1
|
Keown JR, Carrique L, Nilsson-Payant BE, Fodor E, Grimes JM. Structural characterization of the full-length Hantaan virus polymerase. PLoS Pathog 2024; 20:e1012781. [PMID: 39652621 DOI: 10.1371/journal.ppat.1012781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/19/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Hantaviridae are a family of segmented negative-sense RNA viruses that contain important human and animal pathogens. Hantaviridae contain a viral RNA-dependent RNA polymerase that replicates and transcribes the viral genome. Here we establish the expression and purification of the polymerase from the Old World Hantaan virus and characterise the structure using Cryo-EM. We determine a series of structures at resolutions between 2.7 and 3.3 Å of RNA free polymerase comprising the core, core and endonuclease, and a full-length polymerase. The full-length polymerase structure depicts the location of the cap binding and C-terminal domains which are arranged in a conformation that is incompatible with transcription and in a novel conformation not observed in previous conformations of cap-snatching viral polymerases. We further describe structures with 5' vRNA promoter in the presence and absence of a nucleotide triphosphate. The nucleotide bound structure mimics a replication pre-initiation complex and the nucleotide stabilises the motif E in a conformation distinct from those previously observed. We observe motif E in four distinct conformations including β-sheet, two helical arrangements, and nucleotide primed arrangement. The insights gained here guide future mechanistic studies of both the transcription and replication activities of the hantavirus polymerase and for the development of therapeutic targets.
Collapse
Affiliation(s)
- Jeremy R Keown
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Loïc Carrique
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin E Nilsson-Payant
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jonathan M Grimes
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Durieux Trouilleton Q, Housset D, Tarillon P, Arragain B, Malet H. Structural characterization of the oligomerization of full-length Hantaan virus polymerase into symmetric dimers and hexamers. Nat Commun 2024; 15:2256. [PMID: 38480734 PMCID: PMC10937945 DOI: 10.1038/s41467-024-46601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Hantaan virus is a dangerous human pathogen whose segmented negative-stranded RNA genome is replicated and transcribed by a virally-encoded multi-functional polymerase. Here we describe the complete cryo-electron microscopy structure of Hantaan virus polymerase in several oligomeric forms. Apo polymerase protomers can adopt two drastically different conformations, which assemble into two distinct symmetric homodimers, that can themselves gather to form hexamers. Polymerase dimerization induces the stabilization of most polymerase domains, including the C-terminal domain that contributes the most to dimer's interface, along with a lariat region that participates to the polymerase steadying. Binding to viral RNA induces significant conformational changes resulting in symmetric oligomer disruption and polymerase activation, suggesting the possible involvement of apo multimers as protecting systems that would stabilize the otherwise flexible C-terminal domains. Overall, these results provide insights into the multimerization capability of Hantavirus polymerase and may help to define antiviral compounds to counteract these life-threatening viruses.
Collapse
Affiliation(s)
| | - Dominique Housset
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Paco Tarillon
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | - Benoît Arragain
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.
- European Molecular Biology Laboratory (EMBL), Grenoble, France.
| | - Hélène Malet
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Taniguchi S, Maruyama J, Saito T, Littlefield K, Reyna RA, Manning JT, Huang C, Saijo M, Paessler S. Development of reverse genetics system for Guanarito virus: substitution of E1497K in the L protein of Guanarito virus S-26764 strain changes plaque phenotype and growth kinetics. J Virol 2024; 98:e0196423. [PMID: 38289100 PMCID: PMC10878084 DOI: 10.1128/jvi.01964-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Guanarito virus (GTOV) is the causative agent of Venezuelan hemorrhagic fever. GTOV belongs to the genus Mammarenavirus, family Arenaviridae and has been classified as a Category A bioterrorism agent by the United States Centers for Disease Control and Prevention. Despite being a high-priority agent, vaccines and drugs against Venezuelan hemorrhagic fever are not available. GTOV S-26764, isolated from a non-fatal human case, produces an unclear cytopathic effect (CPE) in Vero cells, posing a significant obstacle to research and countermeasure development efforts. Vero cell-adapted GTOV S-26764 generated in this study produced clear CPE and demonstrated rapid growth and high yield in Vero cells compared to the original GTOV S-26764. We developed a reverse genetics system for GTOV to study amino acid changes acquired through Vero cell adaptation and leading to virus phenotype changes. The results demonstrated that E1497K in the L protein was responsible for the production of clear plaques as well as enhanced viral RNA replication and transcription efficiency. Vero cell-adapted GTOV S-26764, capable of generating CPE, will allow researchers to easily perform neutralization assays and anti-drug screening against GTOV. Moreover, the developed reverse genetics system will accelerate vaccine and antiviral drug development.IMPORTANCEGuanarito virus (GTOV) is a rodent-borne virus. GTOV causes fever, prostration, headache, arthralgia, cough, sore throat, nausea, vomiting, diarrhea, epistaxis, bleeding gums, menorrhagia, and melena in humans. The lethality rate is 23.1% or higher. Vero cell-adapted GTOV S-26764 shows a clear cytopathic effect (CPE), whereas the parental virus shows unclear CPE in Vero cells. We generated a reverse genetics system to rescue recombinant GTOVs and found that E1497K in the L protein was responsible for the formation of clear plaques as well as enhanced viral RNA replication and transcription efficiency. This reverse genetic system will accelerate vaccine and antiviral drug developments, and the findings of this study contribute to the understanding of the function of GTOV L as an RNA polymerase.
Collapse
Affiliation(s)
- Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Takeshi Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kirsten Littlefield
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - John T. Manning
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Sänger L, Williams HM, Yu D, Vogel D, Kosinski J, Rosenthal M, Uetrecht C. RNA to Rule Them All: Critical Steps in Lassa Virus Ribonucleoparticle Assembly and Recruitment. J Am Chem Soc 2023; 145:27958-27974. [PMID: 38104324 PMCID: PMC10755698 DOI: 10.1021/jacs.3c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Lassa virus is a negative-strand RNA virus with only four structural proteins that causes periodic outbreaks in West Africa. The nucleoprotein (NP) encapsidates the viral genome, forming ribonucleoprotein complexes (RNPs) together with the viral RNA and the L protein. RNPs must be continuously restructured during viral genome replication and transcription. The Z protein is important for membrane recruitment of RNPs, viral particle assembly, and budding and has also been shown to interact with the L protein. However, the interaction of NP, viral RNA, and Z is poorly understood. Here, we characterize the interactions between Lassa virus NP, Z, and RNA using structural mass spectrometry. We identify the presence of RNA as the driver for the disassembly of ring-like NP trimers, a storage form, into monomers to subsequently form higher order RNA-bound NP assemblies. We locate the interaction site of Z and NP and demonstrate that while NP binds Z independently of the presence of RNA, this interaction is pH-dependent. These data improve our understanding of RNP assembly, recruitment, and release in Lassa virus.
Collapse
Affiliation(s)
- Lennart Sänger
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Leibniz
Institute of Virology (LIV), Notkestraße 85, 22607 Hamburg, Germany
| | - Harry M. Williams
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
| | - Dingquan Yu
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- European
Molecular Biology Laboratory Notkestraße 85, 22607 Hamburg, Germany
| | - Dominik Vogel
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Jan Kosinski
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- European
Molecular Biology Laboratory Notkestraße 85, 22607 Hamburg, Germany
- Structural
and Computational Biology Unit, European
Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Maria Rosenthal
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Charlotte Uetrecht
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Leibniz
Institute of Virology (LIV), Notkestraße 85, 22607 Hamburg, Germany
- Faculty
V: School of Life Sciences, University of
Siegen, Am Eichenhang 50, 57076 Siegen, Germany
- Deutsches
Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
5
|
Hastie KM, Melnik LI, Cross RW, Klitting RM, Andersen KG, Saphire EO, Garry RF. The Arenaviridae Family: Knowledge Gaps, Animal Models, Countermeasures, and Prototype Pathogens. J Infect Dis 2023; 228:S359-S375. [PMID: 37849403 PMCID: PMC10582522 DOI: 10.1093/infdis/jiac266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Lassa virus (LASV), Junin virus (JUNV), and several other members of the Arenaviridae family are capable of zoonotic transfer to humans and induction of severe viral hemorrhagic fevers. Despite the importance of arenaviruses as potential pandemic pathogens, numerous gaps exist in scientific knowledge pertaining to this diverse family, including gaps in understanding replication, immunosuppression, receptor usage, and elicitation of neutralizing antibody responses, that in turn complicates development of medical countermeasures. A further challenge to the development of medical countermeasures for arenaviruses is the requirement for use of animal models at high levels of biocontainment, where each model has distinct advantages and limitations depending on, availability of space, animals species-specific reagents, and most importantly the ability of the model to faithfully recapitulate human disease. Designation of LASV and JUNV as prototype pathogens can facilitate progress in addressing the public health challenges posed by members of this important virus family.
Collapse
Affiliation(s)
- Kathryn M Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Lilia I Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, Texas, USA
| | - Raphaëlle M Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Scripps Research Translational Institute, La Jolla, California, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Scripps Research Translational Institute, La Jolla, California, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Zalgen Labs LLC, Frederick, Maryland, USA
| |
Collapse
|
6
|
Bezerra EHS, Melo-Hanchuk TD, Marques RE. Structural and molecular biology of Sabiá virus. Exp Biol Med (Maywood) 2023; 248:1624-1634. [PMID: 37937408 PMCID: PMC10723027 DOI: 10.1177/15353702231199071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Brazilian mammarenavirus, or Sabiá virus (SABV), is a New World (NW) arenavirus associated with fulminant hemorrhagic disease in humans and the sole biosafety level 4 microorganism ever isolated in Brazil. Since the isolation of SABV in the 1990s, studies on viral biology have been scarce, with no available countermeasures against SABV infection or disease. Here we provide a comprehensive review of SABV biology, including key aspects of SABV replication, and comparisons with related Old World and NW arenaviruses. SABV is most likely a rodent-borne virus, transmitted to humans, through exposure to urine and feces in peri-urban areas. Using protein structure prediction methods and alignments, we analyzed shared and unique features of SABV proteins (GPC, NP, Z, and L) that could be explored in search of therapeutic strategies, including repurposing intended application against arenaviruses. Highly conserved catalytic activities present in L protein could be targeted for broad-acting antiviral activity among arenaviruses, while protein-protein interactions, such as those between L and the matrix protein Z, have evolved in NW arenaviruses and should be specific to SABV. The nucleoprotein (NP) also shares targetable interaction interfaces with L and Z and exhibits exonuclease activity in the C-terminal domain, which may be involved in multiple aspects of SABV replication. Envelope glycoproteins GP1 and GP2 have been explored in the development of promising cross-reactive neutralizing antibodies and vaccines, some of which could be repurposed for SABV. GP1 remains a challenging target in SABV as evolutive pressures render it the most variable viral protein in terms of both sequence and structure, while antiviral strategies targeting the Z protein remain to be validated. In conclusion, the prediction and analysis of protein structures should revolutionize research on viruses such as SABV by facilitating the rational design of countermeasures while reducing dependence on sophisticated laboratory infrastructure for experimental validation.
Collapse
Affiliation(s)
| | | | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo 13083-100, Brazil
| |
Collapse
|
7
|
Malet H, Williams HM, Cusack S, Rosenthal M. The mechanism of genome replication and transcription in bunyaviruses. PLoS Pathog 2023; 19:e1011060. [PMID: 36634042 PMCID: PMC9836281 DOI: 10.1371/journal.ppat.1011060] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bunyaviruses are negative sense, single-strand RNA viruses that infect a wide range of vertebrate, invertebrate and plant hosts. WHO lists three bunyavirus diseases as priority diseases requiring urgent development of medical countermeasures highlighting their high epidemic potential. While the viral large (L) protein containing the RNA-dependent RNA polymerase is a key enzyme in the viral replication cycle and therefore a suitable drug target, our knowledge on the structure and activities of this multifunctional protein has, until recently, been very limited. However, in the last few years, facilitated by the technical advances in the field of cryogenic electron microscopy, many structures of bunyavirus L proteins have been solved. These structures significantly enhance our mechanistic understanding of bunyavirus genome replication and transcription processes and highlight differences and commonalities between the L proteins of different bunyavirus families. Here, we provide a review of our current understanding of genome replication and transcription in bunyaviruses with a focus on the viral L protein. Further, we compare within bunyaviruses and with the related influenza virus polymerase complex and highlight open questions.
Collapse
Affiliation(s)
- Hélène Malet
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Harry M. Williams
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Hamburg, Germany
| |
Collapse
|