1
|
Smith A, Erber J, Watson A, Johnson C, Gato WE, George SB. The Physiological and Biochemical Response of Ribbed Mussels to Rising Temperatures: Benefits of Salt Marsh Cordgrass. Integr Org Biol 2024; 6:obae031. [PMID: 39282253 PMCID: PMC11398905 DOI: 10.1093/iob/obae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Salt marsh ecosystems are heavily reliant on ribbed mussel (Geukensia demissa) populations to aid in rapid recovery from droughts. The focus of this study was thus to document the effects of rising temperatures on ribbed mussel populations in a Georgia salt marsh. Seven lab and eight field experiments were used to assess the effects of current air temperatures on mussels at two high marsh (HM) sites with short and sparse cordgrass and one mid marsh (MM) site with tall and dense cordgrass. Field results in 2018 and 2019 indicate that ribbed mussels were experiencing extremely high temperatures for prolonged periods of time at the landlocked high marsh (LHM) site. In 2018, the highest temperature (54°C) and longest high temperature events, HTEs (58 days), that is, consecutive days with temperatures ≥40°C, were recorded at this site. When laboratory temperatures were increased from 20 to 36°C, mean heart rates increased by an average of 19 bpm for mussels from both high and MM sites respectively. When field temperatures rose from 20°C in April to 40°C in September 2019, mean heart rates increased by an average of 10 bpm for HM mussels and by 26.3 bpm for MM mussels. Under identical laboratory and field conditions, mean heart rates for mussels from the LHM site with the highest temperatures, increased by <1 bpm and 3.7 bpm respectively. Evidence of the potential role of shade on mussel aggregates was provided by examining whether mussels from the edge of mussel aggregates with little to no cordgrass for shade were more stressed than those living at the center of mussel aggregates. In the absence of shade, mean body temperatures for mussels at the edge of mussel aggregates were up to 8°C higher than for those living in the center underneath a dense tuft of cordgrass. Despite high body temperatures, mean heart rates and Hsp70 gene expression were lower for mussels living at the edges. This agrees with the strategy that during prolong exposure to high temperatures, mussels may reduce their heart rate to conserve energy and enhance survival. Alternatively, heat-stressed mussels at the edges of aggregates may not have the resources to express high levels of Hsp70. Increase in the frequency, intensity, and duration of HTEs may stress the physiological and biochemical function of mussel populations to the limit, dictate mussel aggregate size, and threaten the functionality of SE salt marshes.
Collapse
Affiliation(s)
- A Smith
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - J Erber
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, USA
| | - A Watson
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - C Johnson
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - W E Gato
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, USA
| | - S B George
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
2
|
Smith CS, Zhang YS, Hensel MJS, Pennings SC, Silliman BR. Long-term data reveal that grazer density mediates climatic stress in salt marshes. Ecology 2024; 105:e4323. [PMID: 38769601 DOI: 10.1002/ecy.4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/22/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Understanding how climate and local stressors interact is paramount for predicting future ecosystem structure. The effects of multiple stressors are often examined in small-scale and short-term field experiments, limiting understanding of the spatial and temporal generality of the findings. Using a 22-year observational dataset of plant and grazer abundance in a southeastern US salt marsh, we analyzed how changes in drought and grazer density combined to affect plant biomass. We found: (1) increased drought severity and higher snail density both correlated with lower plant biomass; (2) drought and snail effects interacted additively; and, (3) snail effects had a threshold, with additive top-down effects only occurring when snails were present at high densities. These results suggest that the emergence of multiple stressor effects can be density dependent, and they validate short-term experimental evidence that consumers can augment environmental stress. These findings have important implications for predicting future ecosystem structure and managing natural ecosystems.
Collapse
Affiliation(s)
- Carter S Smith
- Nicholas School of the Environment, Duke University Marine Lab, Beaufort, North Carolina, USA
| | - Y Stacy Zhang
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Marc J S Hensel
- Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester, Virginia, USA
- Nature Coast Biological Station, University of Florida, Cedar Key, Florida, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University Marine Lab, Beaufort, North Carolina, USA
| |
Collapse
|
3
|
Hao Y, Wang XF, Guo Y, Li TY, Yang J, Ainouche ML, Salmon A, Ju RT, Wu JH, Li LF, Li B. Genomic and phenotypic signatures provide insights into the wide adaptation of a global plant invader. PLANT COMMUNICATIONS 2024; 5:100820. [PMID: 38221758 PMCID: PMC11009367 DOI: 10.1016/j.xplc.2024.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Invasive alien species are primary drivers of biodiversity loss and species extinction. Smooth cordgrass (Spartina alterniflora) is one of the most aggressive invasive plants in coastal ecosystems around the world. However, the genomic bases and evolutionary mechanisms underlying its invasion success have remained largely unknown. Here, we assembled a chromosome-level reference genome and performed phenotypic and population genomic analyses between native US and introduced Chinese populations. Our phenotypic comparisons showed that introduced Chinese populations have evolved competitive traits, such as early flowering time and greater plant biomass, during secondary introductions along China's coast. Population genomic and transcriptomic inferences revealed distinct evolutionary trajectories of low- and high-latitude Chinese populations. In particular, genetic mixture among different source populations, together with independent natural selection acting on distinct target genes, may have resulted in high genome dynamics of the introduced Chinese populations. Our study provides novel phenotypic and genomic evidence showing how smooth cordgrass rapidly adapts to variable environmental conditions in its introduced ranges. Moreover, candidate genes related to flowering time, fast growth, and stress tolerance (i.e., salinity and submergence) provide valuable genetic resources for future improvement of cereal crops.
Collapse
Affiliation(s)
- Yan Hao
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin-Feng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaolin Guo
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tian-Yang Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji Yang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Malika L Ainouche
- UMR CNRS 6553, Université of Rennes, Campus de Beaulieu, 35042 Rennes Cedex Paris, France
| | - Armel Salmon
- UMR CNRS 6553, Université of Rennes, Campus de Beaulieu, 35042 Rennes Cedex Paris, France
| | - Rui-Ting Ju
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji-Hua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Lin-Feng Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China.
| |
Collapse
|
4
|
Pétillon J, McKinley E, Alexander M, Adams JB, Angelini C, Balke T, Griffin JN, Bouma T, Hacker S, He Q, Hensel MJS, Ibáñez C, Macreadie PI, Martino S, Sharps E, Ballinger R, de Battisti D, Beaumont N, Burdon D, Daleo P, D'Alpaos A, Duggan-Edwards M, Garbutt A, Jenkins S, Ladd CJT, Lewis H, Mariotti G, McDermott O, Mills R, Möller I, Nolte S, Pagès JF, Silliman B, Zhang L, Skov MW. Top ten priorities for global saltmarsh restoration, conservation and ecosystem service research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165544. [PMID: 37453706 DOI: 10.1016/j.scitotenv.2023.165544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Coastal saltmarshes provide globally important ecosystem services including 'blue carbon' sequestration, flood protection, pollutant remediation, habitat provision and cultural value. Large portions of marshes have been lost or fragmented as a result of land reclamation, embankment construction, and pollution. Sea level rise threatens marsh survival by blocking landward migration where coastlines have been developed. Research-informed saltmarsh conservation and restoration efforts are helping to prevent further loss, yet significant knowledge gaps remain. Using a mixed methods approach, this paper identifies ten research priorities through an online questionnaire and a residential workshop attended by an international, multi-disciplinary network of 35 saltmarsh experts spanning natural, physical and social sciences across research, policy, and practitioner sectors. Priorities have been grouped under four thematic areas of research: Saltmarsh Area Extent, Change and Restoration Potential (including past, present, global variation), Spatio-social contexts of Ecosystem Service delivery (e.g. influences of environmental context, climate change, and stakeholder groups on service provisioning), Patterns and Processes in saltmarsh functioning (global drivers of saltmarsh ecosystem structure/function) and Management and Policy Needs (how management varies contextually; challenges/opportunities for management). Although not intended to be exhaustive, the challenges, opportunities, and strategies for addressing each research priority examined here, providing a blueprint of the work that needs to be done to protect saltmarshes for future generations.
Collapse
Affiliation(s)
- Julien Pétillon
- UMR CNRS ECOBIO, University of Rennes, 35042 Rennes, France; Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Summerstrand Campus, Gqeberha 6031, South Africa.
| | - Emma McKinley
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Meghan Alexander
- School of Geography, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Janine B Adams
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Summerstrand Campus, Gqeberha 6031, South Africa
| | - Christine Angelini
- Environmental School for Sustainable Infrastructure and the Environment, University of Florida, Weil Hall 365, 1949 Stadium Road, Gainesville, FL 32611, USA
| | - Thorsten Balke
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John N Griffin
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Tjeerd Bouma
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, the Netherlands; Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, the Netherlands; Building with Nature group, HZ University of Applied Sciences, Vlissingen, the Netherlands
| | - Sally Hacker
- Department of Integrative Biology, 3029 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Qiang He
- Duke University Marine Lab, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - Marc J S Hensel
- Department of Environmental Biology, University of Massachusetts, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Carles Ibáñez
- Climate Change Department, Area of Sustainability, Eurecat - Technological Centre of Catalonia, 43870 Amposta, Catalonia, Spain
| | - Peter I Macreadie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | | | - Elwyn Sharps
- School of Geography, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; RSPB Centre for Conservation Science, RSPB, The Lodge, Sandy, Bedfordshire SG19 2DL, UK; Natural Resources Wales, TY Cambria, Newport Road, Cardiff, Wales, UK
| | - Rhoda Ballinger
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Davide de Battisti
- Chioggia Hydrobiological Station "Umberto D'Ancona", Department of Biology, University of Padova, Palazzo Grassi, Calle Grassi Naccari 1060, 30015 Chioggia, Ve, Italy
| | - Nicola Beaumont
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
| | - Daryl Burdon
- Daryl Burdon Ltd., Marine Research, Teaching and Consultancy, Willerby HU10 6LL, UK
| | - Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP - CONICET, CC 1260 Correo Central, B7600WAG Mar del Plata, Argentina
| | - Andrea D'Alpaos
- Department of Geosciences, University of Padova, via G. Gradenigo 6, 35131 Padova, Italy
| | | | - Angus Garbutt
- Centre for Ecology and Hydrology (CEH), Environment Centre Wales, Deiniol Rd, Bangor LL57 2UW, UK
| | - Stuart Jenkins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Cai J T Ladd
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Heather Lewis
- Natural Resources Wales, TY Cambria, Newport Road, Cardiff, Wales, UK
| | - Giulio Mariotti
- Department of Oceanography and Coastal Sciences, 1002-Q Energy, Coast and Environment Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Osgur McDermott
- World Conservation Monitoring Centre (WCMC), UN-Environment, 219 Huntingdon Rd, Cambridge CB3 0DL, UK
| | - Rachael Mills
- Natural England, Foss House, Kings Pool, 1-2 Peasholme Green, York YO1 7PX, UK
| | - Iris Möller
- Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
| | - Stefanie Nolte
- School of Environmental Sciences, University of East Anglia, Norwich NR47TJ, UK; Centre for Environment, Fisheries and Aquaculture Science, Lowestoft NR33 0HT, UK
| | - Jordi F Pagès
- School of Geography, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Brian Silliman
- Department of Integrative Biology, 3029 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Liquan Zhang
- State Key Lab. of Estuarine and Coastal Research (SKLEC), East China Normal University, Shanghai, China
| | - Martin W Skov
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
5
|
Li X, Yang W, Ma X, Zhu Z, Sun T, Cui B, Yang Z. Invasive Spartina alterniflora habitat forms high energy fluxes but low food web stability compared to adjacent native vegetated habitats. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117487. [PMID: 36801685 DOI: 10.1016/j.jenvman.2023.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Invasive Spartina spp. mostly colonizes a bare tidal flat and then establishes a new vegetated habitat, where it promotes the productivity of local ecosystems. However, it was unclear whether the invasive habitat could well exhibit ecosystem functioning, e.g. how its high productivity propagates throughout the food web and whether it thereby develops a high food web stability relative to native vegetated habitats. By developing quantitative food webs for a long-established invasive Spartina alterniflora habitat and adjacent native salt marsh (Suaeda salsa) and seagrass (Zostera japonica) habitats in China's Yellow River Delta, we investigated the distributions of energy fluxes, assessed the stability of food webs, and investigated the net trophic effects between trophic groups by combining all direct and indirect trophic interactions. Results showed that the total energy flux in the invasive S. alterniflora habitat was comparable to that in the Z. japonica habitat, whereas 4.5 times higher than that in the S. salsa habitat. While, the invasive habitat had the lowest trophic transfer efficiencies. Food web stability in the invasive habitat was about 3 and 40 times lower than that in the S. salsa and Z. japonica habitats, respectively. Additionally, there were strong net effects caused by intermediate invertebrate species in the invasive habitat rather than by fish species in both native habitats. This study revealed the contradiction between the promotion of energy fluxes and the decrease of food web stability resulting from the invasion of S. alterniflora, which provides new insights into the community-based management of plant invasions.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China.
| | - Xu Ma
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Zhenchang Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
6
|
Wang J, Wang J, Zhang J. Spatial distribution characteristics of natural ecological resilience in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118133. [PMID: 37196618 DOI: 10.1016/j.jenvman.2023.118133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
High-intensity exploitation of land resources and the natural environment can upset the balance of ecosystems, causing multiple ecological problems and affecting regional sustainable development. Recently, China has carried out integrated regional ecosystem protection and restoration governance. Ecological resilience (ER) is the foundation of and key to achieving sustainable regional development. Based on the significance of ER in ecological protection and restoration efforts and the necessity of conducting large-scale studies, we conducted relevant research on the ER in China. In this study, we selected typical impact factors to construct an assessment model of ER in China and quantitatively measured its large-scale spatial and temporal distribution characteristics, while also exploring the relationship between ER and land-use types. The country was zoned according to the ER contributions of each land-use type, and ER enhancement and ecological protection were discussed based on the characteristics of different regions. The ER in China shows clear spatial heterogeneity and spatial agglomeration, roughly represented by high and low ER in the southeast and northwest regions. The mean ER values of woodland, arable land, and construction land were all greater than 0.6, with more than 97% of the ER values at levels of medium or above. The country can be divided into three regions based on the degree of ER contributions of various land-use types, each with different ecological problems. This study provides a detailed understanding of and explores the important role of ER on the regional development process, and provides support and reference for regional ecological protection and restoration as well as sustainable development.
Collapse
Affiliation(s)
- Jin Wang
- School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, 100083 Beijing, People's Republic of China
| | - Jinman Wang
- School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, 100083 Beijing, People's Republic of China; Technology Innovation Center for Ecological Restoration in Mining Areas, Ministry of Natural Resources, 100083 Beijing, People's Republic of China.
| | - Jianing Zhang
- School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, 100083 Beijing, People's Republic of China
| |
Collapse
|
7
|
Canepuccia AD, Fanjul MS, Iribarne OO. Global distribution and richness of terrestrial mammals in tidal marshes. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Alejandro D. Canepuccia
- Instituto de Investigaciones Marinas y Costeras (IIMyC) Universidad Nacional de Mar Del Plata (UNMDP) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata Argentina
| | - María Sol Fanjul
- Instituto de Investigaciones Marinas y Costeras (IIMyC) Universidad Nacional de Mar Del Plata (UNMDP) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata Argentina
| | - Oscar O. Iribarne
- Instituto de Investigaciones Marinas y Costeras (IIMyC) Universidad Nacional de Mar Del Plata (UNMDP) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata Argentina
| |
Collapse
|
8
|
Sievers M, Brown CJ, Buelow CA, Hale R, Ostrowski A, Saunders MI, Silliman BR, Swearer SE, Turschwell MP, Valdez SR, Connolly RM. Greater Consideration of Animals Will Enhance Coastal Restoration Outcomes. Bioscience 2022; 72:1088-1098. [PMID: 36325106 PMCID: PMC9618274 DOI: 10.1093/biosci/biac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
As efforts to restore coastal habitats accelerate, it is critical that investments are targeted to most effectively mitigate and reverse habitat loss and its impacts on biodiversity. One likely but largely overlooked impediment to effective restoration of habitat-forming organisms is failing to explicitly consider non-habitat-forming animals in restoration planning, implementation, and monitoring. These animals can greatly enhance or degrade ecosystem function, persistence, and resilience. Bivalves, for instance, can reduce sulfide stress in seagrass habitats and increase drought tolerance of saltmarsh vegetation, whereas megaherbivores can detrimentally overgraze seagrass or improve seagrass seed germination, depending on the context. Therefore, understanding when, why, and how to directly manipulate or support animals can enhance coastal restoration outcomes. In support of this expanded restoration approach, we provide a conceptual framework, incorporating lessons from structured decision-making, and describe potential actions that could lead to better restoration outcomes using case studies to illustrate practical approaches.
Collapse
|
9
|
Hensel MJS, Silliman BR, Hensel E, Byrnes JEK. Feral hogs control brackish marsh plant communities over time. Ecology 2022; 103:e03572. [PMID: 34706065 DOI: 10.1002/ecy.3572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/07/2022]
Abstract
Feral hogs modify ecosystems by consuming native species and altering habitat structure. These invasions can generate fundamentally different post-invasion habitats when disturbance changes community structure, ecosystem function, or recovery dynamics. Here, we use multiple three-year exclusion experiments to describe how feral hogs affect hyper-productive brackish marshes over time. We find that infrequent yet consistent hog foraging and trampling suppresses dominant plants by generating a perpetually disturbed habitat that favors competitively inferior species and disallows full vegetative recovery over time. Along borders between plant monocultures, trampling destroys dominant graminoids responsible for most aboveground marsh biomass while competitively inferior plants increase fivefold. Hog activities shift the brackish marsh disturbance regime from pulse to press, which changes the plant community: competitively inferior plants increase coverage, species diversity is doubled, and live cover is lowered by 30% as large plants are unable to take hold in hog-disturbed areas. Release from disturbance does not result in complete recovery (i.e., dominant plant monocultures) because hog consumer control is a combination of both top-down control and broader engineering effects. These results highlight how habitats are susceptible to invasive effects outside of structural destruction alone, especially if large consumers are pervasive over time and change the dynamics that sustain recovery.
Collapse
Affiliation(s)
- Marc J S Hensel
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125, USA
- Nicholas School for the Environment, Duke University, Beaufort, North Carolina, 28516, USA
- Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester Point, Virginia, 23062, USA
| | - Brian R Silliman
- Nicholas School for the Environment, Duke University, Beaufort, North Carolina, 28516, USA
| | - Enie Hensel
- Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester Point, Virginia, 23062, USA
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125, USA
| |
Collapse
|