic stem cell differentiation data, CEFCON successfully identified driver regulators for three developmental lineages, which offered useful insights into their differentiation from a network control perspective. Overall, CEFCON provides a valuable tool for studying the underlying mechanisms of cell fate decisions from single-cell RNA-seq data.
Collapse
Affiliation(s)
- Peizhuo Wang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
- School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China
| | - Xiao Wen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Han Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Peng Lang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Shuya Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
- School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China
| | - Yipin Lei
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Hantao Shu
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, 710071, Xi'an, Shaanxi Province, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China.
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China.
- School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
27
|
Wang Y. Algorithms for the Uniqueness of the Longest Common Subsequence. J Bioinform Comput Biol 2023; 21:2350027. [PMID: 38212873 DOI: 10.1142/s0219720023500270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Given several number sequences, determining the longest common subsequence is a classical problem in computer science. This problem has applications in bioinformatics, especially determining transposable genes. Nevertheless, related works only consider how to find one longest common subsequence. In this paper, we consider how to determine the uniqueness of the longest common subsequence. If there are multiple longest common subsequences, we also determine which number appears in all/some/none of the longest common subsequences. We focus on four scenarios: (1) linear sequences without duplicated numbers; (2) circular sequences without duplicated numbers; (3) linear sequences with duplicated numbers; (4) circular sequences with duplicated numbers. We develop corresponding algorithms and apply them to gene sequencing data.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, University of California, Los Angeles, California, USA
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, New York, USA
| |
Collapse
|
28
|
Sha Y, Qiu Y, Zhou P, Nie Q. Reconstructing growth and dynamic trajectories from single-cell transcriptomics data. NAT MACH INTELL 2023; 6:25-39. [PMID: 38274364 PMCID: PMC10805654 DOI: 10.1038/s42256-023-00763-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/25/2023] [Indexed: 01/27/2024]
Abstract
Time-series single-cell RNA sequencing (scRNA-seq) datasets provide unprecedented opportunities to learn dynamic processes of cellular systems. Due to the destructive nature of sequencing, it remains challenging to link the scRNA-seq snapshots sampled at different time points. Here we present TIGON, a dynamic, unbalanced optimal transport algorithm that reconstructs dynamic trajectories and population growth simultaneously as well as the underlying gene regulatory network from multiple snapshots. To tackle the high-dimensional optimal transport problem, we introduce a deep learning method using a dimensionless formulation based on the Wasserstein-Fisher-Rao (WFR) distance. TIGON is evaluated on simulated data and compared with existing methods for its robustness and accuracy in predicting cell state transition and cell population growth. Using three scRNA-seq datasets, we show the importance of growth in the temporal inference, TIGON's capability in reconstructing gene expression at unmeasured time points and its applications to temporal gene regulatory networks and cell-cell communication inference.
Collapse
Affiliation(s)
- Yutong Sha
- Department of Mathematics, University of California, Irvine, Irvine, CA USA
| | - Yuchi Qiu
- Department of Mathematics, Michigan State University, East Lansing, MI USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, Irvine, CA USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA USA
| |
Collapse
|
29
|
Sun W, Feng J, Su J, Guo Q. Kernel-based learning framework for discovering the governing equations of stochastic jump-diffusion processes directly from data. Phys Rev E 2023; 108:035306. [PMID: 37849188 DOI: 10.1103/physreve.108.035306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 10/19/2023]
Abstract
Discovering the underlying mathematical-physical equations of complex systems directly from observational data has been a challenging inversion problem. We propose a data-driven framework for identifying dynamical information in stochastic diffusion or stochastic jump-diffusion systems. The probability density function is utilized to relate the Kramers-Moyal expansion to the governing equations, and the kernel density estimation method, improved by the Fourier transform idea, is used to extract the Kramers-Moyal coefficients from the time series of the state variables of the system. These coefficients provide the data expression of the governing equations of the system. Then a data-driven sparse identification algorithm is used to reconstruct the underlying dynamic equations. The proposed framework does not rely on prior assumptions, and all results are obtained directly from the data. In addition, we demonstrate its validity and accuracy using illustrative one- and two-dimensional examples.
Collapse
Affiliation(s)
- Wenqing Sun
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Jinqian Feng
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Jin Su
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Qin Guo
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
30
|
He C, Zhou P, Nie Q. exFINDER: identify external communication signals using single-cell transcriptomics data. Nucleic Acids Res 2023; 51:e58. [PMID: 37026478 PMCID: PMC10250247 DOI: 10.1093/nar/gkad262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Cells make decisions through their communication with other cells and receiving signals from their environment. Using single-cell transcriptomics, computational tools have been developed to infer cell-cell communication through ligands and receptors. However, the existing methods only deal with signals sent by the measured cells in the data, the received signals from the external system are missing in the inference. Here, we present exFINDER, a method that identifies such external signals received by the cells in the single-cell transcriptomics datasets by utilizing the prior knowledge of signaling pathways. In particular, exFINDER can uncover external signals that activate the given target genes, infer the external signal-target signaling network (exSigNet), and perform quantitative analysis on exSigNets. The applications of exFINDER to scRNA-seq datasets from different species demonstrate the accuracy and robustness of identifying external signals, revealing critical transition-related signaling activities, inferring critical external signals and targets, clustering signal-target paths, and evaluating relevant biological events. Overall, exFINDER can be applied to scRNA-seq data to reveal the external signal-associated activities and maybe novel cells that send such signals.
Collapse
Affiliation(s)
- Changhan He
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Cell and Developmental Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
31
|
Ranek JS, Stallaert W, Milner J, Stanley N, Purvis JE. Feature selection for preserving biological trajectories in single-cell data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540043. [PMID: 37214963 PMCID: PMC10197710 DOI: 10.1101/2023.05.09.540043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single-cell technologies can readily measure the expression of thousands of molecular features from individual cells undergoing dynamic biological processes, such as cellular differentiation, immune response, and disease progression. While examining cells along a computationally ordered pseudotime offers the potential to study how subtle changes in gene or protein expression impact cell fate decision-making, identifying characteristic features that drive continuous biological processes remains difficult to detect from unenriched and noisy single-cell data. Given that all profiled sources of feature variation contribute to the cell-to-cell distances that define an inferred cellular trajectory, including confounding sources of biological variation (e.g. cell cycle or metabolic state) or noisy and irrelevant features (e.g. measurements with low signal-to-noise ratio) can mask the underlying trajectory of study and hinder inference. Here, we present DELVE (dynamic selection of locally covarying features), an unsupervised feature selection method for identifying a representative subset of dynamically-expressed molecular features that recapitulates cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effect of unwanted sources of variation confounding inference, and instead models cell states from dynamic feature modules that constitute core regulatory complexes. Using simulations, single-cell RNA sequencing data, and iterative immunofluorescence imaging data in the context of the cell cycle and cellular differentiation, we demonstrate that DELVE selects features that more accurately characterize cell populations and improve the recovery of cell type transitions. This feature selection framework provides an alternative approach for improving trajectory inference and uncovering co-variation amongst features along a biological trajectory. DELVE is implemented as an open-source python package and is publicly available at: https://github.com/jranek/delve.
Collapse
Affiliation(s)
- Jolene S. Ranek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wayne Stallaert
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Milner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Stanley
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy E. Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Sarmah D, Meredith WO, Weber IK, Price MR, Birtwistle MR. Predicting anti-cancer drug combination responses with a temporal cell state network model. PLoS Comput Biol 2023; 19:e1011082. [PMID: 37126527 PMCID: PMC10174488 DOI: 10.1371/journal.pcbi.1011082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/11/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Cancer chemotherapy combines multiple drugs, but predicting the effects of drug combinations on cancer cell proliferation remains challenging, even for simple in vitro systems. We hypothesized that by combining knowledge of single drug dose responses and cell state transition network dynamics, we could predict how a population of cancer cells will respond to drug combinations. We tested this hypothesis here using three targeted inhibitors of different cell cycle states in two different cell lines in vitro. We formulated a Markov model to capture temporal cell state transitions between different cell cycle phases, with single drug data constraining how drug doses affect transition rates. This model was able to predict the landscape of all three different pairwise drug combinations across all dose ranges for both cell lines with no additional data. While further application to different cell lines, more drugs, additional cell state networks, and more complex co-culture or in vivo systems remain, this work demonstrates how currently available or attainable information could be sufficient for prediction of drug combination response for single cell lines in vitro.
Collapse
Affiliation(s)
- Deepraj Sarmah
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Wesley O. Meredith
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Ian K. Weber
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, United States of America
- The University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Madison R. Price
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, United States of America
- College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Marc R. Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, United States of America
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
33
|
He C, Zhou P, Nie Q. exFINDER: identify external communication signals using single-cell transcriptomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533888. [PMID: 37034624 PMCID: PMC10081188 DOI: 10.1101/2023.03.24.533888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Cells make decisions through their communication with other cells and receiving signals from their environment. Using single-cell transcriptomics, computational tools have been developed to infer cell-cell communication through ligands and receptors. However, the existing methods only deal with signals sent by the measured cells in the data, the received signals from the external system are missing in the inference. Here, we present exFINDER, a method that identifies such external signals received by the cells in the single-cell transcriptomics datasets by utilizing the prior knowledge of signaling pathways. In particular, exFINDER can uncover external signals that activate the given target genes, infer the external signal-target signaling network (exSigNet), and perform quantitative analysis on exSigNets. The applications of exFINDER to scRNA-seq datasets from different species demonstrate the accuracy and robustness of identifying external signals, revealing critical transition-related signaling activities, inferring critical external signals and targets, clustering signal-target paths, and evaluating relevant biological events. Overall, exFINDER can be applied to scRNA-seq data to reveal the external signal-associated activities and maybe novel cells that send such signals.
Collapse
Affiliation(s)
- Changhan He
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Cell and Developmental Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
34
|
Non-equilibrium early-warning signals for critical transitions in ecological systems. Proc Natl Acad Sci U S A 2023; 120:e2218663120. [PMID: 36689655 PMCID: PMC9945981 DOI: 10.1073/pnas.2218663120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Complex systems can exhibit sudden transitions or regime shifts from one stable state to another, typically referred to as critical transitions. It becomes a great challenge to identify a robust warning sufficiently early that action can be taken to avert a regime shift. We employ landscape-flux theory from nonequilibrium statistical mechanics as a general framework to quantify the global stability of ecological systems and provide warning signals for critical transitions. We quantify the average flux as the nonequilibrium driving force and the dynamical origin of the nonequilibrium transition while the entropy production rate as the nonequilibrium thermodynamic cost and thermodynamic origin of the nonequilibrium transition. Average flux, entropy production, nonequilibrium free energy, and time irreversibility quantified by the difference in cross-correlation functions forward and backward in time can serve as early warning signals for critical transitions much earlier than other conventional predictors. We utilize a classical shallow lake model as an exemplar for our early warning prediction. Our proposed method is general and can be readily applied to assess the resilience of many other ecological systems. The early warning signals proposed here can potentially predict critical transitions earlier than established methods and perhaps even sufficiently early to avert catastrophic shifts.
Collapse
|
35
|
Wang L, Nie R, Zhang J, Cai J. scCapsNet-mask: an updated version of scCapsNet with extended applicability in functional analysis related to scRNA-seq data. BMC Bioinformatics 2022; 23:539. [PMID: 36510124 PMCID: PMC9743530 DOI: 10.1186/s12859-022-05098-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND With the rapid accumulation of scRNA-seq data, more and more automatic cell type identification methods have been developed, especially those based on deep learning. Although these methods have reached relatively high prediction accuracy, many issues still exist. One is the interpretability. The second is how to deal with the non-standard test samples that are not encountered in the training process. RESULTS Here we introduce scCapsNet-mask, an updated version of scCapsNet. The scCapsNet-mask provides a reasonable solution to the issues of interpretability and non-standard test samples. Firstly, the scCapsNet-mask utilizes a mask to ease the task of model interpretation in the original scCapsNet. The results show that scCapsNet-mask could constrain the coupling coefficients, and make a one-to-one correspondence between the primary capsules and type capsules. Secondly, the scCapsNet-mask can process non-standard samples more reasonably. In one example, the scCapsNet-mask was trained on the committed cells, and then tested on less differentiated cells as the non-standard samples. It could not only estimate the lineage bias of less differentiated cells, but also distinguish the development stages more accurately than traditional machine learning models. Therefore, the pseudo-temporal order of cells for each lineage could be established. Following these pseudo-temporal order, lineage specific genes exhibit a gradual increase expression pattern and stem cell associated genes exhibit a gradual decrease expression pattern. In another example, the scCapsNet-mask was trained on scRNA-seq data, and then used to assign cell type in spatial transcriptomics that may contain non-standard sample of doublets. The results show that the scCapsNet-mask not only restored the spatial map but also identified several non-standard samples of doublet. CONCLUSIONS The scCapsNet-mask offers a suitable solution to the challenge of interpretability and non-standard test samples. By adding a mask, it has the advantages of automatic processing and easy interpretation compared with the original scCapsNet. In addition, the scCapsNet-mask could more accurately reflect the composition of non-standard test samples than traditional machine learning methods. Therefore, it can extend its applicability in functional analysis, such as fate bias prediction in less differentiated cells and cell type assignment in spatial transcriptomics.
Collapse
Affiliation(s)
- Lifei Wang
- grid.413073.20000 0004 1758 9341Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China ,grid.464209.d0000 0004 0644 6935China National Center for Bioinformation, Beijing, 100101 China ,grid.9227.e0000000119573309Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Rui Nie
- grid.464209.d0000 0004 0644 6935China National Center for Bioinformation, Beijing, 100101 China ,grid.9227.e0000000119573309Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiang Zhang
- grid.20513.350000 0004 1789 9964School of Systems Science, Beijing Normal University, Beijing, 100875 China
| | - Jun Cai
- grid.464209.d0000 0004 0644 6935China National Center for Bioinformation, Beijing, 100101 China ,grid.9227.e0000000119573309Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
36
|
Peng L, Yang J, Wang M, Zhou L. Editorial: Machine learning-based methods for RNA data analysis—Volume II. Front Genet 2022; 13:1010089. [DOI: 10.3389/fgene.2022.1010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
|
37
|
Lan T, Hutvagner G, Zhang X, Liu T, Wong L, Li J. Density-based detection of cell transition states to construct disparate and bifurcating trajectories. Nucleic Acids Res 2022; 50:e122. [PMID: 36124665 PMCID: PMC9757071 DOI: 10.1093/nar/gkac785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tree- and linear-shaped cell differentiation trajectories have been widely observed in developmental biologies and can be also inferred through computational methods from single-cell RNA-sequencing datasets. However, trajectories with complicated topologies such as loops, disparate lineages and bifurcating hierarchy remain difficult to infer accurately. Here, we introduce a density-based trajectory inference method capable of constructing diverse shapes of topological patterns including the most intriguing bifurcations. The novelty of our method is a step to exploit overlapping probability distributions to identify transition states of cells for determining connectability between cell clusters, and another step to infer a stable trajectory through a base-topology guided iterative fitting. Our method precisely re-constructed various benchmark reference trajectories. As a case study to demonstrate practical usefulness, our method was tested on single-cell RNA sequencing profiles of blood cells of SARS-CoV-2-infected patients. We not only re-discovered the linear trajectory bridging the transition from IgM plasmablast cells to developing neutrophils, and also found a previously-undiscovered lineage which can be rigorously supported by differentially expressed gene analysis.
Collapse
Affiliation(s)
- Tian Lan
- Data Science Institute and School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Zhang
- Data Science Institute and School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tao Liu
- Children’s Cancer Institute Australia for Medical Research, Randwick, NSW 2031, Australia
| | - Limsoon Wong
- School of Computing, National University of Singapore, 13 Computing Drive, 117417, Singapore
| | - Jinyan Li
- Data Science Institute and School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
38
|
Bocci F, Zhou P, Nie Q. spliceJAC: transition genes and state-specific gene regulation from single-cell transcriptome data. Mol Syst Biol 2022; 18:e11176. [PMID: 36321549 PMCID: PMC9627675 DOI: 10.15252/msb.202211176] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Extracting dynamical information from single-cell transcriptomics is a novel task with the promise to advance our understanding of cell state transition and interactions between genes. Yet, theory-oriented, bottom-up approaches that consider differences among cell states are largely lacking. Here, we present spliceJAC, a method to quantify the multivariate mRNA splicing from single-cell RNA sequencing (scRNA-seq). spliceJAC utilizes the unspliced and spliced mRNA count matrices to constructs cell state-specific gene-gene regulatory interactions and applies stability analysis to predict putative driver genes critical to the transitions between cell states. By applying spliceJAC to biological systems including pancreas endothelium development and epithelial-mesenchymal transition (EMT) in A549 lung cancer cells, we predict genes that serve specific signaling roles in different cell states, recover important differentially expressed genes in agreement with pre-existing analysis, and predict new transition genes that are either exclusive or shared between different cell state transitions.
Collapse
Affiliation(s)
- Federico Bocci
- Department of MathematicsUniversity of CaliforniaIrvineCAUSA
- NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Peijie Zhou
- Department of MathematicsUniversity of CaliforniaIrvineCAUSA
| | - Qing Nie
- Department of MathematicsUniversity of CaliforniaIrvineCAUSA
- NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
39
|
Gao S, Chen Y, Wu Z, Kajigaya S, Wang X, Young NS. Time-Varying Gene Expression Network Analysis Reveals Conserved Transition States in Hematopoietic Differentiation between Human and Mouse. Genes (Basel) 2022; 13:genes13101890. [PMID: 36292775 PMCID: PMC9601530 DOI: 10.3390/genes13101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: analyses of gene networks can elucidate hematopoietic differentiation from single-cell gene expression data, but most algorithms generate only a single, static network. Because gene interactions change over time, it is biologically meaningful to examine time-varying structures and to capture dynamic, even transient states, and cell-cell relationships. (2) Methods: a transcriptomic atlas of hematopoietic stem and progenitor cells was used for network analysis. After pseudo-time ordering with Monocle 2, LOGGLE was used to infer time-varying networks and to explore changes of differentiation gene networks over time. A range of network analysis tools were used to examine properties and genes in the inferred networks. (3) Results: shared characteristics of attributes during the evolution of differentiation gene networks showed a “U” shape of network density over time for all three branches for human and mouse. Differentiation appeared as a continuous process, originating from stem cells, through a brief transition state marked by fewer gene interactions, before stabilizing in a progenitor state. Human and mouse shared hub genes in evolutionary networks. (4) Conclusions: the conservation of network dynamics in the hematopoietic systems of mouse and human was reflected by shared hub genes and network topological changes during differentiation.
Collapse
Affiliation(s)
- Shouguo Gao
- Hematopoiesis and Bone Marrow Failure Laboratory, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence:
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Zhijie Wu
- Hematopoiesis and Bone Marrow Failure Laboratory, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sachiko Kajigaya
- Hematopoiesis and Bone Marrow Failure Laboratory, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xujing Wang
- Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20817, USA
| | - Neal S. Young
- Hematopoiesis and Bone Marrow Failure Laboratory, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Xing J. Reconstructing data-driven governing equations for cell phenotypic transitions: integration of data science and systems biology. Phys Biol 2022; 19:10.1088/1478-3975/ac8c16. [PMID: 35998617 PMCID: PMC9585661 DOI: 10.1088/1478-3975/ac8c16] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
Cells with the same genome can exist in different phenotypes and can change between distinct phenotypes when subject to specific stimuli and microenvironments. Some examples include cell differentiation during development, reprogramming for induced pluripotent stem cells and transdifferentiation, cancer metastasis and fibrosis progression. The regulation and dynamics of cell phenotypic conversion is a fundamental problem in biology, and has a long history of being studied within the formalism of dynamical systems. A main challenge for mechanism-driven modeling studies is acquiring sufficient amount of quantitative information for constraining model parameters. Advances in quantitative experimental approaches, especially high throughput single-cell techniques, have accelerated the emergence of a new direction for reconstructing the governing dynamical equations of a cellular system from quantitative single-cell data, beyond the dominant statistical approaches. Here I review a selected number of recent studies using live- and fixed-cell data and provide my perspective on future development.
Collapse
Affiliation(s)
- Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Yang XH, Goldstein A, Sun Y, Wang Z, Wei M, Moskowitz I, Cunningham J. Detecting critical transition signals from single-cell transcriptomes to infer lineage-determining transcription factors. Nucleic Acids Res 2022; 50:e91. [PMID: 35640613 PMCID: PMC9458468 DOI: 10.1093/nar/gkac452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 12/29/2022] Open
Abstract
Analyzing single-cell transcriptomes promises to decipher the plasticity, heterogeneity, and rapid switches in developmental cellular state transitions. Such analyses require the identification of gene markers for semi-stable transition states. However, there are nontrivial challenges such as unexplainable stochasticity, variable population sizes, and alternative trajectory constructions. By advancing current tipping-point theory-based models with feature selection, network decomposition, accurate estimation of correlations, and optimization, we developed BioTIP to overcome these challenges. BioTIP identifies a small group of genes, called critical transition signal (CTS), to characterize regulated stochasticity during semi-stable transitions. Although methods rooted in different theories converged at the same transition events in two benchmark datasets, BioTIP is unique in inferring lineage-determining transcription factors governing critical transition. Applying BioTIP to mouse gastrulation data, we identify multiple CTSs from one dataset and validated their significance in another independent dataset. We detect the established regulator Etv2 whose expression change drives the haemato-endothelial bifurcation, and its targets together in CTS across three datasets. After comparing to three current methods using six datasets, we show that BioTIP is accurate, user-friendly, independent of pseudo-temporal trajectory, and captures significantly interconnected and reproducible CTSs. We expect BioTIP to provide great insight into dynamic regulations of lineage-determining factors.
Collapse
Affiliation(s)
- Xinan H Yang
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Andrew Goldstein
- Department of Statistics, The University of Chicago, Chicago IL, USA
| | - Yuxi Sun
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Zhezhen Wang
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Megan Wei
- Johns Hopkins University, Baltimore, MD, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - John M Cunningham
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
42
|
Xing J. Reconstructing data-driven governing equations for cell phenotypic transitions: integration of data science and systems biology. Phys Biol 2022. [PMID: 35998617 DOI: 10.48550/arxiv.2203.14964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells with the same genome can exist in different phenotypes and can change between distinct phenotypes when subject to specific stimuli and microenvironments. Some examples include cell differentiation during development, reprogramming for induced pluripotent stem cells and transdifferentiation, cancer metastasis and fibrosis progression. The regulation and dynamics of cell phenotypic conversion is a fundamental problem in biology, and has a long history of being studied within the formalism of dynamical systems. A main challenge for mechanism-driven modeling studies is acquiring sufficient amount of quantitative information for constraining model parameters. Advances in quantitative experimental approaches, especially high throughput single-cell techniques, have accelerated the emergence of a new direction for reconstructing the governing dynamical equations of a cellular system from quantitative single-cell data, beyond the dominant statistical approaches. Here I review a selected number of recent studies using live- and fixed-cell data and provide my perspective on future development.
Collapse
Affiliation(s)
- Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15232, United States of America.,Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15232, United States of America.,UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
43
|
Chen F, Li C. Inferring structural and dynamical properties of gene networks from data with deep learning. NAR Genom Bioinform 2022; 4:lqac068. [PMID: 36110897 PMCID: PMC9469930 DOI: 10.1093/nargab/lqac068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
The reconstruction of gene regulatory networks (GRNs) from data is vital in systems biology. Although different approaches have been proposed to infer causality from data, some challenges remain, such as how to accurately infer the direction and type of interactions, how to deal with complex network involving multiple feedbacks, as well as how to infer causality between variables from real-world data, especially single cell data. Here, we tackle these problems by deep neural networks (DNNs). The underlying regulatory network for different systems (gene regulations, ecology, diseases, development) can be successfully reconstructed from trained DNN models. We show that DNN is superior to existing approaches including Boolean network, Random Forest and partial cross mapping for network inference. Further, by interrogating the ensemble DNN model trained from single cell data from dynamical system perspective, we are able to unravel complex cell fate dynamics during preimplantation development. We also propose a data-driven approach to quantify the energy landscape for gene regulatory systems, by combining DNN with the partial self-consistent mean field approximation (PSCA) approach. We anticipate the proposed method can be applied to other fields to decipher the underlying dynamical mechanisms of systems from data.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
44
|
Uthamacumaran A. Dissecting cell fate dynamics in pediatric glioblastoma through the lens of complex systems and cellular cybernetics. BIOLOGICAL CYBERNETICS 2022; 116:407-445. [PMID: 35678918 DOI: 10.1007/s00422-022-00935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Cancers are complex dynamic ecosystems. Reductionist approaches to science are inadequate in characterizing their self-organized patterns and collective emergent behaviors. Since current approaches to single-cell analysis in cancer systems rely primarily on single time-point multiomics, many of the temporal features and causal adaptive behaviors in cancer dynamics are vastly ignored. As such, tools and concepts from the interdisciplinary paradigm of complex systems theory are introduced herein to decode the cellular cybernetics of cancer differentiation dynamics and behavioral patterns. An intuition for the attractors and complex networks underlying cancer processes such as cell fate decision-making, multiscale pattern formation systems, and epigenetic state-transitions is developed. The applications of complex systems physics in paving targeted therapies and causal pattern discovery in precision oncology are discussed. Pediatric high-grade gliomas are discussed as a model-system to demonstrate that cancers are complex adaptive systems, in which the emergence and selection of heterogeneous cellular states and phenotypic plasticity are driven by complex multiscale network dynamics. In specific, pediatric glioblastoma (GBM) is used as a proof-of-concept model to illustrate the applications of the complex systems framework in understanding GBM cell fate decisions and decoding their adaptive cellular dynamics. The scope of these tools in forecasting cancer cell fate dynamics in the emerging field of computational oncology and patient-centered systems medicine is highlighted.
Collapse
|
45
|
Karikomi M, Zhou P, Nie Q. DURIAN: an integrative deconvolution and imputation method for robust signaling analysis of single-cell transcriptomics data. Brief Bioinform 2022; 23:6609525. [PMID: 35709795 PMCID: PMC9294432 DOI: 10.1093/bib/bbac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 01/31/2023] Open
Abstract
Single-cell RNA sequencing trades read-depth for dimensionality, often leading to loss of critical signaling gene information that is typically present in bulk data sets. We introduce DURIAN (Deconvolution and mUltitask-Regression-based ImputAtioN), an integrative method for recovery of gene expression in single-cell data. Through systematic benchmarking, we demonstrate the accuracy, robustness and empirical convergence of DURIAN using both synthetic and published data sets. We show that use of DURIAN improves single-cell clustering, low-dimensional embedding, and recovery of intercellular signaling networks. Our study resolves several inconsistent results of cell-cell communication analysis using single-cell or bulk data independently. The method has broad application in biomarker discovery and cell signaling analysis using single-cell transcriptomics data sets.
Collapse
Affiliation(s)
| | - Peijie Zhou
- Corresponding authors: Peijie Zhou, 540P Rowland Hall, University of California Irvine, Irvine CA 92697, USA. Tel: 949-824-5530; Fax: 949-8247993; ; Qing Nie, 540F Rowland Hall, University of California Irvine, Irvine CA 92697, USA. Tel: 949-824-5530; Fax: 949-8247993;
| | - Qing Nie
- Corresponding authors: Peijie Zhou, 540P Rowland Hall, University of California Irvine, Irvine CA 92697, USA. Tel: 949-824-5530; Fax: 949-8247993; ; Qing Nie, 540F Rowland Hall, University of California Irvine, Irvine CA 92697, USA. Tel: 949-824-5530; Fax: 949-8247993;
| |
Collapse
|
46
|
Fields C, Levin M. Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments. ENTROPY (BASEL, SWITZERLAND) 2022; 24:819. [PMID: 35741540 PMCID: PMC9222757 DOI: 10.3390/e24060819] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 12/20/2022]
Abstract
One of the most salient features of life is its capacity to handle novelty and namely to thrive and adapt to new circumstances and changes in both the environment and internal components. An understanding of this capacity is central to several fields: the evolution of form and function, the design of effective strategies for biomedicine, and the creation of novel life forms via chimeric and bioengineering technologies. Here, we review instructive examples of living organisms solving diverse problems and propose competent navigation in arbitrary spaces as an invariant for thinking about the scaling of cognition during evolution. We argue that our innate capacity to recognize agency and intelligence in unfamiliar guises lags far behind our ability to detect it in familiar behavioral contexts. The multi-scale competency of life is essential to adaptive function, potentiating evolution and providing strategies for top-down control (not micromanagement) to address complex disease and injury. We propose an observer-focused viewpoint that is agnostic about scale and implementation, illustrating how evolution pivoted similar strategies to explore and exploit metabolic, transcriptional, morphological, and finally 3D motion spaces. By generalizing the concept of behavior, we gain novel perspectives on evolution, strategies for system-level biomedical interventions, and the construction of bioengineered intelligences. This framework is a first step toward relating to intelligence in highly unfamiliar embodiments, which will be essential for progress in artificial intelligence and regenerative medicine and for thriving in a world increasingly populated by synthetic, bio-robotic, and hybrid beings.
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center at Tufts University, Science and Engineering Complex, 200 College Ave., Medford, MA 02155, USA;
| | - Michael Levin
- Allen Discovery Center at Tufts University, Science and Engineering Complex, 200 College Ave., Medford, MA 02155, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| |
Collapse
|
47
|
Minelli A, Valero-Gracia A. Spatially and Temporally Distributed Complexity-A Refreshed Framework for the Study of GRN Evolution. Cells 2022; 11:cells11111790. [PMID: 35681485 PMCID: PMC9179533 DOI: 10.3390/cells11111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Irrespective of the heuristic value of interpretations of developmental processes in terms of gene regulatory networks (GRNs), larger-angle views often suffer from: (i) an inadequate understanding of the relationship between genotype and phenotype; (ii) a predominantly zoocentric vision; and (iii) overconfidence in a putatively hierarchical organization of animal body plans. Here, we constructively criticize these assumptions. First, developmental biology is pervaded by adultocentrism, but development is not necessarily egg to adult. Second, during development, many unicells undergo transcriptomic profile transitions that are comparable to those recorded in pluricellular organisms; thus, their study should not be neglected from the GRN perspective. Third, the putatively hierarchical nature of the animal body is mirrored in the GRN logic, but in relating genotype to phenotype, independent assessments of the dynamics of the regulatory machinery and the animal’s architecture are required, better served by a combinatorial than by a hierarchical approach. The trade-offs between spatial and temporal aspects of regulation, as well as their evolutionary consequences, are also discussed. Multicellularity may derive from a unicell’s sequential phenotypes turned into different but coexisting, spatially arranged cell types. In turn, polyphenism may have been a crucial mechanism involved in the origin of complex life cycles.
Collapse
Affiliation(s)
- Alessandro Minelli
- Department of Biology, University of Padova, Via U. Bassi 58B, 35132 Padova, Italy
- Correspondence:
| | - Alberto Valero-Gracia
- Natural History Museum, University of Oslo, Blindern, P.O. Box 1172, 0318 Oslo, Norway;
| |
Collapse
|
48
|
Kong W, Fu YC, Holloway EM, Garipler G, Yang X, Mazzoni EO, Morris SA. Capybara: A computational tool to measure cell identity and fate transitions. Cell Stem Cell 2022; 29:635-649.e11. [PMID: 35354062 PMCID: PMC9040453 DOI: 10.1016/j.stem.2022.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023]
Abstract
Measuring cell identity in development, disease, and reprogramming is challenging as cell types and states are in continual transition. Here, we present Capybara, a computational tool to classify discrete cell identity and intermediate "hybrid" cell states, supporting a metric to quantify cell fate transition dynamics. We validate hybrid cells using experimental lineage tracing data to demonstrate the multi-lineage potential of these intermediate cell states. We apply Capybara to diagnose shortcomings in several cell engineering protocols, identifying hybrid states in cardiac reprogramming and off-target identities in motor neuron programming, which we alleviate by adding exogenous signaling factors. Further, we establish a putative in vivo correlate for induced endoderm progenitors. Together, these results showcase the utility of Capybara to dissect cell identity and fate transitions, prioritizing interventions to enhance the efficiency and fidelity of stem cell engineering.
Collapse
Affiliation(s)
- Wenjun Kong
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA
| | - Yuheng C Fu
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA
| | - Emily M Holloway
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA
| | - Görkem Garipler
- Department of Biology, New York University, New York, NY 10003, USA
| | - Xue Yang
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA
| | | | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, Kobayashi Y, Macadlo L, Okuda K, Conchola AS, Nakano S, Gregory S, Miller LA, Spence JR, Engelhardt JF, Boucher RC, Rock JR, Randell SH, Tata PR. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 2022; 604:111-119. [PMID: 35355018 PMCID: PMC9169066 DOI: 10.1038/s41586-022-04541-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.
Collapse
Affiliation(s)
| | - Vishwaraj Sontake
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Lauren Macadlo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ansley S Conchola
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Satoko Nakano
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Simon Gregory
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Lisa A Miller
- California National Primate Research Center, Davis, CA, USA
- Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John F Engelhardt
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason R Rock
- Department of Immunology Discovery, Genentech, South San Francisco, CA, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA.
- Division of Pulmonary Critical Care, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
50
|
Jiang Q, Zhang S, Wan L. Dynamic inference of cell developmental complex energy landscape from time series single-cell transcriptomic data. PLoS Comput Biol 2022; 18:e1009821. [PMID: 35073331 PMCID: PMC8812873 DOI: 10.1371/journal.pcbi.1009821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 02/03/2022] [Accepted: 01/10/2022] [Indexed: 12/27/2022] Open
Abstract
Time series single-cell RNA sequencing (scRNA-seq) data are emerging. However, dynamic inference of an evolving cell population from time series scRNA-seq data is challenging owing to the stochasticity and nonlinearity of the underlying biological processes. This calls for the development of mathematical models and methods capable of reconstructing cellular dynamic transition processes and uncovering the nonlinear cell-cell interactions. In this study, we present GraphFP, a nonlinear Fokker-Planck equation on graph based model and dynamic inference framework, with the aim of reconstructing the cell state-transition complex potential energy landscape from time series single-cell transcriptomic data. The free energy of our model explicitly takes into account of the cell-cell interactions in a nonlinear quadratic term. We then recast the model inference problem in the form of a dynamic optimal transport framework and solve it efficiently with the adjoint method of optimal control. We evaluated GraphFP on the time series scRNA-seq data set of embryonic murine cerebral cortex development. We illustrated that it 1) reconstructs cell state potential energy, which is a measure of cellular differentiation potency, 2) faithfully charts the probability flows between paired cell states over the dynamic processes of cell differentiation, and 3) accurately quantifies the stochastic dynamics of cell type frequencies on probability simplex in continuous time. We also illustrated that GraphFP is robust in terms of cluster labelling with different resolutions, as well as parameter choices. Meanwhile, GraphFP provides a model-based approach to delineate the cell-cell interactions that drive cell differentiation. GraphFP software is available at https://github.com/QiJiang-QJ/GraphFP. Dynamic inference of cell development processes from time series scRNA-seq data is a major challenge. Here, we present GraphFP, a coherent computational framework that simultaneously reconstructs the cell state-transition complex potential energy landscape and infers cell-cell interactions from time series single-cell transcriptomic data. Based on the mathematical framework of nonlinear Fokker-Planck equation on graph, GraphFP models the stochastic dynamics of the cell state/type frequencies on probability simplex in continuous time, where the free energy with a nonlinear quadratic interaction term is employed to characterize cell-cell interactions. We formulate the model inference problem in the form of a dynamic optimal transport framework and solve it efficiently with the celebrated adjoint method. GraphFP allows for 1) reconstructing cell state potential energy, which is a measure of cellular differentiation potency, 2) charting the probability flows between paired cell states over dynamic processes, 3) quantifying the stochastic dynamics of cell type frequencies on probability simplex in continuous time, and 4) delineating cell-cell interactions that drive cell differentiation. We show how GraphFP can be used to faithfully reveal and accurately quantify the cell development processes using the embryonic murine cerebral cortex development time series scRNA-seq dataset.
Collapse
Affiliation(s)
- Qi Jiang
- NCMIS, LSC, LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Zhang
- NCMIS, LSC, LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Wan
- NCMIS, LSC, LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|