1
|
Razalli II, Abdullah-Zawawi MR, Tamizi AA, Harun S, Zainal-Abidin RA, Jalal MIA, Ullah MA, Zainal Z. Accelerating crop improvement via integration of transcriptome-based network biology and genome editing. PLANTA 2025; 261:92. [PMID: 40095140 DOI: 10.1007/s00425-025-04666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
MAIN CONCLUSION Big data and network biology infer functional coupling between genes. In combination with machine learning, network biology can dramatically accelerate the pace of gene discovery using modern transcriptomics approaches and be validated via genome editing technology for improving crops to stresses. Unlike other living things, plants are sessile and frequently face various environmental challenges due to climate change. The cumulative effects of combined stresses can significantly influence both plant growth and yields. In navigating the complexities of climate change, ensuring the nourishment of our growing population hinges on implementing precise agricultural systems. Conventional breeding methods have been commonly employed; however, their efficacy has been impeded by limitations in terms of time, cost, and infrastructure. Cutting-edge tools focussing on big data are being championed to usher in a new era in stress biology, aiming to cultivate crops that exhibit enhanced resilience to multifactorial stresses. Transcriptomics, combined with network biology and machine learning, is proving to be a powerful approach for identifying potential genes to target for gene editing, specifically to enhance stress tolerance. The integration of transcriptomic data with genome editing can yield significant benefits, such as gaining insights into gene function by modifying or manipulating of specific genes in the target plant. This review provides valuable insights into the use of transcriptomics platforms and the application of biological network analysis and machine learning in the discovery of novel genes, thereby enhancing the understanding of plant responses to combined or sequential stress. The transcriptomics as a forefront omics platform and how it is employed through biological networks and machine learning that lead to novel gene discoveries for producing multi-stress-tolerant crops, limitations, and future directions have also been discussed.
Collapse
Affiliation(s)
- Izreen Izzati Razalli
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Redha Abdullah-Zawawi
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Amin-Asyraf Tamizi
- Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | | | - Muhammad Irfan Abdul Jalal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Mohammad Asad Ullah
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Bangladesh Institute of Nuclear Agriculture (BINA), BAU Campus, Mymensingh, 2202, Bangladesh
| | - Zamri Zainal
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
2
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
3
|
Shan X, Zhao H. Inferring Cell-Type-Specific Co-Expressed Genes from Single Cell Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622700. [PMID: 39605403 PMCID: PMC11601408 DOI: 10.1101/2024.11.08.622700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Cell-type-specific gene co-expression networks are widely used to characterize gene relationships. Although many methods have been developed to infer such co-expression networks from single-cell data, the lack of consideration of false positive control in many evaluations may lead to incorrect conclusions because higher reproducibility, higher functional coherence, and a larger overlap with known biological networks may not imply better performance if the false positives are not well controlled. Results In this study, we have developed an efficient and effective simulation tool to derive empirical p-values in co-expression inference to appropriately control false positives in assessing method performance. We studied the power of the p-value-based approach in inferring cell-type-specific co-expressions from single-cell data using both simulated and real data. We also highlight the need to adjust for random overlaps between the inferred and known networks when the number of selected correlated gene pairs varies substantially across different methods. We further illustrate the expression level bias in known biological networks and the impact of such bias in method assessment. Conclusion Our study indicates the importance of controlling false positives in the inference of co-expressed genes to achieve more reliable results and proposes a simulation-based p-value method to achieve this.
Collapse
|
4
|
Barry T, Roeder K, Katsevich E. Exponential family measurement error models for single-cell CRISPR screens. Biostatistics 2024; 25:1254-1272. [PMID: 38649751 PMCID: PMC11471999 DOI: 10.1093/biostatistics/kxae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
CRISPR genome engineering and single-cell RNA sequencing have accelerated biological discovery. Single-cell CRISPR screens unite these two technologies, linking genetic perturbations in individual cells to changes in gene expression and illuminating regulatory networks underlying diseases. Despite their promise, single-cell CRISPR screens present considerable statistical challenges. We demonstrate through theoretical and real data analyses that a standard method for estimation and inference in single-cell CRISPR screens-"thresholded regression"-exhibits attenuation bias and a bias-variance tradeoff as a function of an intrinsic, challenging-to-select tuning parameter. To overcome these difficulties, we introduce GLM-EIV ("GLM-based errors-in-variables"), a new method for single-cell CRISPR screen analysis. GLM-EIV extends the classical errors-in-variables model to responses and noisy predictors that are exponential family-distributed and potentially impacted by the same set of confounding variables. We develop a computational infrastructure to deploy GLM-EIV across hundreds of processors on clouds (e.g. Microsoft Azure) and high-performance clusters. Leveraging this infrastructure, we apply GLM-EIV to analyze two recent, large-scale, single-cell CRISPR screen datasets, yielding several new insights.
Collapse
Affiliation(s)
- Timothy Barry
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Building 2 435, 655 Huntington Ave, Boston, MA 02115, United States
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Baker Hall 228B, 4909 Frew St, Pittsburgh, PA 15213, United States
| | - Eugene Katsevich
- Department of Statistics and Data Science, University of Pennsylvania, Academic Research Building 311, 265 South 37th Street Philadelphia, PA 19104, United States
| |
Collapse
|
5
|
Morris JA, Sun JS, Sanjana NE. Next-generation forward genetic screens: uniting high-throughput perturbations with single-cell analysis. Trends Genet 2024; 40:118-133. [PMID: 37989654 PMCID: PMC10872607 DOI: 10.1016/j.tig.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Programmable genome-engineering technologies, such as CRISPR (clustered regularly interspaced short palindromic repeats) nucleases and massively parallel CRISPR screens that capitalize on this programmability, have transformed biomedical science. These screens connect genes and noncoding genome elements to disease-relevant phenotypes, but until recently have been limited to individual phenotypes such as growth or fluorescent reporters of gene expression. By pairing massively parallel screens with high-dimensional profiling of single-cell types/states, we can now measure how individual genetic perturbations or combinations of perturbations impact the cellular transcriptome, proteome, and epigenome. We review technologies that pair CRISPR screens with single-cell multiomics and the unique opportunities afforded by extending pooled screens using deep multimodal phenotyping.
Collapse
Affiliation(s)
- John A Morris
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Jennifer S Sun
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
6
|
Zhou Y, Luo K, Liang L, Chen M, He X. A new Bayesian factor analysis method improves detection of genes and biological processes affected by perturbations in single-cell CRISPR screening. Nat Methods 2023; 20:1693-1703. [PMID: 37770710 PMCID: PMC10630124 DOI: 10.1038/s41592-023-02017-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/18/2023] [Indexed: 09/30/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) screening coupled with single-cell RNA sequencing has emerged as a powerful tool to characterize the effects of genetic perturbations on the whole transcriptome at a single-cell level. However, due to its sparsity and complex structure, analysis of single-cell CRISPR screening data is challenging. In particular, standard differential expression analysis methods are often underpowered to detect genes affected by CRISPR perturbations. We developed a statistical method for such data, called guided sparse factor analysis (GSFA). GSFA infers latent factors that represent coregulated genes or gene modules; by borrowing information from these factors, it infers the effects of genetic perturbations on individual genes. We demonstrated through extensive simulation studies that GSFA detects perturbation effects with much higher power than state-of-the-art methods. Using single-cell CRISPR data from human CD8+ T cells and neural progenitor cells, we showed that GSFA identified biologically relevant gene modules and specific genes affected by CRISPR perturbations, many of which were missed by existing methods, providing new insights into the functions of genes involved in T cell activation and neurodevelopment.
Collapse
Affiliation(s)
- Yifan Zhou
- Graduate Program of Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lifan Liang
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Mengjie Chen
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Wang L, Trasanidis N, Wu T, Dong G, Hu M, Bauer DE, Pinello L. Dictys: dynamic gene regulatory network dissects developmental continuum with single-cell multiomics. Nat Methods 2023; 20:1368-1378. [PMID: 37537351 DOI: 10.1038/s41592-023-01971-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Gene regulatory networks (GRNs) are key determinants of cell function and identity and are dynamically rewired during development and disease. Despite decades of advancement, challenges remain in GRN inference, including dynamic rewiring, causal inference, feedback loop modeling and context specificity. To address these challenges, we develop Dictys, a dynamic GRN inference and analysis method that leverages multiomic single-cell assays of chromatin accessibility and gene expression, context-specific transcription factor footprinting, stochastic process network and efficient probabilistic modeling of single-cell RNA-sequencing read counts. Dictys improves GRN reconstruction accuracy and reproducibility and enables the inference and comparative analysis of context-specific and dynamic GRNs across developmental contexts. Dictys' network analyses recover unique insights in human blood and mouse skin development with cell-type-specific and dynamic GRNs. Its dynamic network visualizations enable time-resolved discovery and investigation of developmental driver transcription factors and their regulated targets. Dictys is available as a free, open-source and user-friendly Python package.
Collapse
Affiliation(s)
- Lingfei Wang
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikolaos Trasanidis
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Ting Wu
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Guanlan Dong
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Bioinformatics and Integrative Genomics PhD Program, Harvard Medical School, Boston, MA, USA
| | - Michael Hu
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA.
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
8
|
Cheng J, Lin G, Wang T, Wang Y, Guo W, Liao J, Yang P, Chen J, Shao X, Lu X, Zhu L, Wang Y, Fan X. Massively Parallel CRISPR-Based Genetic Perturbation Screening at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204484. [PMID: 36504444 PMCID: PMC9896079 DOI: 10.1002/advs.202204484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic screening has been demonstrated as a powerful approach for unbiased functional genomics research. Single-cell CRISPR screening (scCRISPR) techniques, which result from the combination of single-cell toolkits and CRISPR screening, allow dissecting regulatory networks in complex biological systems at unprecedented resolution. These methods allow cells to be perturbed en masse using a pooled CRISPR library, followed by high-content phenotyping. This is technically accomplished by annotating cells with sgRNA-specific barcodes or directly detectable sgRNAs. According to the integration of distinct single-cell technologies, these methods principally fall into four categories: scCRISPR with RNA-seq, scCRISPR with ATAC-seq, scCRISPR with proteome probing, and imaging-based scCRISPR. scCRISPR has deciphered genotype-phenotype relationships, genetic regulations, tumor biological issues, and neuropathological mechanisms. This review provides insight into the technical breakthrough of scCRISPR by systematically summarizing the advancements of various scCRISPR methodologies and analyzing their merits and limitations. In addition, an application-oriented approach guide is offered to meet researchers' individualized demands.
Collapse
Affiliation(s)
- Junyun Cheng
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Gaole Lin
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Tianhao Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Yunzhu Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Wenbo Guo
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Liao
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Penghui Yang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Chen
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xin Shao
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiaoyan Lu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321016China
| | - Ling Zhu
- The Save Sight InstituteFaculty of Medicine and Healththe University of SydneySydneyNSW2000Australia
| | - Yi Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
| | - Xiaohui Fan
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321016China
- The Save Sight InstituteFaculty of Medicine and Healththe University of SydneySydneyNSW2000Australia
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhou310024China
| |
Collapse
|
9
|
Su C, Xu Z, Shan X, Cai B, Zhao H, Zhang J. Cell-type-specific co-expression inference from single cell RNA-sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.13.520181. [PMID: 36561173 DOI: 10.1101/2022.04.07.487499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The inference of gene co-expressions from microarray and RNA-sequencing data has led to rich insights on biological processes and disease mechanisms. However, the bulk samples analyzed in most studies are a mixture of different cell types. As a result, the inferred co-expressions are confounded by varying cell type compositions across samples and only offer an aggregated view of gene regulations that may be distinct across different cell types. The advancement of single cell RNA-sequencing (scRNA-seq) technology has enabled the direct inference of co-expressions in specific cell types, facilitating our understanding of cell-type-specific biological functions. However, the high sequencing depth variations and measurement errors in scRNA-seq data present significant challenges in inferring cell-type-specific gene co-expressions, and these issues have not been adequately addressed in the existing methods. We propose a statistical approach, CS-CORE, for estimating and testing cell-type-specific co-expressions, built on a general expression-measurement model that explicitly accounts for sequencing depth variations and measurement errors in the observed single cell data. Systematic evaluations show that most existing methods suffer from inflated false positives and biased co-expression estimates and clustering analysis, whereas CS-CORE has appropriate false positive control, unbiased co-expression estimates, good statistical power and satisfactory performance in downstream co-expression analysis. When applied to analyze scRNA-seq data from postmortem brain samples from Alzheimer’s disease patients and controls and blood samples from COVID-19 patients and controls, CS-CORE identified cell-type-specific co-expressions and differential co-expressions that were more reproducible and/or more enriched for relevant biological pathways than those inferred from other methods.
Collapse
|
10
|
Holcomb EA, Pearson AN, Jungles KM, Tate A, James J, Jiang L, Huber AK, Green MD. High-content CRISPR screening in tumor immunology. Front Immunol 2022; 13:1041451. [PMID: 36479127 PMCID: PMC9721350 DOI: 10.3389/fimmu.2022.1041451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/21/2022] [Indexed: 11/22/2022] Open
Abstract
CRISPR screening is a powerful tool that links specific genetic alterations to corresponding phenotypes, thus allowing for high-throughput identification of novel gene functions. Pooled CRISPR screens have enabled discovery of innate and adaptive immune response regulators in the setting of viral infection and cancer. Emerging methods couple pooled CRISPR screens with parallel high-content readouts at the transcriptomic, epigenetic, proteomic, and optical levels. These approaches are illuminating cancer immune evasion mechanisms as well as nominating novel targets that augment T cell activation, increase T cell infiltration into tumors, and promote enhanced T cell cytotoxicity. This review details recent methodological advances in high-content CRISPR screens and highlights the impact this technology is having on tumor immunology.
Collapse
Affiliation(s)
- Erin A. Holcomb
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ashley N. Pearson
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Kassidy M. Jungles
- Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Akshay Tate
- Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jadyn James
- Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Long Jiang
- Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Amanda K. Huber
- Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Michael D. Green
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Walton RT, Singh A, Blainey PC. Pooled genetic screens with image-based profiling. Mol Syst Biol 2022; 18:e10768. [PMID: 36366905 PMCID: PMC9650298 DOI: 10.15252/msb.202110768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Spatial structure in biology, spanning molecular, organellular, cellular, tissue, and organismal scales, is encoded through a combination of genetic and epigenetic factors in individual cells. Microscopy remains the most direct approach to exploring the intricate spatial complexity defining biological systems and the structured dynamic responses of these systems to perturbations. Genetic screens with deep single-cell profiling via image features or gene expression programs have the capacity to show how biological systems work in detail by cataloging many cellular phenotypes with one experimental assay. Microscopy-based cellular profiling provides information complementary to next-generation sequencing (NGS) profiling and has only recently become compatible with large-scale genetic screens. Optical screening now offers the scale needed for systematic characterization and is poised for further scale-up. We discuss how these methodologies, together with emerging technologies for genetic perturbation and microscopy-based multiplexed molecular phenotyping, are powering new approaches to reveal genotype-phenotype relationships.
Collapse
Affiliation(s)
- Russell T Walton
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of Biological EngineeringMITCambridgeMAUSA
| | - Avtar Singh
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Present address:
Department of Cellular and Tissue GenomicsGenentechSouth San FranciscoCAUSA
| | - Paul C Blainey
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of Biological EngineeringMITCambridgeMAUSA
- Koch Institute for Integrative Cancer ResearchMITCambridgeMAUSA
| |
Collapse
|
12
|
Wang Y, Xie S, Armendariz D, Hon GC. Computational identification of clonal cells in single-cell CRISPR screens. BMC Genomics 2022; 23:135. [PMID: 35168568 PMCID: PMC8845350 DOI: 10.1186/s12864-022-08359-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Single-cell CRISPR screens are powerful tools to understand genome function by linking genetic perturbations to transcriptome-wide phenotypes. However, since few cells can be affordably sequenced in these screens, biased sampling of cells could affect data interpretation. One potential source of biased sampling is clonal cell expansion. RESULTS Here, we identify clonal cells in single cell screens using multiplexed sgRNAs as barcodes. We find that the cells in each clone share transcriptional similarities and bear segmental copy number changes. These analyses suggest that clones are genetically distinct. Finally, we show that the transcriptional similarities of clonally expanded cells contribute to false positives in single-cell CRISPR screens. CONCLUSIONS Experimental conditions that reduce clonal expansion or computational filtering of clonal cells will improve the reliability of single-cell CRISPR screens.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Bioinformatics, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
13
|
Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, Lu T, Maroc L, Norman TM, Song B, Stanley G, Chen S, Garnett M, Li W, Moffat J, Qi LS, Shapiro RS, Shendure J, Weissman JS, Zhuang X. High-content CRISPR screening. NATURE REVIEWS. METHODS PRIMERS 2022; 2:9. [PMID: 37214176 PMCID: PMC10200264 DOI: 10.1038/s43586-022-00098-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CRISPR screens are a powerful source of biological discovery, enabling the unbiased interrogation of gene function in a wide range of applications and species. In pooled CRISPR screens, various genetically encoded perturbations are introduced into pools of cells. The targeted cells proliferate under a biological challenge such as cell competition, drug treatment or viral infection. Subsequently, the perturbation-induced effects are evaluated by sequencing-based counting of the guide RNAs that specify each perturbation. The typical results of such screens are ranked lists of genes that confer sensitivity or resistance to the biological challenge of interest. Contributing to the broad utility of CRISPR screens, adaptations of the core CRISPR technology make it possible to activate, silence or otherwise manipulate the target genes. Moreover, high-content read-outs such as single-cell RNA sequencing and spatial imaging help characterize screened cells with unprecedented detail. Dedicated software tools facilitate bioinformatic analysis and enhance reproducibility. CRISPR screening has unravelled various molecular mechanisms in basic biology, medical genetics, cancer research, immunology, infectious diseases, microbiology and other fields. This Primer describes the basic and advanced concepts of CRISPR screening and its application as a flexible and reliable method for biological discovery, biomedical research and drug development - with a special emphasis on high-content methods that make it possible to obtain detailed biological insights directly as part of the screen.
Collapse
Affiliation(s)
- Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florence Chardon
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Matthew B. Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Keith A. Lawson
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tian Lu
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Laetitia Maroc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Thomas M. Norman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Geoff Stanley
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Mathew Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|