1
|
Porter WT, Engelthaler DM, Hepp CM. Genomic Epidemiology for Estimating Pathogen Burden in a Population. Emerg Infect Dis 2025; 31:22-24. [PMID: 40359053 PMCID: PMC12078551 DOI: 10.3201/eid3113.241203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
The role of genomics in outbreak response and pathogen surveillance has expanded and ushered in the age of pathogen intelligence. Genomic surveillance enables detection and monitoring of novel pathogens; case clusters; and markers of virulence, antimicrobial resistance, and immune escape. We can leverage pathogen genomic diversity to estimate total pathogen burden in populations and environments, which was previously challenging because of unreliable data. Pathogen genomics might allow pathogen burdens to be estimated by sequencing even a small percentage of cases. Deeper genomic epidemiology analyses require multidisciplinary collaboration to ensure accurate and actionable real-time pathogen intelligence.
Collapse
|
2
|
David DA, Liu C, Street L, Ehrlich S, Kumar M, Ramakrishnan S. A novel approach to forecasting reproduction numbers of spatiotemporal stochastic epidemic spread using a PDE-based model and real-time infection data. Sci Rep 2025; 15:9760. [PMID: 40119028 PMCID: PMC11928691 DOI: 10.1038/s41598-025-91811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
The COVID-19 pandemic highlighted the need for improved epidemic spread forecasting, a critical precursor for developing optimal control measures for spread mitigation. Well-recognized shortcomings in computing basic and effective reproduction numbers ( R 0 , R e )-fundamental metrics for forecasting-underscore the need for new methods for estimating them from available data. We present a novel computational framework for estimating reproduction numbers from empirical spread data. The framework is derived from a mechanistic, spatiotemporal, Partial Differential Equation (PDE) model of epidemic spread utilizing mathematical results from PDE epidemic models. Forecasts of spatiotemporal effective reproduction number R e using the framework are found to be in excellent agreement with COVID-19 spread trends for Hamilton County, Ohio, USA, for three distinct periods. Furthermore, the forecasts are shown to align with corresponding reproduction numbers computed independently using the Wallinga-Teunis and Cori retrospective methods used in epidemiology. In summary, the results establish the validity of the framework and indicate applicability to future epidemics-especially for regions such as counties and for timeframes extending in weeks-even during dynamic phases when obtainable real-time infection spread data will likely be sparse.
Collapse
Affiliation(s)
- Deepak Antony David
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Chunyan Liu
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Logan Street
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Shelley Ehrlich
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Manish Kumar
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
3
|
Raharinirina NA, Gubela N, Börnigen D, Smith MR, Oh DY, Budt M, Mache C, Schillings C, Fuchs S, Dürrwald R, Wolff T, Hölzer M, Paraskevopoulou S, von Kleist M. SARS-CoV-2 evolution on a dynamic immune landscape. Nature 2025; 639:196-204. [PMID: 39880955 PMCID: PMC11882442 DOI: 10.1038/s41586-024-08477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Since the onset of the pandemic, many SARS-CoV-2 variants have emerged, exhibiting substantial evolution in the virus' spike protein1, the main target of neutralizing antibodies2. A plausible hypothesis proposes that the virus evolves to evade antibody-mediated neutralization (vaccine- or infection-induced) to maximize its ability to infect an immunologically experienced population1,3. Because viral infection induces neutralizing antibodies, viral evolution may thus navigate on a dynamic immune landscape that is shaped by local infection history. Here we developed a comprehensive mechanistic model, incorporating deep mutational scanning data4,5, antibody pharmacokinetics and regional genomic surveillance data, to predict the variant-specific relative number of susceptible individuals over time. We show that this quantity precisely matched historical variant dynamics, predicted future variant dynamics and explained global differences in variant dynamics. Our work strongly suggests that the ongoing pandemic continues to shape variant-specific population immunity, which determines a variant's ability to transmit, thus defining variant fitness. The model can be applied to any region by utilizing local genomic surveillance data, allows contextualizing risk assessment of variants and provides information for vaccine design.
Collapse
Affiliation(s)
- N Alexia Raharinirina
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Nils Gubela
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany
- International Max-Planck Research School for Biology and Computation (IMPRS-BAC), Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Djin-Ye Oh
- Department 1, Robert Koch Institute, Berlin, Germany
| | - Matthias Budt
- Department 1, Robert Koch Institute, Berlin, Germany
| | | | - Claudia Schillings
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Stephan Fuchs
- Department MFI, Robert Koch Institute, Berlin, Germany
| | - Ralf Dürrwald
- Department 1, Robert Koch Institute, Berlin, Germany
| | | | - Martin Hölzer
- Department MFI, Robert Koch Institute, Berlin, Germany
| | | | - Max von Kleist
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany.
- Project Groups, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
4
|
Meijers M, Ruchnewitz D, Eberhardt J, Karmakar M, Łuksza M, Lässig M. Concepts and Methods for Predicting Viral Evolution. Methods Mol Biol 2025; 2890:253-290. [PMID: 39890732 DOI: 10.1007/978-1-0716-4326-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
The seasonal human influenza virus undergoes rapid evolution, leading to significant changes in circulating viral strains from year to year. These changes are typically driven by adaptive mutations, particularly in the antigenic epitopes, the regions of the viral surface protein hemagglutinin targeted by human antibodies. Here, we describe a consistent set of methods for data-driven predictive analysis of viral evolution. Our pipeline integrates four types of data: (1) sequence data of viral isolates collected on a worldwide scale, (2) epidemiological data on incidences, (3) antigenic characterization of circulating viruses, and (4) intrinsic viral phenotypes. From the combined analysis of these data, we obtain estimates of relative fitness for circulating strains and predictions of clade frequencies for periods of up to 1 year. Furthermore, we obtain comparative estimates of protection against future viral populations for candidate vaccine strains, providing a basis for pre-emptive vaccine strain selection. Continuously updated predictions obtained from the prediction pipeline for influenza and SARS-CoV-2 are available at https://previr.app .
Collapse
Affiliation(s)
- Matthijs Meijers
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Jan Eberhardt
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Malancha Karmakar
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Marta Łuksza
- Departments of Oncological Sciences and Genetics and Genomic Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Köln, Germany.
| |
Collapse
|
5
|
Meijers M, Ruchnewitz D, Eberhardt J, Karmakar M, Łuksza M, Lässig M. Concepts and methods for predicting viral evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585703. [PMID: 38746108 PMCID: PMC11092427 DOI: 10.1101/2024.03.19.585703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The seasonal human influenza virus undergoes rapid evolution, leading to significant changes in circulating viral strains from year to year. These changes are typically driven by adaptive mutations, particularly in the antigenic epitopes, the regions of the viral surface protein haemagglutinin targeted by human antibodies. Here we describe a consistent set of methods for data-driven predictive analysis of viral evolution. Our pipeline integrates four types of data: (1) sequence data of viral isolates collected on a worldwide scale, (2) epidemiological data on incidences, (3) antigenic characterization of circulating viruses, and (4) intrinsic viral phenotypes. From the combined analysis of these data, we obtain estimates of relative fitness for circulating strains and predictions of clade frequencies for periods of up to one year. Furthermore, we obtain comparative estimates of protection against future viral populations for candidate vaccine strains, providing a basis for pre-emptive vaccine strain selection. Continuously updated predictions obtained from the prediction pipeline for influenza and SARS-CoV-2 are available on the website previr.app.
Collapse
Affiliation(s)
- Matthijs Meijers
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Jan Eberhardt
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Malancha Karmakar
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Marta Łuksza
- Tisch Cancer Institute, Departments of Oncological Sciences and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| |
Collapse
|
6
|
Meijers M, Ruchnewitz D, Eberhardt J, Karmakar M, Luksza M, Lässig M. Concepts and methods for predicting viral evolution. ARXIV 2024:arXiv:2403.12684v3. [PMID: 38745695 PMCID: PMC11092678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The seasonal human influenza virus undergoes rapid evolution, leading to significant changes in circulating viral strains from year to year. These changes are typically driven by adaptive mutations, particularly in the antigenic epitopes, the regions of the viral surface protein haemagglutinin targeted by human antibodies. Here we describe a consistent set of methods for data-driven predictive analysis of viral evolution. Our pipeline integrates four types of data: (1) sequence data of viral isolates collected on a worldwide scale, (2) epidemiological data on incidences, (3) antigenic characterization of circulating viruses, and (4) intrinsic viral phenotypes. From the combined analysis of these data, we obtain estimates of relative fitness for circulating strains and predictions of clade frequencies for periods of up to one year. Furthermore, we obtain comparative estimates of protection against future viral populations for candidate vaccine strains, providing a basis for pre-emptive vaccine strain selection. Continuously updated predictions obtained from the prediction pipeline for influenza and SARS-CoV-2 are available on the website previr.app.
Collapse
Affiliation(s)
- Matthijs Meijers
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Jan Eberhardt
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Malancha Karmakar
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| | - Marta Luksza
- Tisch Cancer Institute, Departments of Oncological Sciences and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937, Köln, Germany
| |
Collapse
|
7
|
Sinha A, Sangeet S, Roy S. Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective. ACS OMEGA 2023; 8:23283-23304. [PMID: 37426203 PMCID: PMC10324094 DOI: 10.1021/acsomega.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Novel coronavirus (SARS-CoV-2) enters its host cell through a surface spike protein. The viral spike protein has undergone several modifications/mutations at the genomic level, through which it modulated its structure-function and passed through several variants of concern. Recent advances in high-resolution structure determination and multiscale imaging techniques, cost-effective next-generation sequencing, and development of new computational methods (including information theory, statistical methods, machine learning, and many other artificial intelligence-based techniques) have hugely contributed to the characterization of sequence, structure, function of spike proteins, and its different variants to understand viral pathogenesis, evolutions, and transmission. Laying on the foundation of the sequence-structure-function paradigm, this review summarizes not only the important findings on structure/function but also the structural dynamics of different spike components, highlighting the effects of mutations on them. As dynamic fluctuations of three-dimensional spike structure often provide important clues for functional modulation, quantifying time-dependent fluctuations of mutational events over spike structure and its genetic/amino acidic sequence helps identify alarming functional transitions having implications for enhanced fusogenicity and pathogenicity of the virus. Although these dynamic events are more difficult to capture than quantifying a static, average property, this review encompasses those challenging aspects of characterizing the evolutionary dynamics of spike sequence and structure and their implications for functions.
Collapse
|
8
|
Xie R, Edwards KM, Adam DC, Leung KSM, Tsang TK, Gurung S, Xiong W, Wei X, Ng DYM, Liu GYZ, Krishnan P, Chang LDJ, Cheng SMS, Gu H, Siu GKH, Wu JT, Leung GM, Peiris M, Cowling BJ, Poon LLM, Dhanasekaran V. Resurgence of Omicron BA.2 in SARS-CoV-2 infection-naive Hong Kong. Nat Commun 2023; 14:2422. [PMID: 37105966 PMCID: PMC10134727 DOI: 10.1038/s41467-023-38201-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Hong Kong experienced a surge of Omicron BA.2 infections in early 2022, resulting in one of the highest per-capita death rates of COVID-19. The outbreak occurred in a dense population with low immunity towards natural SARS-CoV-2 infection, high vaccine hesitancy in vulnerable populations, comprehensive disease surveillance and the capacity for stringent public health and social measures (PHSMs). By analyzing genome sequences and epidemiological data, we reconstructed the epidemic trajectory of BA.2 wave and found that the initial BA.2 community transmission emerged from cross-infection within hotel quarantine. The rapid implementation of PHSMs suppressed early epidemic growth but the effective reproduction number (Re) increased again during the Spring festival in early February and remained around 1 until early April. Independent estimates of point prevalence and incidence using phylodynamics also showed extensive superspreading at this time, which likely contributed to the rapid expansion of the epidemic. Discordant inferences based on genomic and epidemiological data underscore the need for research to improve near real-time epidemic growth estimates by combining multiple disparate data sources to better inform outbreak response policy.
Collapse
Affiliation(s)
- Ruopeng Xie
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kimberly M Edwards
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dillon C Adam
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kathy S M Leung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tim K Tsang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shreya Gurung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weijia Xiong
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoman Wei
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Daisy Y M Ng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Gigi Y Z Liu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Pavithra Krishnan
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lydia D J Chang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Samuel M S Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Gilman K H Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Joseph T Wu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, China
| | - Gabriel M Leung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, China
| | - Benjamin J Cowling
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, China
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, China
| | - Vijaykrishna Dhanasekaran
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Secondary data for global health digitalisation. Lancet Digit Health 2023; 5:e93-e101. [PMID: 36707190 DOI: 10.1016/s2589-7500(22)00195-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/14/2022] [Accepted: 10/07/2022] [Indexed: 01/27/2023]
Abstract
Substantial opportunities for global health intelligence and research arise from the combined and optimised use of secondary data within data ecosystems. Secondary data are information being used for purposes other than those intended when they were collected. These data can be gathered from sources on the verge of widespread use such as the internet, wearables, mobile phone apps, electronic health records, or genome sequencing. To utilise their full potential, we offer guidance by outlining available sources and approaches for the processing of secondary data. Furthermore, in addition to indicators for the regulatory and ethical evaluation of strategies for the best use of secondary data, we also propose criteria for assessing reusability. This overview supports more precise and effective policy decision making leading to earlier detection and better prevention of emerging health threats than is currently the case.
Collapse
|
10
|
Magvan B, Kloeble AA, Ptok J, Hoffmann D, Habermann D, Gantumur A, Paluschinski M, Enebish G, Balz V, Fischer JC, Chimeddorj B, Walker A, Timm J. Sequence diversity of hepatitis D virus in Mongolia. Front Med (Lausanne) 2023; 10:1108543. [PMID: 37035318 PMCID: PMC10077969 DOI: 10.3389/fmed.2023.1108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The Hepatitis Delta Virus (HDV) is a defective, single-stranded RNA virusoid encoding for a single protein, the Hepatitis Delta Antigen (HDAg), which requires the hepatitis B virus (HBV) envelope protein (HBsAg) for its transmission. Currently, hepatitis D is the most aggressive form of viral hepatitis and treatment options are limited. Worldwide 12 million people are chronically infected with HDV being at high risk for progression to cirrhosis and development of liver cancer. Objectives Although it is well established that Mongolia is the country with the highest prevalence of HDV infections, the information on the molecular epidemiology and factors contributing to HDV sequence diversity are largely unclear. The aim of the study was to characterize the sequence diversity of HDV in rural areas from Mongolia and to determine the extent of HLA class I-associated selection pressure. Patients and methods From the HepMongolia cohort from rural areas in Mongolia, 451 HBsAg-positive individuals were selected and anti-HDV, HDV-RNA and the sequence of the large HDAg was determined. For all individuals the HLA class I locus was genotyped. Residues under selection pressure in the presence of individual HLA class I types were identified with the recently published analysis tool HAMdetector. Results Of 431 HBsAg positive patients, 281 were anti-HDV positive (65%), and HDV-RNA could be detected in 207 of 281 (74%) of patients. The complete large HDAg was successfully sequenced from 131 samples. Phylogenetic analysis revealed that all Mongolian HDV isolates belong to genotype 1, however, they separate into several different clusters without clear regional association. In turn, from phylogeny there is strong evidence for recent local transmission events. Importantly, we found multiple residues with strong support for HLA class I-associated selection pressure consistent with a functional CD8+ T cell response directed against HDV. Conclusion HDV isolates from Mongolia are highly diverse. The molecular epidemiology suggests circulation of multiple subtypes and provides evidence for ongoing recent transmissions.
Collapse
Affiliation(s)
- Battur Magvan
- Department of Microbiology and Infection Prevention and Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Anne Alina Kloeble
- Institute of Virology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Habermann
- Bioinformatics and Computational Biophysics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anuujin Gantumur
- Department of Microbiology and Infection Prevention and Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | | | - Gerelmaa Enebish
- Department of Microbiology and Infection Prevention and Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Vera Balz
- Institute for Transplant Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Johannes C. Fischer
- Institute for Transplant Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Battogtokh Chimeddorj
- Department of Microbiology and Infection Prevention and Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
- Institute of Biomedical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Andreas Walker
- Institute of Virology, University Hospital Düsseldorf, Düsseldorf, Germany
- *Correspondence: Andreas Walker,
| | - Jörg Timm
- Institute of Virology, University Hospital Düsseldorf, Düsseldorf, Germany
- Jörg Timm,
| |
Collapse
|
11
|
Attwood SW, Hill SC, Aanensen DM, Connor TR, Pybus OG. Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nat Rev Genet 2022; 23:547-562. [PMID: 35459859 PMCID: PMC9028907 DOI: 10.1038/s41576-022-00483-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 01/05/2023]
Abstract
Determining the transmissibility, prevalence and patterns of movement of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is central to our understanding of the impact of the pandemic and to the design of effective control strategies. Phylogenies (evolutionary trees) have provided key insights into the international spread of SARS-CoV-2 and enabled investigation of individual outbreaks and transmission chains in specific settings. Phylodynamic approaches combine evolutionary, demographic and epidemiological concepts and have helped track virus genetic changes, identify emerging variants and inform public health strategy. Here, we review and synthesize studies that illustrate how phylogenetic and phylodynamic techniques were applied during the first year of the pandemic, and summarize their contributions to our understanding of SARS-CoV-2 transmission and control.
Collapse
Affiliation(s)
- Stephen W Attwood
- Department of Zoology, University of Oxford, Oxford, UK.
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK.
| | - Sarah C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas R Connor
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
12
|
Hufsky F, Abecasis A, Agudelo-Romero P, Bletsa M, Brown K, Claus C, Deinhardt-Emmer S, Deng L, Friedel CC, Gismondi MI, Kostaki EG, Kühnert D, Kulkarni-Kale U, Metzner KJ, Meyer IM, Miozzi L, Nishimura L, Paraskevopoulou S, Pérez-Cataluña A, Rahlff J, Thomson E, Tumescheit C, van der Hoek L, Van Espen L, Vandamme AM, Zaheri M, Zuckerman N, Marz M. Women in the European Virus Bioinformatics Center. Viruses 2022; 14:1522. [PMID: 35891501 PMCID: PMC9319252 DOI: 10.3390/v14071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Viruses are the cause of a considerable burden to human, animal and plant health, while on the other hand playing an important role in regulating entire ecosystems. The power of new sequencing technologies combined with new tools for processing "Big Data" offers unprecedented opportunities to answer fundamental questions in virology. Virologists have an urgent need for virus-specific bioinformatics tools. These developments have led to the formation of the European Virus Bioinformatics Center, a network of experts in virology and bioinformatics who are joining forces to enable extensive exchange and collaboration between these research areas. The EVBC strives to provide talented researchers with a supportive environment free of gender bias, but the gender gap in science, especially in math-intensive fields such as computer science, persists. To bring more talented women into research and keep them there, we need to highlight role models to spark their interest, and we need to ensure that female scientists are not kept at lower levels but are given the opportunity to lead the field. Here we showcase the work of the EVBC and highlight the achievements of some outstanding women experts in virology and viral bioinformatics.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ana Abecasis
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, New University of Lisbon, 1349-008 Lisbon, Portugal
| | - Patricia Agudelo-Romero
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA 6009, Australia
| | - Magda Bletsa
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Katherine Brown
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Claudia Claus
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Stefanie Deinhardt-Emmer
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Li Deng
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Virology, Helmholtz Centre Munich-German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Caroline C. Friedel
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - María Inés Gismondi
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Agrobiotechnology and Molecular Biology (IABIMO), National Institute for Agriculture Technology (INTA), National Research Council (CONICET), Hurlingham B1686IGC, Argentina
- Department of Basic Sciences, National University of Luján, Luján B6702MZP, Argentina
| | - Evangelia Georgia Kostaki
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Denise Kühnert
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Urmila Kulkarni-Kale
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Karin J. Metzner
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Irmtraud M. Meyer
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
- Faculty of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Laura Miozzi
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute for Sustainable Plant Protection, National Research Council of Italy, 10135 Torino, Italy
| | - Luca Nishimura
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Sofia Paraskevopoulou
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Methods Development and Research Infrastructure, Bioinformatics and Systems Biology, Robert Koch Institute, 13353 Berlin, Germany
| | - Alba Pérez-Cataluña
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Janina Rahlff
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linneaus University, 391 82 Kalmar, Sweden
| | - Emma Thomson
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Charlotte Tumescheit
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Lia van der Hoek
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1100 DD Amsterdam, The Netherlands
| | - Lore Van Espen
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Anne-Mieke Vandamme
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal
- Institute for the Future, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Maryam Zaheri
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Neta Zuckerman
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat Gan 52621, Israel
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
13
|
Weekly Nowcasting of New COVID-19 Cases Using Past Viral Load Measurements. Viruses 2022; 14:v14071414. [PMID: 35891394 PMCID: PMC9317659 DOI: 10.3390/v14071414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
The rapid spread of the coronavirus disease COVID-19 has imposed clinical and financial burdens on hospitals and governments attempting to provide patients with medical care and implement disease-controlling policies. The transmissibility of the disease was shown to be correlated with the patient’s viral load, which can be measured during testing using the cycle threshold (Ct). Previous models have utilized Ct to forecast the trajectory of the spread, which can provide valuable information to better allocate resources and change policies. However, these models combined other variables specific to medical institutions or came in the form of compartmental models that rely on epidemiological assumptions, all of which could impose prediction uncertainties. In this study, we overcome these limitations using data-driven modeling that utilizes Ct and previous number of cases, two institution-independent variables. We collected three groups of patients (n = 6296, n = 3228, and n = 12,096) from different time periods to train, validate, and independently validate the models. We used three machine learning algorithms and three deep learning algorithms that can model the temporal dynamic behavior of the number of cases. The endpoint was 7-week forward number of cases, and the prediction was evaluated using mean square error (MSE). The sequence-to-sequence model showed the best prediction during validation (MSE = 0.025), while polynomial regression (OLS) and support vector machine regression (SVR) had better performance during independent validation (MSE = 0.1596, and MSE = 0.16754, respectively), which exhibited better generalizability of the latter. The OLS and SVR models were used on a dataset from an external institution and showed promise in predicting COVID-19 incidences across institutions. These models may support clinical and logistic decision-making after prospective validation.
Collapse
|
14
|
Oh DY, Hölzer M, Paraskevopoulou S, Trofimova M, Hartkopf F, Budt M, Wedde M, Richard H, Haldemann B, Domaszewska T, Reiche J, Keeren K, Radonić A, Ramos Calderón JP, Smith MR, Brinkmann A, Trappe K, Drechsel O, Klaper K, Hein S, Hildt E, Haas W, Calvignac-Spencer S, Semmler T, Dürrwald R, Thürmer A, Drosten C, Fuchs S, Kröger S, von Kleist M, Wolff T, for the Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) Laboratory Network
BiereBarbaraBodeKonradCormanVictorErrenMichaelFinzerPatrickGrosserRogerHaffnerManuelHermannBeateKielChristinaKrumbholzAndiMeinckKristianNitscheAndreasPetzoldMarkusSchwanzThomasSzabadosFlorianTewaldFriedemannTiemannCarsten. Advancing Precision Vaccinology by Molecular and Genomic Surveillance of Severe Acute Respiratory Syndrome Coronavirus 2 in Germany, 2021. Clin Infect Dis 2022; 75:S110-S120. [PMID: 35749674 PMCID: PMC9278222 DOI: 10.1093/cid/ciac399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Comprehensive pathogen genomic surveillance represents a powerful tool to complement and advance precision vaccinology. The emergence of the Alpha variant in December 2020 and the resulting efforts to track the spread of this and other severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern led to an expansion of genomic sequencing activities in Germany. METHODS At Robert Koch Institute (RKI), the German National Institute of Public Health, we established the Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) network to perform SARS-CoV-2 genomic surveillance at the national scale, SARS-CoV-2-positive samples from laboratories distributed across Germany regularly undergo whole-genome sequencing at RKI. RESULTS We report analyses of 3623 SARS-CoV-2 genomes collected between December 2020 and December 2021, of which 3282 were randomly sampled. All variants of concern were identified in the sequenced sample set, at ratios equivalent to those in the 100-fold larger German GISAID sequence dataset from the same time period. Phylogenetic analysis confirmed variant assignments. Multiple mutations of concern emerged during the observation period. To model vaccine effectiveness in vitro, we employed authentic-virus neutralization assays, confirming that both the Beta and Zeta variants are capable of immune evasion. The IMS-SC2 sequence dataset facilitated an estimate of the SARS-CoV-2 incidence based on genetic evolution rates. Together with modeled vaccine efficacies, Delta-specific incidence estimation indicated that the German vaccination campaign contributed substantially to a deceleration of the nascent German Delta wave. CONCLUSIONS SARS-CoV-2 molecular and genomic surveillance may inform public health policies including vaccination strategies and enable a proactive approach to controlling coronavirus disease 2019 spread as the virus evolves.
Collapse
Affiliation(s)
- Djin Ye Oh
- Correspondence: D.-Y. Oh Robert Koch Institute, Dept. of Infectious Diseases, Seestr. 10, 13353 Berlin, Germany ()
| | | | - Sofia Paraskevopoulou
- Methodology and Research Infrastructure, Bioinformatics and Systems Biology (MF1), Robert Koch Institute, Berlin, Germany
| | - Maria Trofimova
- Systems Medicine of Infectious Disease (P5), Robert Koch Institute, Berlin, Germany
| | - Felix Hartkopf
- Methodology and Research Infrastructure, Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Matthias Budt
- Influenza and Other Respiratory Viruses (FG17), Robert Koch Institute, Berlin, Germany
| | - Marianne Wedde
- Influenza and Other Respiratory Viruses (FG17), Robert Koch Institute, Berlin, Germany
| | - Hugues Richard
- Methodology and Research Infrastructure, Bioinformatics and Systems Biology (MF1), Robert Koch Institute, Berlin, Germany
| | - Berit Haldemann
- Methodology and Research Infrastructure, Bioinformatics and Systems Biology (MF1), Robert Koch Institute, Berlin, Germany
| | | | - Janine Reiche
- Influenza and Other Respiratory Viruses (FG17), Robert Koch Institute, Berlin, Germany
| | - Kathrin Keeren
- Gastroenteritis and Hepatitis Pathogens and Enteroviruses (FG15), Robert Koch Institute, Berlin, Germany
| | - Aleksandar Radonić
- Methodology and Research Infrastructure, Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | | | | | - Annika Brinkmann
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
| | - Kathrin Trappe
- Methodology and Research Infrastructure, Bioinformatics and Systems Biology (MF1), Robert Koch Institute, Berlin, Germany
| | - Oliver Drechsel
- Methodology and Research Infrastructure, Bioinformatics and Systems Biology (MF1), Robert Koch Institute, Berlin, Germany
| | - Kathleen Klaper
- Methodology and Research Infrastructure, Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany,Sexually Transmitted Bacterial Pathogens and HIV (FG18), Robert Koch Institute, Berlin, Germany
| | - Sascha Hein
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Eberhardt Hildt
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Walter Haas
- Gastroenteritis and Hepatitis Pathogens and Enteroviruses (FG15), Robert Koch Institute, Berlin, Germany
| | - Sébastien Calvignac-Spencer
- Epidemiology of Highly Pathogenic Microorganisms (P3), Viral Evolution, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Methodology and Research Infrastructure, Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Ralf Dürrwald
- Influenza and Other Respiratory Viruses (FG17), Robert Koch Institute, Berlin, Germany
| | - Andrea Thürmer
- Methodology and Research Infrastructure, Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-University Medicine Berlin, Berlin, Germany
| | - Stephan Fuchs
- Methodology and Research Infrastructure, Bioinformatics and Systems Biology (MF1), Robert Koch Institute, Berlin, Germany
| | | | | | | | | |
Collapse
|
15
|
Okamoto KW, Ong V, Wallace R, Wallace R, Chaves LF. When might host heterogeneity drive the evolution of asymptomatic, pandemic coronaviruses? NONLINEAR DYNAMICS 2022; 111:927-949. [PMID: 35757097 PMCID: PMC9207439 DOI: 10.1007/s11071-022-07548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/05/2022] [Indexed: 06/15/2023]
Abstract
Controlling many infectious diseases, including SARS-Coronavirus-2 (SARS-CoV-2), requires surveillance followed by isolation, contact-tracing and quarantining. These interventions often begin by identifying symptomatic individuals. However, actively removing pathogen strains causing symptomatic infections may inadvertently select for strains less likely to cause symptomatic infections. Moreover, a pathogen's fitness landscape is structured around a heterogeneous host pool; uneven surveillance efforts and distinct transmission risks across host classes can meaningfully alter selection pressures. Here, we explore this interplay between evolution caused by disease control efforts and the evolutionary consequences of host heterogeneity. Using an evolutionary epidemiology model parameterized for coronaviruses, we show that intense symptoms-driven disease control selects for asymptomatic strains, particularly when these efforts are applied unevenly across host groups. Under these conditions, increasing quarantine efforts have diverging effects. If isolation alone cannot eradicate, intensive quarantine efforts combined with uneven detections of asymptomatic infections (e.g., via neglect of some host classes) can favor the evolution of asymptomatic strains. We further show how, when intervention intensity depends on the prevalence of symptomatic infections, higher removal efforts (and isolating symptomatic cases in particular) more readily select for asymptomatic strains than when these efforts do not depend on prevalence. The selection pressures on pathogens caused by isolation and quarantining likely lie between the extremes of no intervention and thoroughly successful eradication. Thus, analyzing how different public health responses can select for asymptomatic pathogen strains is critical for identifying disease suppression efforts that can effectively manage emerging infectious diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s11071-022-07548-7.
Collapse
Affiliation(s)
- Kenichi W. Okamoto
- Department of Biology, University of St. Thomas, St. Paul, MN 55105 USA
- Agroecology and Rural Economics Research Corps, St. Paul, MN USA
| | - Virakbott Ong
- Department of Biology, University of St. Thomas, St. Paul, MN 55105 USA
| | - Robert Wallace
- Agroecology and Rural Economics Research Corps, St. Paul, MN USA
| | | | - Luis Fernando Chaves
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Avenida Justo Arosemena, Panama, Panama
| |
Collapse
|
16
|
Zhu M, Zeng Q, Saputro BIL, Chew SP, Chew I, Frendy H, Tan JW, Li L. Tracking the molecular evolution and transmission patterns of SARS-CoV-2 lineage B.1.466.2 in Indonesia based on genomic surveillance data. Virol J 2022; 19:103. [PMID: 35710544 PMCID: PMC9202327 DOI: 10.1186/s12985-022-01830-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND As a new epi-center of COVID-19 in Asia and a densely populated developing country, Indonesia is facing unprecedented challenges in public health. SARS-CoV-2 lineage B.1.466.2 was reported to be an indigenous dominant strain in Indonesia (once second only to the Delta variant). However, it remains unclear how this variant evolved and spread within such an archipelagic nation. METHODS For statistical description, the spatiotemporal distributions of the B.1.466.2 variant were plotted using the publicly accessible metadata in GISAID. A total of 1302 complete genome sequences of Indonesian B.1.466.2 strains with high coverage were downloaded from the GISAID's EpiCoV database on 28 August 2021. To determine the molecular evolutionary characteristics, we performed a time-scaled phylogenetic analysis using the maximum likelihood algorithm and called the single nucleotide variants taking the Wuhan-Hu-1 sequence as reference. To investigate the spatiotemporal transmission patterns, we estimated two dynamic parameters (effective population size and effective reproduction number) and reconstructed the phylogeography among different islands. RESULTS As of the end of August 2021, nearly 85% of the global SARS-CoV-2 lineage B.1.466.2 sequences (including the first one) were obtained from Indonesia. This variant was estimated to account for over 50% of Indonesia's daily infections during the period of March-May 2021. The time-scaled phylogeny suggested that SARS-CoV-2 lineage B.1.466.2 circulating in Indonesia might have originated from Java Island in mid-June 2020 and had evolved into two disproportional and distinct sub-lineages. High-frequency non-synonymous mutations were mostly found in the spike and NSP3; the S-D614G/N439K/P681R co-mutations were identified in its larger sub-lineage. The demographic history was inferred to have experienced four phases, with an exponential growth from October 2020 to February 2021. The effective reproduction number was estimated to have reached its peak (11.18) in late December 2020 and dropped to be less than one after early May 2021. The relevant phylogeography showed that Java and Sumatra might successively act as epi-centers and form a stable transmission loop. Additionally, several long-distance transmission links across seas were revealed. CONCLUSIONS SARS-CoV-2 variants circulating in the tropical archipelago may follow unique patterns of evolution and transmission. Continuous, extensive and targeted genomic surveillance is essential.
Collapse
Affiliation(s)
- Mingjian Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianli Zeng
- Shanghai Institute of Biological Products, Shanghai, China
| | | | - Sien Ping Chew
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ian Chew
- Zhejiang University School of Medicine, Hangzhou, China
| | - Holie Frendy
- Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta, Indonesia
| | - Joanna Weihui Tan
- Faculty of Arts and Social Sciences, National University of Singapore, Singapore, Singapore
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Kumar A, Asghar A, Dwivedi P, Kumar G, Narayan RK, Jha RK, Parashar R, Sahni C, Pandey SN. A Bioinformatics Tool for Predicting Future COVID-19 Waves Based on a Retrospective Analysis of the Second Wave in India: Model Development Study. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e36860. [PMID: 36193192 PMCID: PMC9516867 DOI: 10.2196/36860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Since the start of the COVID-19 pandemic, health policymakers globally have been attempting to predict an impending wave of COVID-19. India experienced a devastating second wave of COVID-19 in the late first week of May 2021. We retrospectively analyzed the viral genomic sequences and epidemiological data reflecting the emergence and spread of the second wave of COVID-19 in India to construct a prediction model. OBJECTIVE We aimed to develop a bioinformatics tool that can predict an impending COVID-19 wave. METHODS We analyzed the time series distribution of genomic sequence data for SARS-CoV-2 and correlated it with epidemiological data for new cases and deaths for the corresponding period of the second wave. In addition, we analyzed the phylodynamics of circulating SARS-CoV-2 variants in the Indian population during the study period. RESULTS Our prediction analysis showed that the first signs of the arrival of the second wave could be seen by the end of January 2021, about 2 months before its peak in May 2021. By the end of March 2021, it was distinct. B.1.617 lineage variants powered the wave, most notably B.1.617.2 (Delta variant). CONCLUSIONS Based on the observations of this study, we propose that genomic surveillance of SARS-CoV-2 variants, complemented with epidemiological data, can be a promising tool to predict impending COVID-19 waves.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy All India Institute of Medical Sciences - Patna Patna India
| | - Adil Asghar
- Department of Anatomy All India Institute of Medical Sciences - Patna Patna India
| | - Prakhar Dwivedi
- Department of Anatomy All India Institute of Medical Sciences - Patna Patna India
| | - Gopichand Kumar
- Department of Anatomy All India Institute of Medical Sciences - Patna Patna India
| | - Ravi K Narayan
- Department of Anatomy Dr B C Roy Multispeciality Medical Research Center Indian Institute of Technology-Kharagpur Kharagpur India
| | - Rakesh K Jha
- Department of Anatomy All India Institute of Medical Sciences - Patna Patna India
| | - Rakesh Parashar
- India Health Lead Oxford Policy Management Limited Oxford United Kingdom
| | - Chetan Sahni
- Department of Anatomy Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Sada N Pandey
- Department of Zoology Banaras Hindu University Varanasi India
| |
Collapse
|
18
|
Parag KV, Cowling BJ, Donnelly CA. Deciphering early-warning signals of SARS-CoV-2 elimination and resurgence from limited data at multiple scales. J R Soc Interface 2021; 18:20210569. [PMID: 34905965 PMCID: PMC8672070 DOI: 10.1098/rsif.2021.0569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Inferring the transmission potential of an infectious disease during low-incidence periods following epidemic waves is crucial for preparedness. In such periods, scarce data may hinder existing inference methods, blurring early-warning signals essential for discriminating between the likelihoods of resurgence versus elimination. Advanced insight into whether elevating caseloads (requiring swift community-wide interventions) or local elimination (allowing controls to be relaxed or refocussed on case-importation) might occur can separate decisive from ineffective policy. By generalizing and fusing recent approaches, we propose a novel early-warning framework that maximizes the information extracted from low-incidence data to robustly infer the chances of sustained local transmission or elimination in real time, at any scale of investigation (assuming sufficiently good surveillance). Applying this framework, we decipher hidden disease-transmission signals in prolonged low-incidence COVID-19 data from New Zealand, Hong Kong and Victoria, Australia. We uncover how timely interventions associate with averting resurgent waves, support official elimination declarations and evidence the effectiveness of the rapid, adaptive COVID-19 responses employed in these regions.
Collapse
Affiliation(s)
- Kris V. Parag
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong
| | - Christl A. Donnelly
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|