1
|
Kundu S, Das S, Maitra P, Halder P, Koley H, Mukhopadhyay AK, Miyoshi SI, Dutta S, Chatterjee NS, Bhattacharya S. Sodium butyrate inhibits the expression of virulence factors in Vibrio cholerae by targeting ToxT protein. mSphere 2025:e0082424. [PMID: 40261078 DOI: 10.1128/msphere.00824-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Cholera, a diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, remains a global health threat in developing countries due to its high transmissibility and increased antibiotic resistance. There is a pressing need for alternative strategies, with an emphasis on anti-virulent approaches to alter the outcome of bacterial infections, given the increase in antimicrobial-resistant strains. V. cholerae causes cholera by secreting virulence factors in the intestinal epithelial cells. These virulence factors facilitate bacterial colonization and cholera toxin production during infection. Here, we demonstrate that sodium butyrate (SB), a small molecule, had no effect on bacterial viability but was effective in suppressing the virulence attributes of V. cholerae. The production of cholera toxin (CT) was significantly reduced in a standard V. cholerae El Tor strain and two clinical isolates when grown in the presence of SB. Analysis of mRNA and protein levels further revealed that SB reduced the expression of the ToxT-dependent virulence genes like tcpA and ctxAB. DNA-protein interaction assays, conducted at cellular (ChIP) and in vitro conditions (EMSA), indicated that SB weakens the binding between ToxT and its downstream promoter DNA, likely by blocking DNA binding. Furthermore, the anti-virulence efficacy of SB was confirmed in animal models. These findings suggest that SB could be developed as an anti-virulence agent against V. cholerae, serving as a potential alternative to conventional antibiotics or as an adjunctive therapy to combat cholera. IMPORTANCE The world has been facing an upsurge in cholera cases since 2021, a similar trend continuing into 2022, with over 29 countries reporting cholera outbreaks (World Health Organization, 16 December 2022, Disease Outbreak News, Cholera-global situation). Treatment of cholera involves oral rehydration therapy coupled with antibiotics to reduce the duration of the illness. However, in recent years, indiscriminate use of antibiotics has contributed to the emergence of antibiotic-resistant strains. In this study, we have addressed the problem of antibiotic resistance by targeting virulence factors. Screening various compounds using in silico methods led to the identification of a small molecule, SB, that inhibits the virulence cascade in V. cholerae. We demonstrated that (i) SB intervened in ToxT protein-DNA binding and subsequently affected the expression of ToxT-regulated virulence genes (ctxAB and tcpA) and (ii) SB is a potential therapeutic candidate for the development of a novel antimicrobial agent.
Collapse
Affiliation(s)
- Sushmita Kundu
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Suman Das
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Priyanka Maitra
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Shin-Ichi Miyoshi
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Nabendu Sekhar Chatterjee
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Sushmita Bhattacharya
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| |
Collapse
|
2
|
Bugoye FC, Torrorey-Sawe R, Biegon R, Dharsee N, Mafumiko F, Kibona H, Aboud S, Patel K, Mining S. Exploring therapeutic applications of PTEN, TMPRSS2:ERG fusion, and tumour molecular subtypes in prostate cancer management. Front Oncol 2025; 15:1521204. [PMID: 40165885 PMCID: PMC11956161 DOI: 10.3389/fonc.2025.1521204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Background Prostate cancer is defined by the suppression of genes that suppress tumours and the activation of proto-oncogenes. These are the hallmarks of prostate cancer, and they have been linked to numerous genomic variations, which lead to unfavourable treatment outcomes. Prostate cancer can be categorised into various risk groups of tumour molecular subtypes grounded in the idea of genomic structural variations connected to TMPRSS2:ERG fusion and loss of PTEN. Research suggests that certain genomic alterations may be more prevalent or exhibit different patterns in prostate cancer tumours across populations. Studies have reported a higher frequency of PTEN loss and TMPRSS2:ERG fusion in prostate tumours of Black/African American men, which may contribute to the more aggressive nature of the disease in this population. Thus, therapeutically important information can be obtained from these structural variations, including correlations with poor prognosis and disease severity. Methods Peer-reviewed articles from 1998 to 2024 were sourced from PubMed and Google Scholar. During the review process, the following search terms were employed: "Tumour suppressor genes OR variations OR alterations OR oncogenes OR diagnostics OR ethnicity OR biomarkers OR prostate cancer genomics OR prostate cancer structural variations OR tumour and molecular subtypes OR therapeutic implications OR immunotherapy OR immunogenetics." Results There was a total of 13,012 results for our search query: 5,903 publications from Google Scholar with the patent and citation unchecked filer options, and 7127 articles from PubMed with the abstract, free full text, and full-text options selected. Unpublished works were not involved. Except for four articles published between 1998 and 1999, all other selected articles published in 2000 and later were considered. However, papers with irrelevant information or redundant or duplicate content were not chosen for this review. Thus, 134 met the inclusion criteria and were ultimately retained for this review. Conclusion This review extracted 134 relevant articles about genomic structure variations in prostate cancer. Our findings demonstrate the importance of PTEN and TMPRSS2:ERG fusion and tumour molecular subtyping in prostate cancer precision medicine.
Collapse
Affiliation(s)
- Fidelis Charles Bugoye
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Rispah Torrorey-Sawe
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Richard Biegon
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Nazima Dharsee
- Clinical Research, Training and Consultancy Unit, Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Fidelice Mafumiko
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
| | - Herry Kibona
- Department of Urology, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Said Aboud
- Head Office, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Kirtika Patel
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Simeon Mining
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| |
Collapse
|
3
|
Dahiya V, Hans S, Kumari R, Bagchi G. Prostate cancer biomarkers: from early diagnosis to precision treatment. Clin Transl Oncol 2024; 26:2444-2456. [PMID: 38744755 DOI: 10.1007/s12094-024-03508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men. In 2020, approximately 1,414,259 new cases were reported that accounted for 3,75,324 deaths (Sung et al. in CA 71:209-249, 2021). PCa is often asymptomatic at early stages; hence, routine screening and monitoring based on reliable biomarkers is crucial for early detection and assessment of cancer progression. Early diagnosis of disease is key step in reducing PCa-induced mortality. Biomarkers such as PSA have played vital role in reducing recent PCa deaths. Recent research has identified many other biomarkers and also refined PSA-based tests for non-invasive diagnosis of PCa in patients. Despite progress in screening methods, an important issue that influences treatment is heterogeneity of the cancer in different individuals, necessitating personalized treatment. Currently, focus is to identify biomarkers that can accurately diagnose PCa at early stage, indicate the stage of the disease, metastatic nature and chances of survival based on individual patient profile (Fig. 1). Fig. 1 Graphical abstract.
Collapse
Affiliation(s)
- Versha Dahiya
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413
| | - Sanjana Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413
| | - Ruchi Kumari
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413
| | - Gargi Bagchi
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413.
| |
Collapse
|
4
|
Singh I, Rainusso N, Kurenbekova L, Nirala BK, Dou J, Muruganandham A, Yustein JT. Intrinsic Epigenetic State of Primary Osteosarcoma Drives Metastasis. Mol Cancer Res 2024; 22:864-878. [PMID: 38842581 DOI: 10.1158/1541-7786.mcr-23-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/03/2023] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Osteosarcoma is the most common primary malignant bone tumor affecting the pediatric population with a high potential to metastasize. However, insights into the molecular features enabling its metastatic potential are limited. We mapped the active chromatin landscapes of osteosarcoma tumors by integrating histone H3 lysine-acetylated chromatin state (n = 13), chromatin accessibility profiles (n = 11), and gene expression (n = 13) to understand the differences in their active chromatin profiles and their impact on molecular mechanisms driving the malignant phenotypes. Primary osteosarcoma tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared with those without metastasis (localized). This difference shapes the transcriptional profile of osteosarcoma. We identified novel candidate genes, including PPP1R1B, PREX1, and IGF2BP1, that exhibit increased chromatin activity in primary met. Loss of PREX1 in primary met osteosarcoma cells significantly diminishes osteosarcoma proliferation, invasion, migration, and colony formation capacity. Differential chromatin activity in primary met is associated with genes regulating cytoskeleton organization, cellular adhesion, and extracellular matrix, suggesting their role in facilitating osteosarcoma metastasis. Chromatin profiling of tumors from metastatic lung lesions shows increased chromatin activity in genes involved in cell migration and Wnt pathway. These data demonstrate that metastatic potential is intrinsically present in primary met tumors, with cellular chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal site. Implications: Our study demonstrates that metastatic potential is intrinsic to primary metastatic osteosarcoma tumors, with chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal metastatic site.
Collapse
Affiliation(s)
- Irtisha Singh
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, Texas
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas
| | - Nino Rainusso
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Lyazat Kurenbekova
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Bikesh K Nirala
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia
| | - Juan Dou
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia
| | - Abhinaya Muruganandham
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Jason T Yustein
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia
| |
Collapse
|
5
|
Manzar N, Khan UK, Goel A, Carskadon S, Gupta N, Palanisamy N, Ateeq B. An integrative proteomics approach identifies tyrosine kinase KIT as a therapeutic target for SPINK1-positive prostate cancer. iScience 2024; 27:108794. [PMID: 38384854 PMCID: PMC10879682 DOI: 10.1016/j.isci.2024.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024] Open
Abstract
Elevated serine peptidase inhibitor, Kazal type 1 (SPINK1) levels in ∼10%-25% of prostate cancer (PCa) patients associate with aggressive phenotype, for which there are limited treatment choices and dismal clinical outcomes. Using an integrative proteomics approach involving label-free phosphoproteome and proteome profiling, we delineated the downstream signaling pathways involved in SPINK1-mediated tumorigenesis and identified tyrosine kinase KIT as highly enriched. Furthermore, high to moderate levels of KIT expression were detected in ∼85% of SPINK1-positive PCa specimens. We show KIT signaling orchestrates SPINK1-mediated oncogenesis, and treatment with KIT inhibitor reduces tumor growth and metastases in preclinical mice models. Mechanistically, KIT signaling modulates WNT/β-catenin pathway and confers stemness-related features in PCa. Notably, inhibiting KIT signaling led to restoration of AR/REST levels, forming a feedback loop enabling SPINK1 repression. Overall, we uncover the role of KIT signaling downstream of SPINK1 in maintaining lineage plasticity and provide distinct treatment modalities for advanced-stage SPINK1-positive patients.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Ayush Goel
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Shannon Carskadon
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Nallasivam Palanisamy
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Centre of Excellence for Cancer - Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| |
Collapse
|
6
|
Samare-Najaf M, Kouchaki H, Moein Mahini S, Saberi Rounkian M, Tavakoli Y, Samareh A, Karim Azadbakht M, Jamali N. Prostate cancer: Novel genetic and immunologic biomarkers. Clin Chim Acta 2024; 555:117824. [PMID: 38316287 DOI: 10.1016/j.cca.2024.117824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Prostate cancer (PCa) is considered one of the most prevalent male malignancies worldwide with a global burden estimated to increase over the next two decades. Due to significant mortality and debilitation of survival, early diagnosis has been described as key. Unfortunately, current diagnostic serum-based strategies have low specificity and sensitivity. Histologic examination is invasive and not useful for treatment and monitoring purposes. Hence, a plethora of studies have been conducted to identify and validate an efficient noninvasive approach in the diagnosis, staging, and prognosis of PCa. These investigations may be categorized as genetic (non-coding biomarkers and gene markers), immunologic (immune cells, interleukins, cytokines, antibodies, and auto-antibodies), and heterogenous (PSA-related markers, PHI-related indices, and urinary biomarkers) subgroups. This review examines current approaches and potential strategies using biomarker panels in PCa.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hosein Kouchaki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Moein Mahini
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Yasaman Tavakoli
- Department of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
7
|
Rasmussen M, Fredsøe J, Salachan PV, Blanke MPL, Larsen SH, Ulhøi BP, Jensen JB, Borre M, Sørensen KD. Stroma-specific gene expression signature identifies prostate cancer subtype with high recurrence risk. NPJ Precis Oncol 2024; 8:48. [PMID: 38395986 PMCID: PMC10891092 DOI: 10.1038/s41698-024-00540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Current prognostic tools cannot clearly distinguish indolent and aggressive prostate cancer (PC). We hypothesized that analyzing individual contributions of epithelial and stromal components in localized PC (LPC) could improve risk stratification, as stromal subtypes may have been overlooked due to the emphasis on malignant epithelial cells. Hence, we derived molecular subtypes of PC using gene expression analysis of LPC samples from prostatectomy patients (cohort 1, n = 127) and validated these subtypes in two independent prostatectomy cohorts (cohort 2, n = 406, cohort 3, n = 126). Stroma and epithelium-specific signatures were established from laser-capture microdissection data and non-negative matrix factorization was used to identify subtypes based on these signatures. Subtypes were functionally characterized by gene set and cell type enrichment analyses, and survival analysis was conducted. Three epithelial (E1-E3) and three stromal (S1-S3) PC subtypes were identified. While subtyping based on epithelial signatures showed inconsistent associations to biochemical recurrence (BCR), subtyping by stromal signatures was significantly associated with BCR in all three cohorts, with subtype S3 indicating high BCR risk. Subtype S3 exhibited distinct features, including significantly decreased cell-polarity and myogenesis, significantly increased infiltration of M2-polarized macrophages and CD8 + T-cells compared to subtype S1. For patients clinically classified as CAPRA-S intermediate risk, S3 improved prediction of BCR. This study demonstrates the potential of stromal signatures in identification of clinically relevant PC subtypes, and further indicated that stromal characterization may enhance risk stratification in LPC and may be particularly promising in cases with high prognostic ambiguity based on clinical parameters.
Collapse
Affiliation(s)
- Martin Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Paul Vinu Salachan
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marcus Pii Lunau Blanke
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stine Hesselby Larsen
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Gødstrup Hospital, Herning, Denmark
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Panja S, Truica MI, Yu CY, Saggurthi V, Craige MW, Whitehead K, Tuiche MV, Al-Saadi A, Vyas R, Ganesan S, Gohel S, Coffman F, Parrott JS, Quan S, Jha S, Kim I, Schaeffer E, Kothari V, Abdulkadir SA, Mitrofanova A. Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC. Nat Commun 2024; 15:352. [PMID: 38191557 PMCID: PMC10774320 DOI: 10.1038/s41467-024-44686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Heterogeneous response to Enzalutamide, a second-generation androgen receptor signaling inhibitor, is a central problem in castration-resistant prostate cancer (CRPC) management. Genome-wide systems investigation of mechanisms that govern Enzalutamide resistance promise to elucidate markers of heterogeneous treatment response and salvage therapies for CRPC patients. Focusing on the de novo role of MYC as a marker of Enzalutamide resistance, here we reconstruct a CRPC-specific mechanism-centric regulatory network, connecting molecular pathways with their upstream transcriptional regulatory programs. Mining this network with signatures of Enzalutamide response identifies NME2 as an upstream regulatory partner of MYC in CRPC and demonstrates that NME2-MYC increased activities can predict patients at risk of resistance to Enzalutamide, independent of co-variates. Furthermore, our experimental investigations demonstrate that targeting MYC and its partner NME2 is beneficial in Enzalutamide-resistant conditions and could provide an effective strategy for patients at risk of Enzalutamide resistance and/or for patients who failed Enzalutamide treatment.
Collapse
Affiliation(s)
- Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mihai Ioan Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Christina Y Yu
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Vamshi Saggurthi
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Michael W Craige
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Katie Whitehead
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mayra V Tuiche
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, 07039, USA
| | - Aymen Al-Saadi
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Riddhi Vyas
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Frederick Coffman
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - James S Parrott
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Songhua Quan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Shantenu Jha
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Isaac Kim
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Urology, Yale School of Medicine, New Heaven, CT, 06510, USA
| | - Edward Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Vishal Kothari
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA.
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
9
|
Mahajan A, Nengroo MA, Datta D, Katti DS. Converse modulation of Wnt/β-catenin signaling during expansion and differentiation phases of Infrapatellar fat pad-derived MSCs for improved engineering of hyaline cartilage. Biomaterials 2023; 302:122296. [PMID: 37696204 DOI: 10.1016/j.biomaterials.2023.122296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
Mesenchymal stem cells (MSCs) are potential candidates in cell-based therapy for cartilage repair and regeneration. However, during chondrogenic differentiation, MSCs undergo undesirable hypertrophic maturation. This poses a risk of ossification in the neo-tissue formed that eventually impedes the clinical use of MSCs for cartilage repair. TGF-β is a potent growth factor used for chondrogenic differentiation of MSCs, however, its role in hypertrophy remains ambiguous. In the present work, we decipher that TGF-β activates Wnt/β-catenin signaling through SMAD3 and increases the propensity of Infrapatellar fat pad derived MSCs (IFP-MSCs) towards hypertrophy. Notably, inhibiting TGF-β induced Wnt/β-catenin signaling suppresses hypertrophic progression and enhances chondrogenic ability of IFP-MSCs in plasma hydrogels. Additionally, we demonstrate that activating Wnt signaling during expansion phase, promotes proliferation and reduces senescence, while improving stemness of IFP-MSCs. Thus, conversely modulating Wnt signaling in vitro during expansion and differentiation phases generates hyaline-like cartilage with minimal hypertrophy. Importantly, pre-treatment of IFP-MSCs encapsulated in plasma hydrogel with Wnt modulators followed by subcutaneous implantation in nude mice resulted in formation of a cartilage tissue with negligible calcification. Overall, this study provides technological advancement on targeting Wnt/β-catenin pathway in a 3D scaffold, while maintaining the standard chondro-induction protocol to overcome the challenges associated with the clinical use of MSCs to engineer hyaline cartilage.
Collapse
Affiliation(s)
- Aman Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Mushtaq A Nengroo
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Dipak Datta
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology-Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
10
|
Yadav A, Biswas T, Praveen A, Ganguly P, Bhattacharyya A, Verma A, Datta D, Ateeq B. Targeting MALAT1 Augments Sensitivity to PARP Inhibition by Impairing Homologous Recombination in Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:2044-2061. [PMID: 37812088 PMCID: PMC10561629 DOI: 10.1158/2767-9764.crc-23-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
PARP inhibitors (PARPi) have emerged as a promising targeted therapeutic intervention for metastatic castrate-resistant prostate cancer (mCRPC). However, the clinical utility of PARPi is limited to a subset of patients who harbor aberrations in the genes associated with the homologous recombination (HR) pathway. Here, we report that targeting metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an oncogenic long noncoding RNA (lncRNA), contrives a BRCAness-like phenotype, and augments sensitivity to PARPi. Mechanistically, we show that MALAT1 silencing reprograms the homologous recombination (HR) transcriptome and makes prostate cancer cells more vulnerable to PARPi. Particularly, coinhibition of MALAT1 and PARP1 exhibits a decline in clonogenic survival, delays resolution of γH2AX foci, and reduces tumor burden in mice xenograft model. Moreover, we show that miR-421, a tumor suppressor miRNA, negatively regulates the expression of HR genes, while in aggressive prostate cancer cases, miR-421 is sequestered by MALAT1, leading to increased expression of HR genes. Conclusively, our findings suggest that MALAT1 ablation confers sensitivity to PARPi, thus highlighting an alternative therapeutic strategy for patients with castration-resistant prostate cancer (CRPC), irrespective of the alterations in HR genes. SIGNIFICANCE PARPi are clinically approved for patients with metastatic CRPC carrying mutations in HR genes, but are ineffective for HR-proficient prostate cancer. Herein, we show that oncogenic lncRNA, MALAT1 is frequently overexpressed in advanced stage prostate cancer and plays a crucial role in maintaining genomic integrity. Importantly, we propose a novel therapeutic strategy that emphasizes MALAT1 inhibition, leading to HR dysfunction in both HR-deficient and -proficient prostate cancer, consequently augmenting their susceptibility to PARPi.
Collapse
Affiliation(s)
- Anjali Yadav
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Tanay Biswas
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ayush Praveen
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ankita Bhattacharyya
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Centre of Excellence for Cancer - Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
11
|
Pouliou M, Koutsi MA, Champezou L, Giannopoulou AI, Vatsellas G, Piperi C, Agelopoulos M. MYCN Amplifications and Metabolic Rewiring in Neuroblastoma. Cancers (Basel) 2023; 15:4803. [PMID: 37835497 PMCID: PMC10571721 DOI: 10.3390/cancers15194803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is a disease caused by (epi)genomic and gene expression abnormalities and characterized by metabolic phenotypes that are substantially different from the normal phenotypes of the tissues of origin. Metabolic reprogramming is one of the key features of tumors, including those established in the human nervous system. In this work, we emphasize a well-known cancerous genomic alteration: the amplification of MYCN and its downstream effects in neuroblastoma phenotype evolution. Herein, we extend our previous computational biology investigations by conducting an integrative workflow applied to published genomics datasets and comprehensively assess the impact of MYCN amplification in the upregulation of metabolism-related transcription factor (TF)-encoding genes in neuroblastoma cells. The results obtained first emphasized overexpressed TFs, and subsequently those committed in metabolic cellular processes, as validated by gene ontology analyses (GOs) and literature curation. Several genes encoding for those TFs were investigated at the mechanistic and regulatory levels by conducting further omics-based computational biology assessments applied on published ChIP-seq datasets retrieved from MYCN-amplified- and MYCN-enforced-overexpression within in vivo systems of study. Hence, we approached the mechanistic interrelationship between amplified MYCN and overexpression of metabolism-related TFs in neuroblastoma and showed that many are direct targets of MYCN in an amplification-inducible fashion. These results illuminate how MYCN executes its regulatory underpinnings on metabolic processes in neuroblastoma.
Collapse
Affiliation(s)
- Marialena Pouliou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Marianna A. Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Lydia Champezou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Giannis Vatsellas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| |
Collapse
|
12
|
Ramakrishnan A, Datta I, Panja S, Patel H, Liu Y, Craige MW, Chu C, Jean-Marie G, Oladoja AR, Kim I, Mitrofanova A. Tissue-specific biological aging predicts progression in prostate cancer and acute myeloid leukemia. Front Oncol 2023; 13:1222168. [PMID: 37746266 PMCID: PMC10512286 DOI: 10.3389/fonc.2023.1222168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Chronological aging is a well-recognized diagnostic and prognostic factor in multiple cancer types, yet the role of biological aging in manifesting cancer progression has not been fully explored yet. Methods Given the central role of chronological aging in prostate cancer and AML incidence, here we investigate a tissue-specific role of biological aging in prostate cancer and AML progression. We have employed Cox proportional hazards modeling to associate biological aging genes with cancer progression for patients from specific chronological aging groups and for patients with differences in initial cancer aggressiveness. Results Our prostate cancer-specific investigations nominated four biological aging genes (CD44, GADD45B, STAT3, GFAP) significantly associated with time to disease progression in prostate cancer in Taylor et al. patient cohort. Stratified survival analysis on Taylor dataset and validation on an independent TCGA and DKFZ PRAD patient cohorts demonstrated ability of these genes to predict prostate cancer progression, especially for patients with higher Gleason score and for patients younger than 60 years of age. We have further tested the generalizability of our approach and applied it to acute myeloid leukemia (AML). Our analysis nominated three AML-specific biological aging genes (CDC42EP2, CDC42, ALOX15B) significantly associated with time to AML overall survival, especially for patients with favorable cytogenetic risk score and for patients older than 56 years of age. Discussion Comparison of the identified PC and AML markers to genes selected at random and to known markers of progression demonstrated robustness of our results and nominated the identified biological aging genes as valuable markers of prostate cancer and AML progression, opening new avenues for personalized therapeutic management and potential novel treatment investigations.
Collapse
Affiliation(s)
- Anitha Ramakrishnan
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Indrani Datta
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Sukanya Panja
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Harmony Patel
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Health Informatics and Information Management, College of Applied and Natural Sciences, Louisiana Tech University, Ruston, LA, United States
| | - Yingci Liu
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Michael W. Craige
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Cassandra Chu
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Giselle Jean-Marie
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Rutgers Youth Enjoy Science Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Abdur-Rahman Oladoja
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Rutgers Youth Enjoy Science Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Isaac Kim
- Department of Urology, Yale School of Medicine, New Haven, CT, United States
| | - Antonina Mitrofanova
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
13
|
Groen L, Kloots I, Englert D, Seto K, Estafanos L, Smith P, Verhaegh GW, Mehra N, Schalken JA. Transcriptome Profiling of Circulating Tumor Cells to Predict Clinical Outcomes in Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24109002. [PMID: 37240349 DOI: 10.3390/ijms24109002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical utility of circulating tumor cells (CTC) as a non-invasive multipurpose biomarker is broadly recognized. The earliest methods for enriching CTCs from whole blood rely on antibody-based positive selection. The prognostic utility of CTC enumeration using positive selection with the FDA-approved CellSearchTM system has been demonstrated in numerous studies. The capture of cells with specific protein phenotypes does not fully represent cancer heterogeneity and therefore does not realize the prognostic potential of CTC liquid biopsies. To avoid this selection bias, CTC enrichment based on size and deformability may provide better fidelity, i.e., facilitate the characterization of CTCs with any phenotype. In this study, the recently FDA-approved Parsortix® technology was used to enrich CTCs from prostate cancer (PCa) patients for transcriptome analysis using HyCEADTM technology. A tailored PCa gene panel allowed us to stratify metastatic castration-resistant prostate cancer (mCRPC) patients with clinical outcomes. In addition, our findings suggest that targeted CTC transcriptome profiling may be predictive of therapy response.
Collapse
Affiliation(s)
- Levi Groen
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Iris Kloots
- Department of Medical Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | - Kelly Seto
- ANGLE Biosciences Inc., Toronto, ON M9W 1B3, Canada
| | | | - Paul Smith
- ANGLE Biosciences Inc., Toronto, ON M9W 1B3, Canada
| | - Gerald W Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
14
|
Yang G, Chen X, Quan Z, Liu M, Guo Y, Tang Y, Peng L, Wang L, Wu Y, Wu X, Liu J, Zheng Y. Comprehensive analysis of the FOXA1-related ceRNA network and identification of the MAGI2-AS3/DUSP2 axis as a prognostic biomarker in prostate cancer. Front Oncol 2023; 13:1048521. [PMID: 36998469 PMCID: PMC10043306 DOI: 10.3389/fonc.2023.1048521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundProstate cancer (PCa) is the second most common cause of cancer-related deaths in American men. Even though increasing evidence has disclosed the competitive endogenous RNA (ceRNA) regulatory networks among cancers, the complexity and behavior characteristics of the ceRNA network in PCa remain unclear. Our study aimed to investigate the forkhead box A1 (FOXA1)-related ceRNA regulatory network and ascertain potential prognostic markers associated with PCa.MethodsRNA sequence profiles downloaded from The Cancer Genome Atlas (TCGA) were analyzed to recognize differentially expressed genes (DEGs) derived from tumor and non-tumor adjacent samples as well as FOXA1low and FOXA1high tumor samples. The enrichment analysis was conducted for the dysregulated mRNAs. The network for the differentially expressed long non-coding RNA (lncRNA)-associated ceRNAs was then established. Survival analysis and univariate Cox regression analysis were executed to determine independent prognostic RNAs associated with PCa. The correlation between DUSP2 and immune cell infiltration level was analyzed. Tissue and blood samples were collected to verify our network. Molecular experiments were performed to explore whether DUSP2 is involved in the development of PCa.ResultsA ceRNA network related to FOXA1 was constructed and comprised 18 lncRNAs, 5 miRNAs, and 44 mRNAs. The MAGI2-AS3~has-mir-106a/has-mir-204~DUSP2 ceRNA regulatory network relevant to the prognosis of PCa was obtained by analysis. We markedly distinguished the MAGI2-AS3/DUSP2 axis in the ceRNA. It will most likely become a clinical prognostic model and impact the changes in the tumor immune microenvironment of PCa. The abnormal MAGI2-AS3 expression level from the patients’ blood manifested that it would be a novel potential diagnostic biomarker for PCa. Moreover, down-expressed DUSP2 suppressed the proliferation and migration of PCa cells.ConclusionsOur findings provide pivotal clues to understanding the role of the FOXA1-concerned ceRNA network in PCa. Simultaneously, this MAGI2-AS3/DUSP2 axis might be a new significant prognostic factor associated with the diagnosis and prognosis of PCa.
Collapse
Affiliation(s)
- Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Chen
- Department of Urology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Guo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangbin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Leilei Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yingying Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongbo Zheng, ; Jiayu Liu,
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongbo Zheng, ; Jiayu Liu,
| |
Collapse
|
15
|
Lin J, Zhuo Y, Zhang Y, Liu R, Zhong W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev Mol Diagn 2023; 23:199-215. [PMID: 36860119 DOI: 10.1080/14737159.2023.2187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Prostate cancer is a serious threat to the health of older adults worldwide. The quality of life and survival time of patients sharply decline once metastasis occurs. Thus, early screening for prostate cancer is very advanced in developed countries. The detection methods used include Prostate-specific antigen (PSA) detection and digital rectal examination. However, the lack of universal access to early screening in some developing countries has resulted in an increased number of patients presenting with metastatic prostate cancer. In addition, the treatment methods for metastatic and localized prostate cancer are considerably different. In many patients, early-stage prostate cancer cells often metastasize due to delayed observation, negative PSA results, and delay in treatment time. Therefore, the identification of patients who are prone to metastasis is important for future clinical studies. AREAS COVERED this review introduced a large number of predictive molecules related to prostate cancer metastasis. These molecules involve the mutation and regulation of tumor cell genes, changes in the tumor microenvironment, and the liquid biopsy. EXPERT OPINION In next decade, PSMA PET/CT and liquid biopsy will be the excellent predicting tools, while 177 Lu- PSMA-RLT will be showed excellent anti-tumor efficacy in mPCa patients.
Collapse
Affiliation(s)
- Jundong Lin
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
17
|
A novel metabolism-related prognostic gene development and validation in gastric cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:447-459. [PMID: 36168087 DOI: 10.1007/s12094-022-02958-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/15/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The importance of metabolism-related alterations in the development of gastric cancer (GC) is increasingly recognized. The present study aimed to identify metabolism-related genes to facilitate prognosis of GC patients. METHODS Gene expression datasets and clinical information of GC patients were downloaded from TCGA and GEO databases. We scored the enrichment of human metabolism-related pathways (n = 86) in GC samples by GSV, constructed prognostic risk models using LASSO algorithm and multivariate Cox regression analysis, combined with clinical information to construct a nomogram, and finally cis score algorithm to analyze the abundance of immune-related cells in different subtypes. We used Weka software to screen for prognosis-related marker genes and finally validated the expression of the selected genes in clinical cancer patient tissues. RESULTS We identified that two GC metabolism-related signatures were strongly associated with OS and the levels of immune cell infiltration. Moreover, a survival prediction model for GC was established based on six GC metabolism-related genes. Time-dependent ROC analysis showed good stability of the risk prediction scoring model. The model was successfully validated in an independent ACRG cohort, and the expression trends of key genes were also verified in the GC tissues of patients. DLX1, LTBP2, FGFR1 and MMP2 were highly expressed in the cluster with poorer prognosis while SLC13A2 and SLCO1B3 were highly expressed in the cluster with better prognosis. CONCLUSIONS We identified a risk predictive score model based on six metabolism-related genes related to survival, which may serve as prognostic indicators and potential therapeutic targets for GC.
Collapse
|
18
|
Bharti M, Bajpai A, Rautela U, Manzar N, Ateeq B, Sinha P. Human ERG oncoprotein represses a Drosophila LIM domain binding protein-coding gene Chip. Proc Natl Acad Sci U S A 2023; 120:e2211189119. [PMID: 36595681 PMCID: PMC9926275 DOI: 10.1073/pnas.2211189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 01/05/2023] Open
Abstract
Human ETS Related Gene, ERG, a master transcription factor, turns oncogenic upon its out-of-context activation in diverse developmental lineages. However, the mechanism underlying its lineage-specific activation of Notch (N), Wnt, or EZH2-three well-characterized oncogenic targets of ERG-remains elusive. We reasoned that deep homology in genetic tool kits might help uncover such elusive cancer mechanisms in Drosophila. By heterologous gain of human ERG in Drosophila, here we reveal Chip, which codes for a transcriptional coactivator, LIM-domain-binding (LDB) protein, as its novel target. ERG represses Drosophila Chip via its direct binding and, indirectly, via E(z)-mediated silencing of its promoter. Downregulation of Chip disrupts LIM-HD complex formed between Chip and Tailup (Tup)-a LIM-HD transcription factor-in the developing notum. A consequent activation of N-driven Wg signaling leads to notum-to-wing transdetermination. These fallouts of ERG gain are arrested upon a simultaneous gain of Chip, sequestration of Wg ligand, and, alternatively, loss of N signaling or E(z) activity. Finally, we show that the human LDB1, a homolog of Drosophila Chip, is repressed in ERG-positive prostate cancer cells. Besides identifying an elusive target of human ERG, our study unravels an underpinning of its lineage-specific carcinogenesis.
Collapse
Affiliation(s)
- Mahima Bharti
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
| | - Anjali Bajpai
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, India, 208016
| | - Umanshi Rautela
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- National Institute of Immunology, India, 110067
| | - Nishat Manzar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
| | - Bushra Ateeq
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, India, 208016
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India, 208016
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, India, 208016
| |
Collapse
|
19
|
Zommiti M, Connil N, Tahrioui A, Groboillot A, Barbey C, Konto-Ghiorghi Y, Lesouhaitier O, Chevalier S, Feuilloley MGJ. Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation. Bioengineering (Basel) 2022; 9:646. [PMID: 36354557 PMCID: PMC9687856 DOI: 10.3390/bioengineering9110646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 08/28/2023] Open
Abstract
Over the decades, conventional in vitro culture systems and animal models have been used to study physiology, nutrient or drug metabolisms including mechanical and physiopathological aspects. However, there is an urgent need for Integrated Testing Strategies (ITS) and more sophisticated platforms and devices to approach the real complexity of human physiology and provide reliable extrapolations for clinical investigations and personalized medicine. Organ-on-a-chip (OOC), also known as a microphysiological system, is a state-of-the-art microfluidic cell culture technology that sums up cells or tissue-to-tissue interfaces, fluid flows, mechanical cues, and organ-level physiology, and it has been developed to fill the gap between in vitro experimental models and human pathophysiology. The wide range of OOC platforms involves the miniaturization of cell culture systems and enables a variety of novel experimental techniques. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living biosystems, the development of vascular structure is the salient feature common to almost all organ-on-a-chip platforms. Herein, we provide a snapshot of this fast-evolving sophisticated technology. We will review cutting-edge developments and advances in the OOC realm, discussing current applications in the biomedical field with a detailed description of how this technology has enabled the reconstruction of complex multi-scale and multifunctional matrices and platforms (at the cellular and tissular levels) leading to an acute understanding of the physiopathological features of human ailments and infections in vitro.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| | | | | | | | | | | | | | | | - Marc G. J. Feuilloley
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| |
Collapse
|
20
|
Liu M, Shen A, Zheng Y, Chen X, Wang L, Li T, Ouyang X, Yu X, Sun H, Wu X. Long non-coding RNA lncHUPC1 induced by FOXA1 promotes tumor progression by inhibiting apoptosis via miR-133b/SDCCAG3 in prostate cancer. Am J Cancer Res 2022; 12:2465-2491. [PMID: 35812058 PMCID: PMC9251679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) were confirmed to be involved in regulating various malignant behaviors of tumor cells in prostate cancer (PCa). Using The Cancer Genome Atlas (TCGA) prostate adenocarcinoma datasets, several endogenous competing RNA (ceRNA) networks of lncRNA/miRNA/mRNA associated with the progression-free survival (PFS) and Gleason score (GS) were identified using bioinformatics analysis. lncRNA AC004447.2 (lncHUPC1, ENSG00000269131)/miR-133b/serologically defined colon cancer antigen-3 (SDCCAG3) was a newly identified ceRNA network that affected cell growth and apoptosis in PCa. Using q-PCR, lncHUPC1 and SDCCAG3 were found to be up-regulated in PCa cells, while miR-133b was down-regulated. The same results were found in tissue samples from 70 PCa cases. It was confirmed that the knockdown of lncHUPC1 increased the expression of miR-133b and decreased that of SDCCAG3, which further increased apoptosis and inhibited cell growth, while the miR-133b inhibitor partially reversed these effects. After transfection with miR-133b mimic after lncHUPC1-knockdown, the expression of miR-133b increased while that of SDCCAG3 reduced, and the apoptosis of the cells was more obvious and the growth of the cells was slower. Therefore, lncHUPC1 was confirmed to regulate SDCCAG3 by binding to miR-133b. Additionally, we found that the transcription factor Forkhead Box A1 (FOXA1) directly bound to the promoter of lncHUPC1 to activate it. In conclusion, the ceRNA network of lncHUPC1/miR-133b/SDCCAG3 affected the growth and apoptosis of PCa cells, and FOXA1 may be involved in the process as a transcription factor of lncHUPC1.
Collapse
Affiliation(s)
- Miao Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Gastrointestinal Cancer Center, Chongqing University Cancer HospitalChongqing, China
| | - Ai Shen
- Hepatobiliary and Pancreatic Tumor Center, Affiliated Cancer Hospital of Chongqing UniversityChongqing, China
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Xiong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Leilei Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing, China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing, China
| | - Xin Ouyang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Xian Yu
- Gastrointestinal Cancer Center, Chongqing University Cancer HospitalChongqing, China
| | - Hao Sun
- Gastrointestinal Cancer Center, Chongqing University Cancer HospitalChongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| |
Collapse
|
21
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
22
|
Halib N, Pavan N, Trombetta C, Dapas B, Farra R, Scaggiante B, Grassi M, Grassi G. An Overview of siRNA Delivery Strategies for Urological Cancers. Pharmaceutics 2022; 14:718. [PMID: 35456552 PMCID: PMC9030829 DOI: 10.3390/pharmaceutics14040718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of urological cancers has been significantly improved in recent years. However, for the advanced stages of these cancers and/or for those developing resistance, novel therapeutic options need to be developed. Among the innovative strategies, the use of small interfering RNA (siRNA) seems to be of great therapeutic interest. siRNAs are double-stranded RNA molecules which can specifically target virtually any mRNA of pathological genes. For this reason, siRNAs have a great therapeutic potential for human diseases including urological cancers. However, the fragile nature of siRNAs in the biological environment imposes the development of appropriate delivery systems to protect them. Thus, ensuring siRNA reaches its deep tissue target while maintaining structural and functional integrity represents one of the major challenges. To reach this goal, siRNA-based therapies require the development of fine, tailor-made delivery systems. Polymeric nanoparticles, lipid nanoparticles, nanobubbles and magnetic nanoparticles are among nano-delivery systems studied recently to meet this demand. In this review, after an introduction about the main features of urological tumors, we describe siRNA characteristics together with representative delivery systems developed for urology applications; the examples reported are subdivided on the basis of the different delivery materials and on the different urological cancers.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Nicola Pavan
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Carlo Trombetta
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, I-34127 Trieste, Italy;
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| |
Collapse
|
23
|
Kneppers J, Bergman AM, Zwart W. Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:255-275. [DOI: 10.1007/978-3-031-11836-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
|