1
|
Avellaneda Penatti NM, Barros MH, Gomes F, Soares Netto LE, de Jesus Maciel K, Viala VL, Viana AM, Demasi M. Decreased levels of Prx1 are associated with proteasome impairment and mitochondrial dysfunction in the yeast Saccharomycescerevisiae. Arch Biochem Biophys 2025; 768:110406. [PMID: 40180294 DOI: 10.1016/j.abb.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
In previous studies we reported the S-glutathionylation at Cys residues (C76 and C221) of the α5 subunit of the 20S catalytic unit of the yeast proteasome, later mutated to Ser residues. Notably, the strain with the α5-C76S mutation exhibited a reduced chronological life span when grown in glucose as the carbon source. In the present study, we aimed to explore the interplay between mitochondria and the proteasome, considering the α5-C76S-mutated strain as a model of proteasomal impairment. For this purpose, we focused on the growth of the C76S strain in glycerol/ethanol as the carbon source. C76S strain exhibited poor growth and morphological alterations under these conditions, while the proteasomal activity was significantly decreased. We observed decreased activity of the 30S and 26S complexes in the C76S strain, which were accompanied by increased pool of poly-ubiquitinylated proteins. Regarding mitochondrial function, O2 consumption and the concentration of total cellular ATP were significantly increased in the C76S strain. However, levels of peroxiredoxin-1 (Prx1), an important mitochondrial Cys-based peroxidase, were reduced in the C76S strain. In parallel, H2O2 release by mitochondrial respiration was augmented as well as decreased GSH/GSSG ratios, an important parameter of oxidative stress. These findings suggest that, despite increased O2 consumption and ATP production, the mitochondria from the C76S strain promotes an increased oxidative stress most probably due to decreased Prx1 levels. DNA fragmentation and increased cytoplasmic cytochrome C, two apoptotic markers, were observed in the C76S strain. To assess the role of Prx1 in the survival of the C76S strain, we overexpressed this peroxiredoxin in both wild type and C76S strains, which resulted in the partial recovery of the C76S strain phenotype and proteasome activity. The relationship between decreased Prx1 concentration and proteasome impairment remains under investigation.
Collapse
Affiliation(s)
| | - Mário Henrique Barros
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| | | | | | - Ana Mara Viana
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, SP, Brazil
| | - Marilene Demasi
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Dong H, Lyu Y, Huang CY, Tsai SY. Limiting cap-dependent translation increases 20S proteasomal degradation and protects the proteomic integrity in autophagy-deficient skeletal muscle. Autophagy 2025; 21:1212-1227. [PMID: 39878121 PMCID: PMC12087647 DOI: 10.1080/15548627.2025.2457925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Postmitotic skeletal muscle critically depends on tightly regulated protein degradation to maintain proteomic stability. Impaired macroautophagy/autophagy-lysosomal or ubiquitin-proteasomal protein degradation causes the accumulation of damaged proteins, ultimately accelerating muscle dysfunction with age. While in vitro studies have demonstrated the complementary nature of these systems, their interplay at the organism levels remains poorly understood. Here, our study reveals novel insights into this complex relationship in autophagy-deficient skeletal muscle. We demonstrated that despite a compensatory increase in proteasome level in response to autophagy impairment, 26S proteasome activity was not proportionally enhanced in autophagy-deficient skeletal muscle. This functional deficit was partly attributed to reduced ATP levels to fuel the 26S proteasome. Remarkably, we found that activation of EIF4EBP1, a crucial inhibitor of cap-dependent translation, restored and even augmented proteasomal function through dual mechanisms. First, genetically activating EIF4EBP1 enhanced both ATP-dependent 26S proteasome and ATP-independent 20S proteasome activities, thereby expanding overall protein degradation capacity. Second, EIF4EBP1 activation caused muscle fiber transformation and increased mitochondrial biogenesis, thus replenishing ATP levels for 26S proteasome activation. Notably, the improved performance of the 20S proteasome in EIF4EBP1-activated skeletal muscle was attributed to an increased abundance of the immunoproteasome, a subtype specially adapted to function under oxidative stress conditions. This dual action of EIF4EBP1 activation preserved proteomic integrity in autophagy-deficient skeletal muscle. Our findings uncover a novel role of EIF4EBP1 in improving protein quality control, presenting a promising therapeutic strategy for autophagy-related muscular disorders and potentially other conditions characterized by proteostatic imbalance.Abbreviations: 3-MA: 3-methyladenine; ACAC/ACC: acetyl-Coenzyme A carboxylase; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATP: adenosine triphosphate; ATP5F1A/ATP5A: ATP synthase F1 subunit alpha; CKM-Cre: creatine kinase, muscle-Cre; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSK: cathepsin K; CTSL: cathepsin L; CUL3: cullin 3; EDL: extensor digitorum longus; EIF4E: eukaryotic translation initiation factor 4E; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EIF4F: eukaryotic translation initiation factor 4F complex; FBXO32/ATROGIN1/MAFbx: F-box protein 32; GFP: green fluorescent protein; IFNG/IFN-γ: interferon gamma; KEAP1: kelch-like ECH-associated protein 1; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; Myl1/Mlc1f-Cre: myosin, light polypeptide 1 (promoter driving Cre recombinase); mRFP: monomeric red fluorescent protein; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NFE2L1/NRF1: nuclear factor, erythroid derived 2, like 1; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; NFKB1/NFκB1: nuclear factor of kappa light polypeptide gene enhancer in B cells 1, p105; OXPHOS: oxidative phosphorylation; PPARGC1A/PGC1α: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PSMB5: proteasome (prosome, macropain) subunit, beta type 5; PSMB6: proteasome (prosome, macropain) subunit, beta type 6; PSMB7: proteasome (prosome, macropain) subunit, beta type 7; PSMB8: proteasome (prosome, macropain) subunit, beta type 8 (large multifunctional peptidase 7); PSMB9: proteasome (prosome, macropain) subunit, beta type 9 (large multifunctional peptidase 2); PSMB10: proteasome (prosome, macropain) subunit, beta type 10; PSME1: proteasome (prosome, macropain) activator subunit 1 (PA28 alpha); PSME2: proteasome (prosome, macropain) activator subunit 2 (PA28 beta); RBX1: ring-box 1; SQSTM1/p62: sequestosome 1; SREBF1/SREBP1: sterol regulatory element binding transcription factor 1; STAT3: signal transducer and activator of transcription 3; TRIM63/MURF1: tripartite motif-containing 63; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yifan Lyu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chien-Yung Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
3
|
Valentim-Coelho C, Saraiva J, Osório H, Antunes M, Vaz F, Neves S, Pinto P, Bárbara C, Penque D. Red blood cell proteomic profiling in mild and severe obstructive sleep apnea patients before and after positive airway pressure treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167767. [PMID: 40043591 DOI: 10.1016/j.bbadis.2025.167767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/05/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Obstructive Sleep Apnea (OSA) is characterized by recurrent-episodes of apneas/hypopneas during sleep, leading to recurrent intermittent-hypoxia and sleep fragmentation. Non-treated OSA can result in cardiometabolic diseases. In this study, we applied a shotgun-proteomics strategy to deeper investigate the red blood cell-(RBC) homeostasis regulation in the context of OSA-severity and their response to six months of positive airway pressure (PAP)-treatment. RBC-samples from patients with Mild/Severe-OSA before/after-PAP treatment and patients as simple-snoring controls were selected. The mass-spectrometry raw-data was analysed by MaxQuant for protein identification/quantification followed by statistical Linear Models-(LM) and Linear Mixed Models-(LMM) to investigate OSA-severity effect and interaction with PAP, respectively. The functional/biological network analysis were performed by DAVID-platform. The results indicated that key-enzymes of the Embden-Meyerhof-Parnas (EMP)-glycolysis and pentose phosphate pathway-(PPP) were differentially changed in Severe-OSA, suggesting that the O2-dependent metabolic flux through EMP and PPP maybe compromised in these cells due to severe intermittent hypoxia/reoxygenation-induced oxidative-stress events in these patients. The Rapoport-Luebering-glycolytic shunt showed a significant downregulation across OSA-severity maybe to increase hemoglobin-O2 affinity to adapt to O2 low availability in the lung, although EMP-glycolysis showed decreased only in Severe-OSA. Proteins of the immunoproteasome were upregulated in Severe-OSA maybe to respond to severe oxidative-stress. In Mild-OSA, proteins related to the ubiquitination/neddylation-(Ub/Ned)-dependent proteasome system were upregulated. After PAP, proteins of Glycolysis and Ub/Ned-dependent proteasome system showed reactivated in Severe-OSA. In Mild-OSA, PAP induced upregulation of immunoproteasome proteins, suggesting that this treatment may increase oxidative-stress in these patients. Once validated these proteins maybe candidate biomarkers for OSA or OSA-therapy response.
Collapse
Affiliation(s)
- Cristina Valentim-Coelho
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal.
| | - Joana Saraiva
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto - Ipatimup, 4200-135 Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Marília Antunes
- Centro de Estatística e Aplicações da Universidade de Lisboa e Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Fátima Vaz
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Sofia Neves
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Paula Pinto
- Serviço de Pneumologia, Centro Hospitalar Lisboa Norte - CHLN, 1649-035 Lisboa, Portugal; Instituto de Saúde Ambiental - ISAMB, Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal
| | - Cristina Bárbara
- Serviço de Pneumologia, Centro Hospitalar Lisboa Norte - CHLN, 1649-035 Lisboa, Portugal; Instituto de Saúde Ambiental - ISAMB, Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal
| | - Deborah Penque
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal.
| |
Collapse
|
4
|
Chen H, Zang L, Kielkowski P. Self-assembled PROTACs enable glycoproteins degradation in the living cells. Chem Sci 2025; 16:8060-8068. [PMID: 40206552 PMCID: PMC11976659 DOI: 10.1039/d5sc00400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
We report here a two-component proteolysis targeting chimeras (PROTACs) strategy selectively targeting O-GalNAcylated and O-GlcNAcylated proteins for proteasomal degradation, which leads to severe toxicity in human cancer cell lines through perturbation of critical metabolic and signaling pathways governed by glycoproteins. Our approach termed as GlyTAC leverages from metabolic incorporation of easily accessible and cell-permeable peracetylated N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) analogues bearing an azido group into glycoproteins. In the living cells, the azido-modified glycoproteins serve as covalent anchors for the introduction of thalidomide moiety by strain-promoted azide-alkyne cycloaddition (SPAAC) to recruit E3 ligase cereblon (CRBN), resulting in stepwise ubiquitination of 'sensitized' proteins and their degradation by proteasome. We show the efficiency of the system in a series of human cancer cell lines and verify the mechanistic pathway by performing control experiments at each stage of the process. Given the characteristic features of cancer cells including fast nutrient turnover, and overall increase of protein glycosylation, as well as the low cytotoxicity of the individual components, our approach may open a feasible strategy in cancer therapy.
Collapse
Affiliation(s)
- Haoyu Chen
- Department of Chemistry, LMU Munich Würmtalstr. 201 81375 Munich Germany
| | - Liu Zang
- Department of Chemistry, LMU Munich Würmtalstr. 201 81375 Munich Germany
| | - Pavel Kielkowski
- Department of Chemistry, LMU Munich Würmtalstr. 201 81375 Munich Germany
| |
Collapse
|
5
|
Urschbach M, Huhmann S, Appel D, Ferrari L, Vogl D, Martens S, Becker CFW. Convergent Assembly of Homo- and Heterotypic Ubiquitin Chains from Functionalized, Expressed Monomers via Thiol-Ene Chemistry. Angew Chem Int Ed Engl 2025; 64:e202502638. [PMID: 40080044 PMCID: PMC12087842 DOI: 10.1002/anie.202502638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Nature constructs ubiquitin tags with high spatiotemporal precision to execute defined functions that critically rely on the exact molecular composition of the ubiquitin chain. Deciphering the complex ubiquitin code is of paramount interest in biology and requires flexible access to homogeneous ubiquitin tags. As enzymatic approaches suffer from inherent drawbacks such as hardly controllable chain length or connectivity and substrate-specificity, we apply a combination of expression and chemical tools to assemble ubiquitin chains. Our strategy includes expression of ubiquitin-intein fusion constructs to obtain large quantities of defined ubiquitin monomers with C-terminal modifications such as hydrazides and propargylamides. Linkages between ubiquitins are generated via photoinitiated thiol-ene click (TEC) chemistry, resulting in a nearly native isopeptide bond. We demonstrate the generation of homo- and heterotypic ubiquitin oligomers with K27, 29, 48, and 63 linkages up to a K48-linked tetramer. The presented toolbox allows selective installation of ubiquitin on target peptides and proteins with reactive cysteine residues as demonstrated for segments of the microtubule-associated protein tau. Such segments can be implemented into protein semisyntheses as shown here for ubiquitylated full-length Tau4. The presented work combines minimal synthetic effort with high fidelity linkage chemistry, paving the way toward homogeneously ubiquitylated proteins.
Collapse
Affiliation(s)
- Moritz Urschbach
- Faculty of ChemistryInstitute of Biological ChemistryUniversity of ViennaWähringer Straße 38Vienna1090Austria
| | - Susanne Huhmann
- Faculty of ChemistryInstitute of Biological ChemistryUniversity of ViennaWähringer Straße 38Vienna1090Austria
| | - Dominik Appel
- Faculty of ChemistryInstitute of Biological ChemistryUniversity of ViennaWähringer Straße 38Vienna1090Austria
| | - Luca Ferrari
- Max Perutz LabsVienna Biocenter Campus (VBC)Dr.‐Bohr‐Gasse 9Vienna1030Austria
- Max Perutz LabsUniversity of ViennaDr.‐Bohr‐GasseVienna1030Austria
| | - Dominik Vogl
- Faculty of ChemistryInstitute of Biological ChemistryUniversity of ViennaWähringer Straße 38Vienna1090Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Sascha Martens
- Max Perutz LabsVienna Biocenter Campus (VBC)Dr.‐Bohr‐Gasse 9Vienna1030Austria
- Max Perutz LabsUniversity of ViennaDr.‐Bohr‐GasseVienna1030Austria
| | - Christian F. W. Becker
- Faculty of ChemistryInstitute of Biological ChemistryUniversity of ViennaWähringer Straße 38Vienna1090Austria
| |
Collapse
|
6
|
Joseph D. The Unified Theory of Neurodegeneration Pathogenesis Based on Axon Deamidation. Int J Mol Sci 2025; 26:4143. [PMID: 40362380 PMCID: PMC12071446 DOI: 10.3390/ijms26094143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Until now, neurodegenerative diseases like Alzheimer's and Parkinson's have been studied separately in biochemistry and therapeutic drug development, and no causal link has ever been established between them. This study has developed a Unified Theory, which establishes that the regulation of axon and dendrite-specific 4E-BP2 deamidation rates controls the occurrence and progression of neurodegenerative diseases. This is based on identifying axon-specific 4E-BP2 deamidation as a universal denominator for the biochemical processes of deamidation, translational control, oxidative stress, and neurodegeneration. This was achieved by conducting a thorough and critical review of 224 scientific publications regarding (a) deamidation, (b) translational control in protein synthesis initiation, (c) neurodegeneration and (d) oxidative stress, and by applying my discovery of the fundamental neurobiological mechanism behind neuron-specific 4E-BP2 deamidation to practical applications in medicine. Based on this newly developed Unified Theory and my critical review of the scientific literature, I also designed three biochemical flowsheets of (1) in-vivo deamidation, (2) protein synthesis initiation and translational control, and (3) 4E-BP2 deamidation as a control system of the four biochemical processes. The Unified Theory of Neurodegeneration Pathogenesis based on axon deamidation, developed in this work, paves the way to controlling the occurrence and progression of neurodegenerative diseases such as Alzheimer's and Parkinson's through a unique, neuron-specific regulatory system that is 4E-BP2 deamidation, caused by the proteasome-poor environment in neuronal projections, consisting mainly of axons.
Collapse
Affiliation(s)
- Davis Joseph
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada;
- Flogen Technologies Inc., Mount Royal, QC H3P 2T1, Canada
| |
Collapse
|
7
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Sülzen H, Fajtova P, O’Donoghue AJ, Silhan J, Boura E. Structural Insights into Salinosporamide a Mediated Inhibition of the Human 20S Proteasome. Molecules 2025; 30:1386. [PMID: 40142161 PMCID: PMC11946101 DOI: 10.3390/molecules30061386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The 20S proteasome, a critical component of the ubiquitin-proteasome system, plays a central role in regulating protein degradation in eukaryotic cells. Marizomib (MZB), also known as salinosporamide A, is a natural γ-lactam-β-lactone compound derived from Salinispora tropica and is a potent 20S proteasome covalent inhibitor with demonstrated anticancer properties. Its broad-spectrum inhibition of all three proteasome subunits and its ability to cross the blood-brain barrier has made it a promising therapeutic candidate for glioblastoma. In addition to this, MZB also demonstrates significant inhibition against the 20S proteasome of Trichomonas vaginalis (Tv20S), a protozoan parasite, suggesting its potential for parasitic treatments. Here, we present the cryo-EM structure of the human 20S proteasome in complex with MZB at 2.55 Å resolution. This structure reveals the binding mode of MZB to all six catalytic subunits within the two β-rings of the 20S proteasome, providing a detailed molecular understanding of its irreversible inhibitory mechanism. These findings enhance the therapeutic potential of MZB for both cancer and parasitic diseases at the molecular level and highlight marine-derived natural products in targeting the proteasome for therapeutic applications.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague, Czech Republic (P.F.)
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague, Czech Republic (P.F.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA;
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague, Czech Republic (P.F.)
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague, Czech Republic (P.F.)
| |
Collapse
|
9
|
Salazar IL, Curcio M, Mele M, Vetrone R, Frisari S, Costa RO, Caldeira MV, Trader DJ, Duarte CB. Activation of the 20S proteasome core particle prevents cell death induced by oxygen- and glucose deprivation in cultured cortical neurons. Apoptosis 2025:10.1007/s10495-025-02097-x. [PMID: 40095265 DOI: 10.1007/s10495-025-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Neuronal damage in brain ischemia is characterized by a disassembly of the proteasome and a decrease in its proteolytic activity. However, to what extent these alterations are coupled to neuronal death is controversial since proteasome inhibitors were shown to provide protection in different models of stroke in rodents. This question was addressed in the present work using cultured rat cerebrocortical neurons subjected to transient oxygen- and glucose-deprivation (OGD) as a model for in vitro ischemia. Under the latter conditions there was a time-dependent loss in the proteasome activity, determined by cleavage of the Suc-LLVY-AMC fluorogenic substrate, and the disassembly of the proteasome, as assessed by native-polyacrylamide gel electrophoresis followed by western blot against Psma2 and Rpt6, which are components of the catalytic core and regulatory particle, respectively. Immunocytochemistry experiments against the two proteins also showed differential effects on their dendritic distribution. OGD also downregulated the protein levels of Rpt3 and Rpt10, two components of the regulatory particle, by a mechanism dependent on the activity of NMDA receptors and mediated by calpains. Activation of the proteasome activity, using an inhibitor of USP14, a deubiquitinase enzyme, inhibited OGD-induced cell death, and decreased calpain activity as determined by analysis of spectrin cleavage. Similar results were obtained in the presence of two oleic amide derivatives (B12 and D3) which directly activate the 20S proteasome core particle. Together, these results show that proteasome activation prevents neuronal death in cortical neurons subjected to in vitro ischemia, indicating that inhibition of the proteasome is a mediator of neuronal death in brain ischemia.
Collapse
Affiliation(s)
- Ivan L Salazar
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Ageing-MIA Portugal, University of Coimbra, Coimbra, Portugal
| | - Michele Curcio
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miranda Mele
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rossela Vetrone
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Simone Frisari
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Margarida V Caldeira
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Darci J Trader
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, USA
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Departament of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
10
|
Islam F, Shilton B. Insights into the cellular function and mechanism of action of quinone reductase 2 (NQO2). Biochem J 2025; 482:BCJ20240103. [PMID: 40071447 DOI: 10.1042/bcj20240103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
Quinone reductase 2 (NQO2) is a FAD-linked enzyme that cannot use the common reducing cofactors, NADH and NADPH, for efficient catalysis. This is unusual for an oxidoreductase, particularly since it is a member of a large family of enzymes that all use NAD(P)H efficiently to catalyse the two-electron reduction in quinones and other electrophiles. The inability of NQO2 to use NAD(P)H efficiently raises questions about its cellular function: it remains unclear whether the main cellular role of NQO2 is the catalytic reduction in quinones or whether it is a pseudo-enzyme with other roles such as cell signalling. Intriguingly, NQO2 has been identified as an off-target interactor with over 30 kinase inhibitors and other drugs and natural products. The interaction between NQO2 and kinase-targeted drugs is particularly intriguing because it suggests that NQO2 may be contributing to the cellular effects of these drugs. In this review, we will discuss the enzymatic properties of NQO2, its structure and complexes with various drugs and small molecules, potential cellular roles, and some of the enigmatic findings that make this molecule so interesting and worthy of further investigation.
Collapse
Affiliation(s)
- Faiza Islam
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Brian Shilton
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
11
|
Tylicka M, Matuszczak E, Kamińska J, Modzelewska B, Koper-Lenkiewicz OM. Proteasomes and Ubiquitin C-Terminal Hydrolase L1 as Biomarkers of Tissue Damage and Inflammatory Response to Different Types of Injury-A Short Review. Life (Basel) 2025; 15:413. [PMID: 40141757 PMCID: PMC11944130 DOI: 10.3390/life15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The proteasomal system of protein degradation is crucial for various cellular processes, including transduction of signals and differentiation of cells. Proteasome activity rises after various traumatic stressors such as hyperoxia, radiation, or oxidative damage. Removal of damaged proteins is essential to provide the necessary conditions for cell repair. Several studies report the activation of the proteasomal degradation system after thermal injury, CNS injury, abdominal trauma, ischemia-reperfusion injury, and possible clinical implications of the use of proteasome inhibitors. It is important to highlight the distinct and crucial roles of UCHL1, 26S, and 20S proteasome subunits as biomarkers. UCHL1 appears to be particularly relevant for identifying brain and neuronal damage and in advancing the diagnosis and prognosis of traumatic brain injury (TBI) and other neurological conditions. Meanwhile, the 26S and 20S proteasomes may serve as markers for peripheral tissue damage. This differentiation enhances our understanding and ability to target specific types of tissue damage in clinical settings.
Collapse
Affiliation(s)
- Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (J.K.); (O.M.K.-L.)
| | - Beata Modzelewska
- Department of Biophysics, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (J.K.); (O.M.K.-L.)
| |
Collapse
|
12
|
Church TR, Margolis SS. Mechanisms of ubiquitin-independent proteasomal degradation and their roles in age-related neurodegenerative disease. Front Cell Dev Biol 2025; 12:1531797. [PMID: 39990094 PMCID: PMC11842346 DOI: 10.3389/fcell.2024.1531797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Neurodegenerative diseases are characterized by the progressive breakdown of neuronal structure and function and the pathological accumulation of misfolded protein aggregates and toxic protein oligomers. A major contributor to the deterioration of neuronal physiology is the disruption of protein catabolic pathways mediated by the proteasome, a large protease complex responsible for most cellular protein degradation. Previously, it was believed that proteolysis by the proteasome required tagging of protein targets with polyubiquitin chains, a pathway called the ubiquitin-proteasome system (UPS). Because of this, most research on proteasomal roles in neurodegeneration has historically focused on the UPS. However, additional ubiquitin-independent pathways and their importance in neurodegeneration are increasingly recognized. In this review, we discuss the range of ubiquitin-independent proteasome pathways, focusing on substrate identification and targeting, regulatory molecules and adaptors, proteasome activators and alternative caps, and diverse proteasome complexes including the 20S proteasome, the neuronal membrane proteasome, the immunoproteasome, extracellular proteasomes, and hybrid proteasomes. These pathways are further discussed in the context of aging, oxidative stress, protein aggregation, and age-associated neurodegenerative diseases, with a special focus on Alzheimer's Disease, Huntington's Disease, and Parkinson's Disease. A mechanistic understanding of ubiquitin-independent proteasome function and regulation in neurodegeneration is critical for the development of therapies to treat these devastating conditions. This review summarizes the current state of ubiquitin-independent proteasome research in neurodegeneration.
Collapse
Affiliation(s)
- Taylor R. Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth S. Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Hartman H, Uy G, Uchida K, Scarborough EA, Yang Y, Barr E, Williams S, Kavar SL, Brandimarto J, Li L, Lai L, Griffin J, Yucel N, Shewale S, Rajagopal H, Eaton DM, Dorwart T, Bedi KC, Conn CS, Margulies K, Prosser B, Arany Z, Edwards JJ. ROR2 drives right ventricular heart failure via disruption of proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.635961. [PMID: 39975092 PMCID: PMC11838457 DOI: 10.1101/2025.02.01.635961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background No therapies exist to reverse right ventricular failure (RVF), and the molecular mechanisms that drive RVF remain poorly studied. We recently reported that the developmentally restricted noncanonical WNT receptor ROR2 is upregulated in human RVF in proportion to severity of disease. Here we test mechanistic role of ROR2 in RVF pathogenesis. Methods ROR2 was overexpressed or knocked down in neonatal rat ventricular myocytes (NRVMs). ROR2-modified NRVMs were characterized using confocal microscopy, RNAseq, proteomics, proteostatic functional assays, and contractile properties with pacing. The impact of cardiac ROR2 expression was evaluated in mice by AAV9-mediated overexpression and by AAV9-mediated delivery of shRNA to knockdown ROR2 in a pulmonary artery banded pressure overload RVF model. ROR2-modified mice were evaluated by echocardiography, RV protein synthetic rates and proteasome activity. Results In NRVMs, we find that ROR2 profoundly dysregulates the coordination between protein translation and folding. This imbalance leads to excess protein clearance by the ubiquitin proteasome system (UPS) with dramatic impacts on sarcomere and cytoskeletal structure and function. In mice, forced cardiac ROR2 expression is sufficient to disrupt proteostasis and drive RVF, while conversely ROR2 knockdown partially rescues proteostasis and cardiac function in a pressure overload model of RVF. Conclusions In sum, ROR2 is a key driver of RVF pathogenesis through proteostatic disruption and, thus, provides a promising target to treat RVF.
Collapse
|
14
|
Arkinson C, Dong KC, Gee CL, Martin A. Mechanisms and regulation of substrate degradation by the 26S proteasome. Nat Rev Mol Cell Biol 2025; 26:104-122. [PMID: 39362999 PMCID: PMC11772106 DOI: 10.1038/s41580-024-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
The 26S proteasome is involved in degrading and regulating the majority of proteins in eukaryotic cells, which requires a sophisticated balance of specificity and promiscuity. In this Review, we discuss the principles that underly substrate recognition and ATP-dependent degradation by the proteasome. We focus on recent insights into the mechanisms of conventional ubiquitin-dependent and ubiquitin-independent protein turnover, and discuss the plethora of modulators for proteasome function, including substrate-delivering cofactors, ubiquitin ligases and deubiquitinases that enable the targeting of a highly diverse substrate pool. Furthermore, we summarize recent progress in our understanding of substrate processing upstream of the 26S proteasome by the p97 protein unfoldase. The advances in our knowledge of proteasome structure, function and regulation also inform new strategies for specific inhibition or harnessing the degradation capabilities of the proteasome for the treatment of human diseases, for instance, by using proteolysis targeting chimera molecules or molecular glues.
Collapse
Affiliation(s)
- Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Sülzen H, Fajtova P, O’Donoghue AJ, Boura E, Silhan J. Structural insights into Salinosporamide A mediated inhibition of the human 20S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635221. [PMID: 39974992 PMCID: PMC11838377 DOI: 10.1101/2025.01.28.635221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The 20S proteasome, a critical component of the ubiquitin-proteasome system, plays a central role in regulating protein degradation in eukaryotic cells. Marizomib (MZB), a natural γ-lactam-β-lactone compound derived from Salinispora tropica, is a potent 20S proteasome covalent inhibitor with demonstrated anticancer properties. Its broad-spectrum inhibition of all three proteasome subunits and ability to cross the blood-brain barrier has made it a promising therapeutic candidate for glioblastoma. Here, we present the cryo-EM structure of the human 20S proteasome in complex with MZB at 2.55 Å resolution. This structure reveals the binding mode of MZB to all six catalytic subunits within the two β-rings of the 20S proteasome, providing a detailed molecular understanding of its irreversible inhibitory mechanism. These findings explain the therapeutic potential of MZB at the molecular level and highlight marine-derived natural products in targeting the proteasome for anticancer treatment.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Anthony J O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| |
Collapse
|
16
|
Sedlacek J. Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs. ACS Pharmacol Transl Sci 2025; 8:21-35. [PMID: 39816802 PMCID: PMC11729432 DOI: 10.1021/acsptsci.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
The 26S proteasome degrades the majority of cellular proteins and affects all aspects of cellular life. Therefore, the 26S proteasome abundance, proper assembly, and activity in different life contexts need to be precisely controlled. Impaired proteasome activity is considered a causative factor in several serious disorders. Recent advances in proteasome biology have revealed that the proteasome can be activated by different factors or small molecules. Thus, activated ubiquitin-dependent proteasome degradation has effects such as extending the lifespan in different models, preventing the accumulation of protein aggregates, and reducing their negative impact on cells. Increased 26S proteasome-mediated degradation reduces proteotoxic stress and can potentially improve the efficacy of engineered degraders, such as PROTACs, particularly in situations characterized by proteasome malfunction. Here, emerging ideas and recent insights into the pharmacological activation of the proteasome at the transcriptional and posttranslational levels are summarized.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department
of Genetics and Microbiology, Charles University
and Research Center BIOCEV, Pru°myslová 595, Vestec 252 50, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech
Republic
| |
Collapse
|
17
|
Marescal O, Cheeseman IM. 19S proteasome loss causes monopolar spindles through ubiquitin-independent KIF11 degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632038. [PMID: 39829864 PMCID: PMC11741298 DOI: 10.1101/2025.01.08.632038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
To direct regulated protein degradation, the 26S proteasome recognizes ubiquitinated substrates through its 19S particle and then degrades them in the 20S enzymatic core. Despite this close interdependency between proteasome subunits, we demonstrate that knockouts from different proteasome subcomplexes result in distinct highly cellular phenotypes. In particular, depletion of 19S PSMD lid proteins, but not that of other proteasome subunits, prevents bipolar spindle assembly during mitosis, resulting in a mitotic arrest. We find that the monopolar spindle phenotype is caused by ubiquitin-independent proteasomal degradation of the motor protein KIF11 upon loss of 19S proteins. Thus, negative regulation of 20S-mediated proteasome degradation is essential for mitotic progression and 19S and 20S proteasome components can function independently outside of the canonical 26S structure. This work reveals a role for the proteasome in spindle formation and identifies the effects of ubiquitin-independent degradation on cell cycle control.
Collapse
Affiliation(s)
- Océane Marescal
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
18
|
Zapata-Carmona H, Díaz ES, Morales P, Jara M. Differential Activity and Expression of Proteasome in Seminiferous Epithelium During Mouse Spermatogenesis. Int J Mol Sci 2025; 26:494. [PMID: 39859218 PMCID: PMC11764840 DOI: 10.3390/ijms26020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Proteasome-mediated protein degradation is essential for maintaining cellular homeostasis, particularly during spermatogenesis, where extensive cellular transformations, such as spermatid differentiation, require precise protein turnover. A key player in this process is the ubiquitin-proteasome system (UPS). This study aimed to investigate proteasome enzymatic activity at different stages of the spermatogenic cycle within the seminiferous tubules of mice and explore the regulatory mechanisms that influence its proteolytic function. Specifically, we assessed the trypsin-like, chymotrypsin-like, and peptidyl-glutamyl-peptide-hydrolyzing (PGPH) activities of the proteasome. Additionally, we examined the expression of catalytic and structural subunits of the 20S core, the assembly of the 20S core with regulatory complexes, and the phosphorylation status of proteasome subunits in various segments of the seminiferous tubules. Our findings demonstrated distinct patterns of proteasomal enzymatic activity in the analyzed segments. While the expression levels of structural and catalytic subunits of the 20S core remained consistent, significant differences were detected in the assembly of the 20S core, the expression of regulatory complexes, and the phosphorylation of proteasome subunits mediated by protein kinase A. These results indicate that proteasomal activity is finely regulated through multiple mechanisms depending on the specific stage of the seminiferous epithelial cycle, highlighting the complexity of proteostasis during spermatogenesis.
Collapse
Affiliation(s)
- Héctor Zapata-Carmona
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (E.S.D.); (P.M.)
| | - Emilce Silvina Díaz
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (E.S.D.); (P.M.)
| | - Patricio Morales
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (E.S.D.); (P.M.)
- Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Marco Jara
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (E.S.D.); (P.M.)
| |
Collapse
|
19
|
Shi Q, Deng Z, Zhang L, Tong Z, Li JB, Chu GC, Ai H, Liu L. Promotion of RNF168-Mediated Nucleosomal H2A Ubiquitylation by Structurally Defined K63-Polyubiquitylated Linker Histone H1. Angew Chem Int Ed Engl 2025; 64:e202413651. [PMID: 39363740 DOI: 10.1002/anie.202413651] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
The chemical synthesis of histones with homogeneous modifications is a powerful approach for quantitatively deciphering the functional crosstalk between different post-translational modifications (PTMs). In this study, we developed an expedient site-specific (poly)ubiquitylation strategy (CAEPL, Cysteine Aminoethylation coupled with Enzymatic Protein Ligation), which integrates the Cys-aminoethylation reaction with the process of ubiquitin-activating enzyme UBA1-assisted native chemical ligation. Using this strategy, we successfully prepared monoubiquitylated and K63-linked di- and tri-ubiquitylated linker histone H1.0 proteins, which were incorporated into individual chromatosomes. Quantitative biochemical analysis of different RNF168 constructs on H1 ubiquitylated chromatosomes with different ubiquitin chain lengths demonstrated that K63-linked polyubiquitylated H1.0 could directly stimulate RNF168 ubiquitylation activity by enhancing the affinity between RNF168 and the chromatosome. Subsequent cryo-EM structural analysis of the RNF168/UbcH5c-Ub/H1.0-K63-Ub3 chromatosome complex revealed the potential recruitment orientation between RNF168 UDM1 domain and K63-linked ubiquitin chain on H1.0. Finally, we explored the impact of H1.0 ubiquitylation on RNF168 activity in the context of asymmetric H1.0-K63-Ub3 di-nucleosome substrate, revealing a comparable stimulation effect of both the inter- and intra-nucleosomal crosstalk. Overall, our study highlights the significance of access to structurally defined polyubiquitylated H1.0 by the CAEPL strategy, enabling in-depth mechanistic investigations of in-trans PTM crosstalk between linker histone H1.0 and core histone H2A ubiquitylation.
Collapse
Affiliation(s)
- Qiang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liying Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215031, China
| | - Guo-Chao Chu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Huasong Ai
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Walker JN, Gautam AKS, Matouschek A, Brodbelt JS. Structural Analysis of the 20S Proteasome Using Native Mass Spectrometry and Ultraviolet Photodissociation. J Proteome Res 2024; 23:5438-5448. [PMID: 39475212 DOI: 10.1021/acs.jproteome.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Owing to the role of the 20S proteasome in a wide spectrum of pathologies, including neurodegenerative disorders, proteasome-associated autoinflammatory syndromes (PRAAS), and cardiovascular diseases, understanding how its structure and composition contribute to dysfunction is crucial. As a 735 kDa protein assembly, the 20S proteasome facilitates normal cellular proteostasis by degrading oxidized and misfolded proteins. Declined proteasomal activity, which can be attributed to perturbations in the structural integrity of the 20S proteasome, is considered one of the main contributors to multiple proteasome-related diseases. Devising methods to characterize the structures of 20S proteasomes provides necessary insight for the development of drugs and inhibitors that restore proper proteasomal function. Here, native mass spectrometry was combined with multiple dissociation techniques, including ultraviolet photodissociation (UVPD), to identify the protein subunits comprising the 20S proteasome. UVPD, demonstrating an ability to uncover structural features of large (>300 kDa) macromolecular complexes, provided complementary information to conventional collision-based methods. Additionally, variable-temperature electrospray ionization was combined with UV photoactivation to study the influence of solution temperature on the stability of the 20S proteasome.
Collapse
Affiliation(s)
- Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Yu Q, Gao L, Xu L, Han Y, Cao Y, Xi J, Zhong Y, Li L, Shen L, Che J, Dong X, Zhang C, Zeng L, Zhu H, Shao J, Xu Y, Li J, Zhou Y, Zhang J. Exploration of novel 20S proteasome activators featuring anthraquinone structures and their application in hypoxic cardiomyocyte protection. Bioorg Med Chem 2024; 115:117983. [PMID: 39500271 DOI: 10.1016/j.bmc.2024.117983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Under hypoxic conditions, the accumulation of misfolded proteins primarily relies on the autonomous activity of 20S proteasome for degradation. The buildup of toxic proteins in cardiomyocyte contribute to various cardiovascular diseases. Therefore, enhancing the 20S proteasome degradation capacity and restoring protein homeostasis in myocardial cells with small molecule activators represent a promising therapeutic strategy for the treatment of ischemic cardiomyopathy. In this study, the lead compound 8016-8398 was identified through virtual screening, and subsequent structure optimization resulted in a series of highly potent 20S proteasome activators. Intracellular protein degradation assessment revealed that these compounds possessed abilities to alleviate endoplasmic reticulum stress, as demonstrated by the luciferase reporter system. Additionally, selected compound B-03 significantly enhanced the survival rate of hypoxic-damaged cardiomyocytes. Mechanistic investigations verified B-03 rescued hypoxic damaged cardiomyocyte through apoptosis inhibition and proliferation promotion.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Lixin Gao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong Province, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang Province, China
| | - Yubing Han
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong Province, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang Province, China
| | - Linjie Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Liteng Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Chong Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang Province, China.
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong Province, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong Province, China; The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
22
|
Zhuang YZ, Tong LQ, Sun XY. Is 26S proteasome non-ATPase regulatory subunit 6 a potential molecular target for intrahepatic cholangiocarcinoma? World J Hepatol 2024; 16:1219-1224. [PMID: 39606166 PMCID: PMC11586744 DOI: 10.4254/wjh.v16.i11.1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
In this editorial we comment on the article by Tang et al published in the recent issue of World Journal of Hepatology. Drug therapy of intrahepatic cholangiocarcinoma (iCCA) poses an enormous challenge since only a small proportion of patients demonstrate beneficial responses to therapeutic agents. Thus, there has been a sustained search for novel molecular targets for iCCA. The study by Tang et al evaluated the role of 26S proteasome non-ATPase regulatory subunit 6 (PSMD6), a 19S regulatory subunit of the proteasome, in human iCCA cells and specimens. The authors employed clustered regularly interspaced short palindromic repeat (CRISPR) knockout screening technology integrated with the computational CERES algorithm, and analyzed the human protein atlas (THPA) database and tissue microarrays. The results show that PSMD6 is a gene essential for the proliferation of 17 iCCA cell lines, and PSMD6 protein was overexpressed in iCCA tissues without a significant correlation with the clinicopathological parameters. The authors conclude that PSMD6 may play a promoting role in iCCA. The major limitations and defects of this study are the lack of detailed information of CRISPR knockout screening, in vivo experiments, and a discussion of plausible mechanistic cues, which, therefore, dampen the significance of the results. Further studies are required to verify PSMD6 as a molecular target for developing novel therapeutics for iCCA. In addition, the editorial article summarizes the latest advances in molecular targeted drugs and recently emerging immunotherapy in the clinical management of iCCA, development of proteasome inhibitors for cancer therapy, and advantages of CRISPR screening technology, computational methods, and THPA database as experimental tools for fighting cancer. We hope that these comments may provide some clues for those engaged in the field of basic and clinical research into iCCA.
Collapse
Affiliation(s)
- Yong-Zhi Zhuang
- Department of Oncology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China
| | - Li-Quan Tong
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China
| | - Xue-Ying Sun
- Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
23
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
24
|
Morozov V, Morozov A, Karpov VL. Functional 20S Proteasomes in Retroviruses: Evidence in Favor. Int J Mol Sci 2024; 25:11710. [PMID: 39519262 PMCID: PMC11547158 DOI: 10.3390/ijms252111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Proteasomes are barrel-like cellular protein complexes responsible for the degradation of most intracellular proteins. Earlier, it has been shown that during assembly, hundreds of different cellular proteins are incorporated into retro-and herpes viruses. Among detected cellular proteins, there were different proteasome subunits (PS). Previous reports postulated the incorporation of 20S proteasome subunits and subunits of proteasome regulator complexes inside retroviruses. Here, we demonstrated the association of functional 20S proteasome with gammaretroviruses, betaretroviruses, and lentiviruses. Cleaved proteasome subunits β1, β2 and β5 were detected in tested viruses. Using fluorescent peptides and a cell-permeable proteasome activity probe, proteasome activity was detected in endogenous and exogenous retroviruses, including recombinant HIV-1. Taken together, our data favors the insertion of functional proteasomes into the retroviruses during assembly. The possible role of proteasomes in retroviruses is discussed.
Collapse
Affiliation(s)
- Vladimir Morozov
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia;
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia;
| |
Collapse
|
25
|
Ferrer S, Moliner V, Świderek K. Electrostatic Preorganization in Three Distinct Heterogeneous Proteasome β-Subunits. ACS Catal 2024; 14:15237-15249. [PMID: 39444531 PMCID: PMC11494509 DOI: 10.1021/acscatal.4c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
The origin of the enzyme's powerful role in accelerating chemical reactions is one of the most critical and still widely discussed questions. It is already accepted that enzymes impose an electrostatic field onto their substrates by adopting complex three-dimensional structures; therefore, the preorganization of electric fields inside protein active sites has been proposed as a crucial contributor to catalytic mechanisms and rate constant enhancement. In this work, we focus on three catalytically active β-subunits of 20S proteasomes with low sequence identity (∼30%) whose active sites, although situated in an electrostatically miscellaneous environment, catalyze the same chemical reaction with similar catalytic efficiency. Our in silico experiments reproduce the experimentally observed equivalent reactivity of the three sites and show that obliteration of the electrostatic potential in all active sites would deprive the enzymes of their catalytic power by slowing down the chemical process by a factor of 1035. To regain enzymatic efficiency, besides catalytic Thr1 and Lys33 residues, the presence of aspartic acid in position 17 and an aqueous solvent is required, proving that the electrostatic potential generated by the remaining residues is insignificant for catalysis. Moreover, it was found that the gradual decay of atomic charges on Asp17 strongly correlates with the enzyme's catalytic rate deterioration as well as with a change in the charge distributions due to introduced mutations. The computational procedure used and described here may help identify key residues for catalysis in other biomolecular systems and consequently may contribute to the process of designing enzyme-like synthetic catalysts.
Collapse
Affiliation(s)
- Silvia Ferrer
- BioComp Group, Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón, Spain
| | - Vicent Moliner
- BioComp Group, Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón, Spain
| | - Katarzyna Świderek
- BioComp Group, Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón, Spain
| |
Collapse
|
26
|
Furuhata T, Choi B, Uno T, Shinohara R, Sato Y, Okatsu K, Fukai S, Okamoto A. Chemical Diversification of Enzymatically Assembled Polyubiquitin Chains to Decipher the Ubiquitin Codes Programmed on the Branch Structure. J Am Chem Soc 2024. [PMID: 39361957 DOI: 10.1021/jacs.4c11279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The multimerization of ubiquitins at different positions of lysine residues to form heterotypic polyubiquitin chains is a post-translational modification that is essential for the precise regulation of protein functions and degradative fates in living cells. The understanding of structure-activity relationships underlying their diverse properties has been seriously impeded by difficulties in the preparation of a series of folded heterotypic chains appropriately functionalized with different chemical tags for the systematic evaluation of their multifaceted functions. Here, we report a chemical diversification of enzymatically assembled polyubiquitin chains that enables the facile preparation of folded heterotypic chains with different functionalities. By introducing an acyl hydrazide at the C terminus of the proximal ubiquitin, polyubiquitin chains were readily diversified from the same starting materials with a variety of molecules, ranging from small molecules to biopolymers, under nondenaturing conditions. This chemical diversification allowed the systematic study of the functional differences of K63/K48 heterotypic chains based on the position of the branch point during enzymatic deubiquitination and proteasomal proteolysis, thus demonstrating critical roles of the branch position in both the positive and negative control of ubiquitin-mediated reactions. The chemical diversification of the heterotypic chains provides a robust chemical platform to reframe the understanding of how the ubiquitin codes are regulated from the viewpoint of the branch structure for the precise control of cell functions, which has not been deciphered solely on the basis of the linkage types.
Collapse
Affiliation(s)
- Takafumi Furuhata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bumkyu Choi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taiki Uno
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryota Shinohara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Sato
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552, Japan
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
27
|
Brooks C, Kolson D, Sechrest E, Chuah J, Schupp J, Billington N, Deng WT, Smith D, Sokolov M. Therapeutic potential of archaeal unfoldase PANet and the gateless T20S proteasome in P23H rhodopsin retinitis pigmentosa mice. PLoS One 2024; 19:e0308058. [PMID: 39361629 PMCID: PMC11449290 DOI: 10.1371/journal.pone.0308058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Neurodegenerative diseases are characterized by the presence of misfolded and aggregated proteins which are thought to contribute to the development of the disease. In one form of inherited blinding disease, retinitis pigmentosa, a P23H mutation in the light-sensing receptor, rhodopsin causes rhodopsin misfolding resulting in complete vision loss. We investigated whether a xenogeneic protein-unfolding ATPase (unfoldase) from thermophilic Archaea, termed PANet, could counteract the proteotoxicity of P23H rhodopsin. We found that PANet increased the number of surviving photoreceptors in P23H rhodopsin mice and recognized rhodopsin as a substate in vitro. This data supports the feasibility and efficacy of using a xenogeneic unfoldase as a therapeutic approach in mouse models of human neurodegenerative diseases. We also showed that an archaeal proteasome, called the T20S can degrade rhodopsin in vitro and demonstrated that it is feasible and safe to express gateless T20S proteasomes in vivo in mouse rod photoreceptors. Expression of archaeal proteasomes may be an effective therapeutic approach to stimulate protein degradation in retinopathies and neurodegenerative diseases with protein-misfolding etiology.
Collapse
Affiliation(s)
- Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Douglas Kolson
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emily Sechrest
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Janelle Chuah
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jane Schupp
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Neil Billington
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Wen-Tao Deng
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - David Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia, United States of America
| | - Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
28
|
Chen J, Dai G, Duan S, Huang Y, Wu YL, Xie Z, Tsai YH. Selective Protein Degradation through Tetrazine Ligation of Genetically Incorporated Unnatural Amino Acids. Chem Asian J 2024:e202400824. [PMID: 39221720 DOI: 10.1002/asia.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Small molecule-responsive tags for targeted protein degradation are valuable tools for fundamental research and drug target validation. Here, we show that genetically incorporated unnatural amino acids bearing a strained alkene or alkyne functionality can act as a minimalist tag for targeted protein degradation. Specifically, we observed the degradation of strained alkene- or alkyne-containing kinases and E2 ubiquitin-conjugating enzymes upon treatment with hydrophobic tetrazine conjugates. The extent of the induced protein degradation depends on the identity of the target protein, unnatural amino acid, and tetrazine conjugate, as well as the site of the unnatural amino acid in the target protein. Mechanistic studies revealed proteins undergo proteasomal degradation after tetrazine tethering, and the identity of tetrazine conjugates influences the dependence of ubiquitination on protein degradation. This work provides an alternative approach for targeted protein degradation and mechanistic insight, facilitating the future development of more effective targeted protein degradation strategies.
Collapse
Affiliation(s)
- Jinghao Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Gaocan Dai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Shixiang Duan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Huang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi-Lin Wu
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
29
|
Negi H, Ravichandran A, Dasgupta P, Reddy S, Das R. Plasticity of the proteasome-targeting signal Fat10 enhances substrate degradation. eLife 2024; 13:e91122. [PMID: 38984715 PMCID: PMC11299979 DOI: 10.7554/elife.91122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/09/2024] [Indexed: 07/11/2024] Open
Abstract
The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.
Collapse
Affiliation(s)
- Hitendra Negi
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- SASTRA University, ThirumalaisamudramThanjavurIndia
| | - Aravind Ravichandran
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- SASTRA University, ThirumalaisamudramThanjavurIndia
| | - Pritha Dasgupta
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Shridivya Reddy
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
30
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
31
|
Henderson LW, Gautam AKS, Sharon EM, Johnson CR, Rommel NG, Anthony AJ, Russell DH, Jarrold MF, Matouschek A, Clemmer DE. Bortezomib Inhibits Open Configurations of the 20S Proteasome. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1063-1068. [PMID: 38748611 PMCID: PMC11886992 DOI: 10.1021/jasms.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Bortezomib, a small dipeptide-like molecule, is a proteasome inhibitor used widely in the treatment of myeloma and lymphoma. This molecule reacts with threonine side chains near the center of the 20S proteasome and disrupts proteostasis by blocking enzymatic sites that are responsible for protein degradation. In this work, we use novel mass-spectrometry-based techniques to examine the influence of bortezomib on the structures and stabilities of the 20S core particle. These studies indicate that bortezomib binding dramatically favors compact 20S structures (in which the axial gate is closed) over larger structures (in which the axial gate is open)─suppressing gate opening by factors of at least ∼400 to 1300 over the temperature range that is studied. Thus, bortezomib may also restrict degradation in the 20S proteasome by preventing substrates from entering the catalytic pore. That bortezomib influences structures at the entrance region of the pore at such a long distance (∼65 to 75 Å) from its binding sites raises a number of interesting biophysical issues.
Collapse
Affiliation(s)
- Lucas W Henderson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Colin R Johnson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Nicholas G Rommel
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Adam J Anthony
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
32
|
García‐Gomis D, López J, Calderón A, Andrés M, Ponte I, Roque A. Proteasome-dependent degradation of histone H1 subtypes is mediated by its C-terminal domain. Protein Sci 2024; 33:e4970. [PMID: 38591484 PMCID: PMC11002908 DOI: 10.1002/pro.4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Histone H1 is involved in chromatin compaction and dynamics. In human cells, the H1 complement is formed by different amounts of somatic H1 subtypes, H1.0-H1.5 and H1X. The amount of each variant depends on the cell type, the cell cycle phase, and the time of development and can be altered in disease. However, the mechanisms regulating H1 protein levels have not been described. We have analyzed the contribution of the proteasome to the degradation of H1 subtypes in human cells using two different inhibitors: MG132 and bortezomib. H1 subtypes accumulate upon treatment with both drugs, indicating that the proteasome is involved in the regulation of H1 protein levels. Proteasome inhibition caused a global increase in cytoplasmatic H1, with slight changes in the composition of H1 bound to chromatin and chromatin accessibility and no alterations in the nucleosome repeat length. The analysis of the proteasome degradation pathway showed that H1 degradation is ubiquitin-independent. The whole protein and its C-terminal domain can be degraded directly by the 20S proteasome in vitro. Partial depletion of PA28γ revealed that this regulatory subunit contributes to H1 degradation within the cell. Our study shows that histone H1 protein levels are under tight regulation to prevent its accumulation in the nucleus. We revealed a new regulatory mechanism for histone H1 degradation, where the C-terminal disordered domain is responsible for its targeting and degradation by the 20S proteasome, a process enhanced by the regulatory subunit PA28γ.
Collapse
Affiliation(s)
- D. García‐Gomis
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - J. López
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - A. Calderón
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - M. Andrés
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - I. Ponte
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - A. Roque
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
33
|
Das I, Shay-Winkler K, Emmert ME, Goh Q, Cornwall R. The Relative Efficacy of Available Proteasome Inhibitors in Preventing Muscle Contractures Following Neonatal Brachial Plexus Injury. J Bone Joint Surg Am 2024; 106:727-734. [PMID: 38194588 PMCID: PMC11023787 DOI: 10.2106/jbjs.23.00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Contractures following neonatal brachial plexus injury (NBPI) are associated with growth deficits in denervated muscles. This impairment is mediated by an increase in muscle protein degradation, as contractures can be prevented in an NBPI mouse model with bortezomib (BTZ), a proteasome inhibitor (PI). However, BTZ treatment causes substantial toxicity (0% to 80% mortality). The current study tested the hypothesis that newer-generation PIs can prevent contractures with less severe toxicity than BTZ. METHODS Unilateral brachial plexus injuries were surgically created in postnatal (5-day-old) mice. Following NBPI, mice were treated with either saline solution or various doses of 1 of 3 different PIs: ixazomib (IXZ), carfilzomib (CFZ), or marizomib (MRZ). Four weeks post-NBPI, mice were assessed for bilateral passive range of motion at the shoulder and elbow joints, with blinding to the treatment group, through an established digital photography technique to determine contracture severity. Drug toxicity was assessed with survival curves. RESULTS All PIs prevented contractures at both the elbow and shoulder (p < 0.05 versus saline solution controls), with the exception of IXZ, which did not prevent shoulder contractures. However, their efficacies and toxicity profiles differed. At lower doses, CFZ was limited by toxicity (30% to 40% mortality), whereas MRZ was limited by efficacy. At higher doses, CFZ was limited by loss of efficacy, MRZ was limited by toxicity (50% to 60% mortality), and IXZ was limited by toxicity (80% to 100% mortality) and loss of efficacy. Comparisons of the data on these drugs as well as data on BTZ generated in prior studies revealed BTZ to be optimal for preventing contractures, although it, too, was limited by toxicity. CONCLUSIONS All of the tested second-generation PIs were able to reduce NBPI-induced contractures, offering further proof of concept for a regulatory role of the proteasome in contracture formation. However, the narrow dose ranges of efficacy for all PIs highlight the necessity of precise proteasome regulation for preventing contractures. Finally, the substantial toxicity stemming from proteasome inhibition underscores the importance of identifying muscle-targeted strategies to suppress protein degradation and prevent contractures safely. CLINICAL RELEVANCE Although PIs offer unique opportunities to establish critical mechanistic insights into contracture pathophysiology, their clinical use is contraindicated in patients with NPBI at this time.
Collapse
Affiliation(s)
- Indranshu Das
- Department of Medical Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kritton Shay-Winkler
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
34
|
Wang J, Kjellgren A, DeMartino GN. Differential Interactions of the Proteasome Inhibitor PI31 with Constitutive and Immuno-20S Proteasomes. Biochemistry 2024; 63:1000-1015. [PMID: 38577872 DOI: 10.1021/acs.biochem.3c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
PI31 (Proteasome Inhibitor of 31,000 Da) is a 20S proteasome binding protein originally identified as an in vitro inhibitor of 20S proteasome proteolytic activity. Recently reported cryo-electron microscopy structures of 20S-PI31 complexes have revealed that the natively disordered proline-rich C-terminus of PI31 enters the central chamber in the interior of the 20S proteasome and interacts directly with the proteasome's multiple catalytic threonine residues in a manner predicted to inhibit their enzymatic function while evading its own proteolysis. Higher eukaryotes express an alternative form of the 20S proteasome (termed "immuno-proteasome") that features genetically and functionally distinct catalytic subunits. The effect of PI31 on immuno-proteasome function is unknown. We examine the relative inhibitory effects of PI31 on purified constitutive (20Sc) and immuno-(20Si) 20S proteasomes in vitro and show that PI31 inhibits 20Si hydrolytic activity to a significantly lesser degree than that of 20Sc. Unlike 20Sc, 20Si hydrolyzes the carboxyl-terminus of PI31 and this effect contributes to the reduced inhibitory activity of PI31 toward 20Si. Conversely, loss of 20Sc inhibition by PI31 point mutants leads to PI31 degradation by 20Sc. These results demonstrate unexpected differential interactions of PI31 with 20Sc and 20Si and document their functional consequences.
Collapse
Affiliation(s)
- Jason Wang
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| | - Abbey Kjellgren
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| | - George N DeMartino
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| |
Collapse
|
35
|
Yu Q, Wang Z, Tu Y, Cao Y, Zhu H, Shao J, Zhuang R, Zhou Y, Zhang J. Proteasome activation: A novel strategy for targeting undruggable intrinsically disordered proteins. Bioorg Chem 2024; 145:107217. [PMID: 38368657 DOI: 10.1016/j.bioorg.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Zheng Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yutong Tu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China.
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
36
|
Pepelnjak M, Rogawski R, Arkind G, Leushkin Y, Fainer I, Ben-Nissan G, Picotti P, Sharon M. Systematic identification of 20S proteasome substrates. Mol Syst Biol 2024; 20:403-427. [PMID: 38287148 PMCID: PMC10987551 DOI: 10.1038/s44320-024-00015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024] Open
Abstract
For years, proteasomal degradation was predominantly attributed to the ubiquitin-26S proteasome pathway. However, it is now evident that the core 20S proteasome can independently target proteins for degradation. With approximately half of the cellular proteasomes comprising free 20S complexes, this degradation mechanism is not rare. Identifying 20S-specific substrates is challenging due to the dual-targeting of some proteins to either 20S or 26S proteasomes and the non-specificity of proteasome inhibitors. Consequently, knowledge of 20S proteasome substrates relies on limited hypothesis-driven studies. To comprehensively explore 20S proteasome substrates, we employed advanced mass spectrometry, along with biochemical and cellular analyses. This systematic approach revealed hundreds of 20S proteasome substrates, including proteins undergoing specific N- or C-terminal cleavage, possibly for regulation. Notably, these substrates were enriched in RNA- and DNA-binding proteins with intrinsically disordered regions, often found in the nucleus and stress granules. Under cellular stress, we observed reduced proteolytic activity in oxidized proteasomes, with oxidized protein substrates exhibiting higher structural disorder compared to unmodified proteins. Overall, our study illuminates the nature of 20S substrates, offering crucial insights into 20S proteasome biology.
Collapse
Affiliation(s)
- Monika Pepelnjak
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Rivkah Rogawski
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Galina Arkind
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yegor Leushkin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
37
|
Saito S, Okuno A, Peng Z, Cao DY, Tsuji NM. Probiotic lactic acid bacteria promote anti-tumor immunity through enhanced major histocompatibility complex class I-restricted antigen presentation machinery in dendritic cells. Front Immunol 2024; 15:1335975. [PMID: 38605963 PMCID: PMC11008462 DOI: 10.3389/fimmu.2024.1335975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
Lactic acid bacteria (LAB) possess the ability to argument T cell activity through functional modification of antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages. Nevertheless, the precise mechanism underlying LAB-induced enhancement of antigen presentation in APCs remains incompletely understood. To address this question, we investigated the detailed mechanism underlying the enhancement of major histocompatibility complex (MHC) class I-restricted antigen presentation in DCs using a probiotic strain known as Lactococcus lactis subsp. Cremoris C60. We found that Heat-killed-C60 (HK-C60) facilitated the processing and presentation of ovalbumin (OVA) peptide antigen OVA257-264 (SIINFEKL) via H-2Kb in bone marrow-derived dendritic cells (BMDCs), leading to increased generation of effector CD8+ T cells both in vitro and in vivo. We also revealed that HK-C60 stimulation augmented the activity of 20S immunoproteasome (20SI) in BMDCs, thereby enhancing the MHC class I-restricted antigen presentation machinery. Furthermore, we assessed the impact of HK-C60 on CD8+ T cell activation in an OVA-expressing B16-F10 murine melanoma model. Oral administration of HK-C60 significantly attenuated tumor growth compared to control treatment. Enhanced Ag processing and presentation machineries in DCs from both Peyer's Patches (PPs) and lymph nodes (LNs) resulted in an increased tumor antigen specific CD8+ T cells. These findings shed new light on the role of LAB in MHC class-I restricted antigen presentation and activation of CD8+ T cells through functional modification of DCs.
Collapse
Affiliation(s)
- Suguru Saito
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Division of Virology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alato Okuno
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Hirosaki, Aomori, Japan
| | - Zhenzi Peng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Noriko M. Tsuji
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Food Science, Jumonji University, Niiza, Saitama, Japan
| |
Collapse
|
38
|
Fiore APZP, Maity S, Jeffery L, An D, Rendleman J, Iannitelli D, Choi H, Mazzoni E, Vogel C. Identification of molecular signatures defines the differential proteostasis response in induced spinal and cranial motor neurons. Cell Rep 2024; 43:113885. [PMID: 38457337 PMCID: PMC11018139 DOI: 10.1016/j.celrep.2024.113885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Amyotrophic lateral sclerosis damages proteostasis, affecting spinal and upper motor neurons earlier than a subset of cranial motor neurons. To aid disease understanding, we exposed induced cranial and spinal motor neurons (iCrMNs and iSpMNs) to proteotoxic stress, under which iCrMNs showed superior survival, quantifying the transcriptome and proteome for >8,200 genes at 0, 12, and 36 h. Two-thirds of the proteome showed cell-type differences. iSpMN-enriched proteins related to DNA/RNA metabolism, and iCrMN-enriched proteins acted in the endoplasmic reticulum (ER)/ER chaperone complex, tRNA aminoacylation, mitochondria, and the plasma/synaptic membrane, suggesting that iCrMNs expressed higher levels of proteins supporting proteostasis and neuronal function. When investigating the increased proteasome levels in iCrMNs, we showed that the activity of the 26S proteasome, but not of the 20S proteasome, was higher in iCrMNs than in iSpMNs, even after a stress-induced decrease. We identified Ublcp1 as an iCrMN-specific regulator of the nuclear 26S activity.
Collapse
Affiliation(s)
| | - Shuvadeep Maity
- New York University, Department of Biology, New York, NY 10003, USA; Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Lauren Jeffery
- New York University, Department of Biology, New York, NY 10003, USA
| | - Disi An
- New York University, Department of Biology, New York, NY 10003, USA
| | - Justin Rendleman
- New York University, Department of Biology, New York, NY 10003, USA
| | - Dylan Iannitelli
- New York University, Department of Biology, New York, NY 10003, USA
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Esteban Mazzoni
- New York University, Department of Biology, New York, NY 10003, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christine Vogel
- New York University, Department of Biology, New York, NY 10003, USA.
| |
Collapse
|
39
|
Sahoo MP, Lavy T, Cohen N, Sahu I, Kleifeld O. Activity-Guided Proteomic Profiling of Proteasomes Uncovers a Variety of Active (and Inactive) Proteasome Species. Mol Cell Proteomics 2024; 23:100728. [PMID: 38296025 PMCID: PMC10907802 DOI: 10.1016/j.mcpro.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasomes are multisubunit, multicatalytic protein complexes present in eukaryotic cells that degrade misfolded, damaged, or unstructured proteins. In this study, we used an activity-guided proteomic methodology based on a fluorogenic peptide substrate to characterize the composition of proteasome complexes in WT yeast and the changes these complexes undergo upon the deletion of Pre9 (Δα3) or of Sem1 (ΔSem1). A comparison of whole-cell proteomic analysis to activity-guided proteasome profiling indicates that the amounts of proteasomal proteins and proteasome interacting proteins in the assembled active proteasomes differ significantly from their total amounts in the cell as a whole. Using this activity-guided profiling approach, we characterized the changes in the abundance of subunits of various active proteasome species in different strains, quantified the relative abundance of active proteasomes across these strains, and charted the overall distribution of different proteasome species within each strain. The distributions obtained by our mass spectrometry-based quantification were markedly higher for some proteasome species than those obtained by activity-based quantification alone, suggesting that the activity of some of these species is impaired. The impaired activity appeared mostly among 20SBlm10 proteasome species which account for 20% of the active proteasomes in WT. To identify the factors behind this impaired activity, we mapped and quantified known proteasome-interacting proteins. Our results suggested that some of the reduced activity might be due to the association of the proteasome inhibitor Fub1. Additionally, we provide novel evidence for the presence of nonmature and therefore inactive proteasomal protease subunits β2 and β5 in the fully assembled proteasomes.
Collapse
Affiliation(s)
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Noam Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
40
|
Kamińska J, Tylicka M, Sutkowska K, Gacuta KM, Sawicka MM, Kowalewska E, Ćwiklińska-Dworakowska M, Maciejczyk M, Łysoń T, Kornhuber J, Lewczuk P, Matowicka-Karna J, Koper-Lenkiewicz OM. The preliminary study suggests an association between NF-ĸB pathway activation and increased plasma 20S proteasome activity in intracranial aneurysm patients. Sci Rep 2024; 14:3941. [PMID: 38366068 PMCID: PMC10873410 DOI: 10.1038/s41598-024-54692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
The significant role of increased activation of 20S proteasomes in the development of abdominal aortic aneurysms has been well-established in a mouse model. The available literature lacks similar studies concerning brain aneurysms. The aim of the study was to verify the hypothesis that patients with unruptured intracranial aneurysms (UIA) have increased 20S proteasome ChT-L activity compared to the control group of individuals without vascular lesions in the brain. In the next step, the relationship between the activity of 20S proteasomes ChT-L and precursor proteins from the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) family, namely NF-κB1 (p105), NF-κB2 (p100), NF-κB p65, and the inflammatory chemokine MCP-1, was examined. Patients with UIA had significantly higher 20S ChT-L proteasome activity compared to the control group. Patients with multiple aneurysms had significantly higher 20S proteasome ChT-L activity compared to those with single aneurysms. In patients with UIA, the activity of the 20S proteasome ChT-L negatively correlated with the concentration of NF-κB1 (p105) and NF-κB p65 precursor proteins and positively correlated with the concentration of the cerebrospinal fluid chemokine MCP-1. Our results may suggest that increased 20S proteasome ChT-L activity in UIA patients modulates inflammation in the cerebral arterial vessel via the MCP-1 chemokine as a result of activation of the canonical NF-κB pathway.
Collapse
Affiliation(s)
- Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland.
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, 2A Adama Mickiewicza St., 15-089, Białystok, Poland
| | - Kinga Sutkowska
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Karolina Marta Gacuta
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Magdalena Maria Sawicka
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 2D Mickiewicza St., 15-222, Białystok, Poland
| | - Ewa Kowalewska
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Magdalena Ćwiklińska-Dworakowska
- Department of Oncological Surgery and General Surgery, Independent Public Health Care Facility of the Ministry of the Interior and Administration in Bialystok named Marian Zyndram-Kościałkowski, 27 Fabryczna St., 15-471, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Białystok, 2C Mickiewicza St., 15-022, Białystok, Poland
| | - Tomasz Łysoń
- Department of Neurosurgery, Medical University of Bialystok/Clinical Hospital of the Medical University of Bialystok, 24A Marii Skłodowskiej-Curie St., 15-276, Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland.
| |
Collapse
|
41
|
Wu X, Du Y, Liang LJ, Ding R, Zhang T, Cai H, Tian X, Pan M, Liu L. Structure-guided engineering enables E3 ligase-free and versatile protein ubiquitination via UBE2E1. Nat Commun 2024; 15:1266. [PMID: 38341401 PMCID: PMC10858943 DOI: 10.1038/s41467-024-45635-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Ubiquitination, catalyzed usually by a three-enzyme cascade (E1, E2, E3), regulates various eukaryotic cellular processes. E3 ligases are the most critical components of this catalytic cascade, determining both substrate specificity and polyubiquitination linkage specificity. Here, we reveal the mechanism of a naturally occurring E3-independent ubiquitination reaction of a unique human E2 enzyme UBE2E1 by solving the structure of UBE2E1 in complex with substrate SETDB1-derived peptide. Guided by this peptide sequence-dependent ubiquitination mechanism, we developed an E3-free enzymatic strategy SUE1 (sequence-dependent ubiquitination using UBE2E1) to efficiently generate ubiquitinated proteins with customized ubiquitinated sites, ubiquitin chain linkages and lengths. Notably, this strategy can also be used to generate site-specific branched ubiquitin chains or even NEDD8-modified proteins. Our work not only deepens the understanding of how an E3-free substrate ubiquitination reaction occurs in human cells, but also provides a practical approach for obtaining ubiquitinated proteins to dissect the biochemical functions of ubiquitination.
Collapse
Affiliation(s)
- Xiangwei Wu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Institute of Translational Medicine, School of Chemistry and Chemical Engineering, School of Pharmacy, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunxiang Du
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lu-Jun Liang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Ruichao Ding
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyi Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongyi Cai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Man Pan
- Institute of Translational Medicine, School of Chemistry and Chemical Engineering, School of Pharmacy, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
42
|
Soh WT, Roetschke HP, Cormican JA, Teo BF, Chiam NC, Raabe M, Pflanz R, Henneberg F, Becker S, Chari A, Liu H, Urlaub H, Liepe J, Mishto M. Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing. Nat Commun 2024; 15:1147. [PMID: 38326304 PMCID: PMC10850103 DOI: 10.1038/s41467-024-45339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.
Collapse
Affiliation(s)
- Wai Tuck Soh
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Hanna P Roetschke
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
| | - John A Cormican
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Bei Fang Teo
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Nyet Cheng Chiam
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Monika Raabe
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ralf Pflanz
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Fabian Henneberg
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ashwin Chari
- Research Group of Structural Biochemistry and Mechanisms, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Henning Urlaub
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Juliane Liepe
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK.
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
43
|
Xiong J, Pang X, Song X, Yang L, Pang C. The coherence between PSMC6 and α-ring in the 26S proteasome is associated with Alzheimer's disease. Front Mol Neurosci 2024; 16:1330853. [PMID: 38357597 PMCID: PMC10864545 DOI: 10.3389/fnmol.2023.1330853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous age-dependent neurodegenerative disorder. Its hallmarks involve abnormal proteostasis, which triggers proteotoxicity and induces neuronal dysfunction. The 26S proteasome is an ATP-dependent proteolytic nanomachine of the ubiquitin-proteasome system (UPS) and contributes to eliminating these abnormal proteins. This study focused on the relationship between proteasome and AD, the hub genes of proteasome, PSMC6, and 7 genes of α-ring, are selected as targets to study. The following three characteristics were observed: 1. The total number of proteasomes decreased with AD progression because the proteotoxicity damaged the expression of proteasome proteins, as evidenced by the downregulation of hub genes. 2. The existing proteasomes exhibit increased activity and efficiency to counterbalance the decline in total proteasome numbers, as evidenced by enhanced global coordination and reduced systemic disorder of proteasomal subunits as AD advances. 3. The synergy of PSMC6 and α-ring subunits is associated with AD. Synergistic downregulation of PSMC6 and α-ring subunits reflects a high probability of AD risk. Regarding the above discovery, the following hypothesis is proposed: The aggregation of pathogenic proteins intensifies with AD progression, then proteasome becomes more active and facilitates the UPS selectively targets the degradation of abnormal proteins to maintain CNS proteostasis. In this paper, bioinformatics and support vector machine learning methods are applied and combined with multivariate statistical analysis of microarray data. Additionally, the concept of entropy was used to detect the disorder of proteasome system, it was discovered that entropy is down-regulated continually with AD progression against system chaos caused by AD. Another conception of the matrix determinant was used to detect the global coordination of proteasome, it was discovered that the coordination is enhanced to maintain the efficiency of degradation. The features of entropy and determinant suggest that active proteasomes resist the attack caused by AD like defenders, on the one hand, to protect themselves (entropy reduces), and on the other hand, to fight the enemy (determinant reduces). It is noted that these are results from biocomputing and need to be supported by further biological experiments.
Collapse
Affiliation(s)
- Jing Xiong
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xianghu Song
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Lin Yang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
44
|
Rahat MM, Sabtan H, Simanovich E, Haddad A, Gazitt T, Feld J, Slobodin G, Kibari A, Elias M, Zisman D, Rahat MA. Soluble CD147 regulates endostatin via its effects on the activities of MMP-9 and secreted proteasome 20S. Front Immunol 2024; 15:1319939. [PMID: 38318187 PMCID: PMC10840997 DOI: 10.3389/fimmu.2024.1319939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
During progression of rheumatoid arthritis (RA), angiogenesis provides oxygen and nutrients for the cells' increased metabolic demands and number. To turn on angiogenesis, pro-angiogenic factors must outweigh anti-angiogenic factors. We have previously shown that CD147/extracellular matrix metalloproteinase inducer (EMMPRIN) can induce the expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP-9) in a co-culture of the human HT1080 fibrosarcoma and U937 monocytic-like cell lines. However, whether CD147 influences anti-angiogenic factors was not known. We now show that relative to single cultures, the co-culture of these cells not only enhanced pro-angiogenic factors but also decreased the anti-angiogenic factors endostatin and thrombospondin-1 (Tsp-1), generally increasing the angiogenic potential as measured by a wound assay. Using anti-CD147 antibody, CD147 small interfering RNA (siRNA), and recombinant CD147, we demonstrate that CD147 hormetically regulates the generation of endostatin but has no effect on Tsp-1. Since endostatin is cleaved from collagen XVIII (Col18A), we applied different protease inhibitors and established that MMP-9 and proteasome 20S, but not cathepsins, are responsible for endostatin generation. MMP-9 and proteasome 20S collaborate to synergistically enhance endostatin generation, and in a non-cellular system, CD147 enhanced MMP-9 activity and hormetically regulated proteasome 20S activity. Serum samples obtained from RA patients and healthy controls mostly corroborated these findings, indicating clinical relevance. Cumulatively, these findings suggest that secreted CD147 mediates a possibly allosteric effect on MMP-9 and proteasome 20S activities and can serve as a switch that turns angiogenesis on or off, depending on its ambient concentrations in the microenvironment.
Collapse
Affiliation(s)
- Maya M. Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Hala Sabtan
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | | | - Amir Haddad
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Gazitt
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joy Feld
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gleb Slobodin
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Rheumatology, Bnai Zion Medical Center, Haifa, Israel
| | - Adi Kibari
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Muna Elias
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Devy Zisman
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal A. Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
45
|
Buneeva O, Medvedev A. Ubiquitin Carboxyl-Terminal Hydrolase L1 and Its Role in Parkinson's Disease. Int J Mol Sci 2024; 25:1303. [PMID: 38279302 PMCID: PMC10816476 DOI: 10.3390/ijms25021303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), also known as Parkinson's disease protein 5, is a highly expressed protein in the brain. It plays an important role in the ubiquitin-proteasome system (UPS), where it acts as a deubiquitinase (DUB) enzyme. Being the smallest member of the UCH family of DUBs, it catalyzes the reaction of ubiquitin precursor processing and the cleavage of ubiquitinated protein remnants, thus maintaining the level of ubiquitin monomers in the brain cells. UCHL1 mutants, containing amino acid substitutions, influence catalytic activity and its aggregability. Some of them protect cells and transgenic mice in toxin-induced Parkinson's disease (PD) models. Studies of putative protein partners of UCHL1 revealed about sixty individual proteins located in all major compartments of the cell: nucleus, cytoplasm, endoplasmic reticulum, plasma membrane, mitochondria, and peroxisomes. These include proteins related to the development of PD, such as alpha-synuclein, amyloid-beta precursor protein, ubiquitin-protein ligase parkin, and heat shock proteins. In the context of the catalytic paradigm, the importance of these interactions is not clear. However, there is increasing understanding that UCHL1 exhibits various effects in a catalytically independent manner through protein-protein interactions. Since this protein represents up to 5% of the soluble protein in the brain, PD-related changes in its structure will have profound effects on the proteomes/interactomes in which it is involved. Growing evidence is accumulating that the role of UCHL1 in PD is obviously determined by a balance of canonic catalytic activity and numerous activity-independent protein-protein interactions, which still need better characterization.
Collapse
Affiliation(s)
| | - Alexei Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia;
| |
Collapse
|
46
|
Byun I, Seo H, Kim J, Jeong D, Han D, Lee MJ. Purification and characterization of different proteasome species from mammalian cells. STAR Protoc 2023; 4:102748. [PMID: 37999974 PMCID: PMC10709379 DOI: 10.1016/j.xpro.2023.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Proteasomes are heterogeneous in forms and functions, but how the equilibrium among the 20S, 26S, and 30S proteasomes is achieved and altered is elusive. Here, we present a protocol for purifying and characterizing proteasome species. We describe steps for generating stable cell lines; affinity purifying the proteasome species; and characterizing them through native PAGE, activity assay, size-exclusion chromatography, and mass spectrometry. These standardized methods may contribute to biochemical studies of cellular proteasomes under both physiological and pathological conditions. For complete details on the use and execution of this protocol, please refer to Choi et al. (2023).1.
Collapse
Affiliation(s)
- Insuk Byun
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hoseok Seo
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Jiseong Kim
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dawon Jeong
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Korea; Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
47
|
Zhu Y, Shigeyoshi K, Hayakawa Y, Fujiwara S, Kishida M, Ohki H, Horibe T, Shionyu M, Mizukami T, Hasegawa M. Acceleration of Protein Degradation by 20S Proteasome-Binding Peptides Generated by In Vitro Artificial Evolution. Int J Mol Sci 2023; 24:17486. [PMID: 38139315 PMCID: PMC10743564 DOI: 10.3390/ijms242417486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Although the 20S core particle (CP) of the proteasome is an important component of the 26S holoenzyme, the stand-alone 20S CP acts directly on intrinsically disordered and oxidized/damaged proteins to degrade them in a ubiquitin-independent manner. It has been postulated that some structural features of substrate proteins are recognized by the 20S CP to promote substrate uptake, but the mechanism of substrate recognition has not been fully elucidated. In this study, we screened peptides that bind to the 20S CP from a random eight-residue pool of amino acid sequences using complementary DNA display an in vitro molecular evolution technique. The identified 20S CP-binding amino acid sequence was chemically synthesized and its effects on the 20S CP were investigated. The 20S CP-binding peptide stimulated the proteolytic activity of the inactive form of 20S CP. The peptide bound directly to one of the α-subunits, opening a gate for substrate entry on the α-ring. Furthermore, the attachment of this peptide sequence to α-synuclein enhanced its degradation by the 20S CP in vitro. In addition to these results, docking simulations indicated that this peptide binds to the top surface of the α-ring. These peptides could function as a key to control the opening of the α-ring gate.
Collapse
Affiliation(s)
- Yunhao Zhu
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Kaishin Shigeyoshi
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Yumiko Hayakawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Sae Fujiwara
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Masamichi Kishida
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hitoshi Ohki
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomohisa Horibe
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Masafumi Shionyu
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| | - Tamio Mizukami
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
- Frontier Pharma Inc., 1281-8 Tamura, Nagahama 526-0829, Japan
| | - Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama 526-0829, Japan
| |
Collapse
|
48
|
Tailor D, Garcia-Marques FJ, Bermudez A, Pitteri SJ, Malhotra SV. Guanylate-binding protein 1 modulates proteasomal machinery in ovarian cancer. iScience 2023; 26:108292. [PMID: 38026225 PMCID: PMC10665831 DOI: 10.1016/j.isci.2023.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Guanylate-binding protein 1 (GBP1) is known as an interferon-γ-induced GTPase. Here, we used genetically modified ovarian cancer (OC) cells to study the role of GBP1. The data generated show that GBP1 inhibition constrains the clonogenic potential of cancer cells. In vivo studies revealed that GBP1 overexpression in tumors promotes tumor progression and reduces median survival, whereas GBP1 inhibition delayed tumor progression with longer median survival. We employed proteomics-based thermal stability assay (CETSA) on GBP1 knockdown and overexpressed OC cells to study its molecular functions. CETSA results show that GBP1 interacts with many members of the proteasome. Furthermore, GBP1 inhibition sensitizes OC cells to paclitaxel treatment via accumulated ubiquitinylated proteins where GBP1 inhibition decreases the overall proteasomal activity. In contrast, GBP1-overexpressing cells acquired paclitaxel resistance via boosted cellular proteasomal activity. Overall, these studies expand the role of GBP1 in the activation of proteasomal machinery to acquire chemoresistance.
Collapse
Affiliation(s)
- Dhanir Tailor
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Fernando Jose Garcia-Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sharon J. Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sanjay V. Malhotra
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
49
|
Aballo TJ, Bae J, Paltzer WG, Chapman EA, Salamon RJ, Mann MM, Ge Y, Mahmoud AI. Integrated Proteomics Identifies Troponin I Isoform Switch as a Regulator of a Sarcomere-Metabolism Axis During Cardiac Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563389. [PMID: 37961158 PMCID: PMC10634731 DOI: 10.1101/2023.10.20.563389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Adult mammalian cardiomyocytes have limited proliferative potential, and after myocardial infarction (MI), injured cardiac tissue is replaced with fibrotic scar rather than with functioning myocardium. In contrast, the neonatal mouse heart possesses a regenerative capacity governed by cardiomyocyte proliferation; however, a metabolic switch from glycolysis to fatty acid oxidation during postnatal development results in loss of this regenerative capacity. Interestingly, a sarcomere isoform switch also takes place during postnatal development where slow skeletal troponin I (ssTnI) is replaced with cardiac troponin I (cTnI). In this study, we first employ integrated quantitative bottom-up and top-down proteomics to comprehensively define the proteomic and sarcomeric landscape during postnatal heart maturation. Utilizing a cardiomyocyte-specific ssTnI transgenic mouse model, we found that ssTnI overexpression increased cardiomyocyte proliferation and the cardiac regenerative capacity of the postnatal heart following MI compared to control mice by histological analysis. Our global proteomic analysis of ssTnI transgenic mice following MI reveals that ssTnI overexpression induces a significant shift in the cardiac proteomic landscape. This shift is characterized by an upregulation of key proteins involved in glycolytic metabolism. Collectively, our data suggest that the postnatal TnI isoform switch may play a role in the metabolic shift from glycolysis to fatty acid oxidation during postnatal maturation. This underscores the significance of a sarcomere-metabolism axis during cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
- Timothy J. Aballo
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoung Bae
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Wyatt G. Paltzer
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily A. Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca J. Salamon
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Morgan M. Mann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
50
|
Kriegesmann J, Brik A. Synthesis of ubiquitinated proteins for biochemical and functional analysis. Chem Sci 2023; 14:10025-10040. [PMID: 37772107 PMCID: PMC10529715 DOI: 10.1039/d3sc03664b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
Ubiquitination plays a crucial role in controlling various biological processes such as translation, DNA repair and immune response. Protein degradation for example, is one of the main processes which is controlled by the ubiquitin system and has significant implications on human health. In order to investigate these processes and the roles played by different ubiquitination patterns on biological systems, homogeneously ubiquitinated proteins are needed. Notably, these conjugates that are made enzymatically in cells cannot be easily obtained in large amounts and high homogeneity by employing such strategies. Therefore, chemical and semisynthetic approaches have emerged to prepare different ubiquitinated proteins. In this review, we will present the key synthetic strategies and their applications for the preparation of various ubiquitinated proteins. Furthermore, the use of these precious conjugates in different biochemical and functional studies will be highlighted.
Collapse
Affiliation(s)
- Julia Kriegesmann
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa Israel
| |
Collapse
|