1
|
Deka R, Chattopadhyay S, Orthaber A. Contorting the hetero phosphaquinoid: synthesis and electronic insights into a non-planar, ferrocenyl phosphaquinoid. Dalton Trans 2025; 54:3113-3117. [PMID: 39898758 DOI: 10.1039/d4dt03542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
We report a highly contorted phosphaquinoid by substituting one of the exocyclic CC bonds of an anthraquinodimethane unit with a phosphaalkene unit (-CP-Mes*, Mes* = 2,4,6-tri-tbutylbenzene) and end-capping the opposite terminus with 'C(Fc)Ph'. Both isomers (E,Z) exhibit butterfly-like distortion of the anthracene core and demonstrate remarkable stability towards air and moisture.
Collapse
Affiliation(s)
- Rajesh Deka
- Synthetic Molecular Chemistry, Department of Chemistry Ångström Laboratory, Uppsala University, BOX 523, 75120 Uppsala, Sweden.
| | - Samir Chattopadhyay
- Physical Chemistry, Department of Chemistry Ångström Laboratory. Uppsala University, BOX 523, 75120 Uppsala, Sweden
| | - Andreas Orthaber
- Synthetic Molecular Chemistry, Department of Chemistry Ångström Laboratory, Uppsala University, BOX 523, 75120 Uppsala, Sweden.
| |
Collapse
|
2
|
Harimoto T, Ishigaki Y. Recent Advances in NIR-Switchable Multi-Redox Systems Based on Organic Molecules. Chemistry 2025; 31:e202403273. [PMID: 39503432 DOI: 10.1002/chem.202403273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 11/24/2024]
Abstract
Electrochromic systems capable of switching absorption in the near-infrared (NIR) region (750-2500 nm) are attractive from the viewpoint of applications for material and life science, and thus several examples have been reported to date. In general, the development of organic-based systems is needed to reduce the environmental impact and improve biocompatibility. Although extending the switchable spectral range is crucial for the application of organic electrochromic molecules, the switching of NIR absorption based on redox interconversion is still a challenging issue regarding reversibility and durability during interconversion. To overcome this potential instability, the introduction of heteroatoms into the molecular backbone and/or π-extension could be useful strategies in terms of effective delocalization of charge and spin in the corresponding redox states. In this review, we focus on redox-active well-defined small molecules that enable ON/OFF switching of NIR absorption based on precise control of the redox states, and present recent studies on their intrinsic electrochemical and spectroscopic properties and/or structural characterization of their charged states.
Collapse
Affiliation(s)
- Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Present address: Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
3
|
Deka R, Asif Ansari M, Chattopadhyay S, Lomoth R, Thapper A, Orthaber A. Introducing Phosphorus into the Overcrowded Thiele's hydrocarbon Family: Unveiling Contorted Main Group Diradicaloids with Dynamic Redox Behavior. Angew Chem Int Ed Engl 2024; 63:e202406076. [PMID: 39159069 DOI: 10.1002/anie.202406076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Thiele's Hydrocarbons (THs) featuring a 9,10-anthrylene core with switchable geometric and electronic configurations offer exciting possibilities in advanced functional materials. Despite significant advances in main group-based diradicaloids in contemporary chemistry, main group THs containing an anthrylene cores have remained elusive, primarily due to the lack of straightforward synthetic strategies and the inherent high reactivity of these species. In this study, we utilize an anthracene-based phosphine synthon to demonstrate, for the first time, a facile and high-yielding synthetic strategy for robust P-functionalized overcrowded ethylenes (OCEs) within the TH family. These OCEs feature a non-symmetric environment, incorporating (thio) xanthyl and phosphaalkene termini. We systematically probe the electronic structures of these derivatives to illustrate the impact of the isolobal phosphaalkene motif on the quinoidal/diradicaloid character. Notably, the compounds exhibit dynamic redox behavior, leading to orthogonally twisted conformational changes upon oxidation, with a kinetically locked redox-couple.
Collapse
Affiliation(s)
- Rajesh Deka
- Department of Chemistry-Ångström laboratories (Synthetic Molecular Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Mohd Asif Ansari
- Department of Chemistry-Ångström laboratories (Synthetic Molecular Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Samir Chattopadhyay
- Department of Chemistry-Ångström laboratories (Physical Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Reiner Lomoth
- Department of Chemistry-Ångström laboratories (Physical Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Anders Thapper
- Department of Chemistry-Ångström laboratories (Synthetic Molecular Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry-Ångström laboratories (Synthetic Molecular Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| |
Collapse
|
4
|
Tang J, Hu C, Crumpton AE, Dietz M, Sarkar D, Griffin LP, Goicoechea JM, Aldridge S. Syntheses, Geometric and Electronic Structures of Inorganic Cumulenes. J Am Chem Soc 2024; 146:30778-30783. [PMID: 39495935 PMCID: PMC11565641 DOI: 10.1021/jacs.4c13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
Molecular chains of two-coordinate carbon atoms (cumulenes) have long been targeted, due to interest in the electronic structure and applications of extended π-systems, and their relationship to the carbon allotrope, carbyne. While formal (isoelectronic) B═N for C═C substitution has been employed in two-dimensional (2-D) materials, unsaturated one-dimensional all-inorganic "molecular wires" are unknown. Here, we report high-yielding synthetic approaches to heterocumulenes containing a five-atom BNBNB chain, the geometric structure of which can be modified by choice of end group. The diamido-capped system is bent at the 2-/4-positions, and natural resonance theory calculations reveal significant contributions from B═N(:)-B≡N-B resonance forms featuring a lone pair at N (consistent with observed N-centered nucleophilicity). Molecular modification to generate a linear system best described by a B═N═B═N═B resonance structure involves chemical transformation of the capping groups (using B(C5F5)3) to enhance their π-acidity and conjugate the N-lone pairs.
Collapse
Affiliation(s)
- Jianqin Tang
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Chenyang Hu
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Agamemnon E. Crumpton
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Maximilian Dietz
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Debotra Sarkar
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Liam P. Griffin
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Jose M. Goicoechea
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Simon Aldridge
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| |
Collapse
|
5
|
Kundu G, Pramanik D, Dash SR, Kumar R, Sangole M, Tothadi S, Ghosh A, Vanka K, Singh K, Sen SS. Unprecedented C-F bond cleavage in perfluoronaphthalene during cobaltocene reduction. Dalton Trans 2024; 53:17789-17793. [PMID: 39498541 DOI: 10.1039/d4dt02791d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The C-F bond activation of perfluoronaphthalene by 5-SIDipp led to the formation of dicationic salts with two fluorides (3·2HF2 ) or heptafluorodiborate (3·2B2F7) as counter-anions. The anion exchange reaction of 3·2B2F7 with NBu4PF6 afforded a highly luminescent 3·2PF6. The in situ addition of cobaltocene in the reaction mixture of 5-SIDipp and perfluoronaphthalene led to a distinct Co(I) species.
Collapse
Affiliation(s)
- Gargi Kundu
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debjit Pramanik
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Soumya Ranjan Dash
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Ravi Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Mayur Sangole
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Srinu Tothadi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, India
| | - Aryya Ghosh
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Kirandeep Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Li S, Shiri F, Xu G, Yiu SM, Lee HK, Ng TH, Lin Z, Lu Z. Reactivity of a Hexaaryldiboron(6) Dianion as Boryl Radical Anions. J Am Chem Soc 2024; 146:17348-17354. [PMID: 38864188 DOI: 10.1021/jacs.4c04253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Our study unveils a novel approach to accessing boryl radicals through the spontaneous homolytic cleavage of B-B bonds. We synthesized a hexaaryl-substituted diboron(6) dianion, 1, via the reductive B-B coupling of 9-borafluorene. Intriguingly, compound 1 exhibits the ability to undergo homolytic B-B bond cleavage, leading to the formation of boryl radical anions, as confirmed by EPR studies, in the presence of the 2.2.2-cryptand at room temperature. Moreover, it directly reacts with diphenylacetylene, producing an unprecedented 1,6-diborylated allene species, where the phenyl ring is dearomatized. Density functional theory computational studies suggest that homolytic B-B bond cleavage is favored in the reaction path, and the formation of the boryl radical anion is crucial for dearomatization. Additionally, it achieves the dearomative diborylation of anthracene and the activation of elemental sulfur/selenium under mild conditions. The borylation products have been successfully characterized by NMR spectra, HRMS, and X-ray single-crystal diffraction.
Collapse
Affiliation(s)
- Shuchang Li
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, P. R. China
| | - Farshad Shiri
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Gan Xu
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, P. R. China
| | - Hung Kay Lee
- Department of Chemistry, Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, P. R. China
| | - Tik Hong Ng
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Zhenpin Lu
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
7
|
Das A, Saha S, Maji S, Sarkar P, Jose A, Bhatt MM, Bhunia A, Dutta A, Pati SK, Mandal SK. Highly Stable Self-Regenerating Organic Multi-Redox Systems derived from Bicyclic (Alkyl)(amino)carbenes (BICAACs). Chemistry 2024; 30:e202303411. [PMID: 38441342 DOI: 10.1002/chem.202303411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/04/2024]
Abstract
An extended class of organic multi-redox systems was derived from bicyclic(alkyl)amino carbenes (BICAACs). The highly-conjugated system undergoes a total of 4 redox events spanning a 1.8 V redox range. These organic compounds exhibited four different stable redox states (dication, radical cation, neutral and radical anion), and all of them were characterized either by single crystal X-ray study and/or various spectroscopic studies. Three of the four redox states are stable to air and moisture. The availability of stable multiple redox states demonstrated promise towards their efficacy in the symmetric H-cell charge/discharge cycling. Among various redox states, the dication/neutral state works efficiently and continuously for 1500 cycles in 2e- charge/discharge process outside glovebox in commercially available DMF with minimum capacity loss (retaining nearly 90 % Coulombic efficiency). Surprisingly, the efficiency of the redox cycle was retained even if the system was exposed to air for 30 days when it slowly regenerated to the initial deep blue radical cation, and it exhibited another 100 charge/discharge cycles with a minimal capacity loss. Such a stable H-cell cycling ability is not well known among organic molecule-based systems.
Collapse
Affiliation(s)
- Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Sukanta Saha
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Subir Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Pallavi Sarkar
- Theoretical Sciences Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, 560064, India
| | - Anex Jose
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Madhur Mahesh Bhatt
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Anup Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, 560064, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, India
| |
Collapse
|
8
|
Liu S, Li Y, Lin J, Ke Z, Grützmacher H, Su CY, Li Z. Sequential radical and cationic reactivity at separated sites within one molecule in solution. Chem Sci 2024; 15:5376-5384. [PMID: 38577367 PMCID: PMC10988588 DOI: 10.1039/d4sc00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites are expected to show both radical and cationic reactivity at different sites within one molecule. However, such "dual" reactivity has rarely been observed in the condensed phase. Herein we report the isolation of crystalline 1λ2,3λ2-1-phosphonia-3-phosphinyl-cyclohex-4-enes 2a,b˙+, which can be considered delocalized DRCs and were completely characterized by crystallographic, spectroscopic, and computational methods. These DRCs contain a radical and cationic site with seven and six valence electrons, respectively, which are both stabilized via conjugation, yet remain spatially separated. They exhibit reactivity that differs from that of conventional radical cations (CRCs); specifically they show sequential radical and cationic reactivity at separated sites within one molecule in solution.
Collapse
Affiliation(s)
- Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Yinwu Li
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Hansjörg Grützmacher
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
9
|
Deng CL, Hollister KK, Molino A, Tra BYE, Dickie DA, Wilson DJD, Gilliard RJ. Unveiling Three Interconvertible Redox States of Boraphenalene. J Am Chem Soc 2024; 146:6145-6156. [PMID: 38380615 DOI: 10.1021/jacs.3c13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neutral 1-boraphenalene displays the isoelectronic structure of the phenalenyl carbocation and is expected to behave as an attractive organoboron multi-redox system. However, the isolation of new redox states have remained elusive even though the preparation of neutral boron(III)-containing phenalene compounds have been extensively studied. Herein, we have adopted an N-heterocyclic carbene ligand stabilization approach to achieve the first isolation of the stable and ambipolar 1-boraphenalenyl radical 1•. The 1-boraphenalenyl cation 1+ and anion 1- have also been electrochemically observed and chemically isolated, representing new redox forms of boraphenalene for the study of non-Kekulé polynuclear benzenoid molecules. Experimental and theoretical investigations suggest that the interconvertible three-redox-state species undergo reversible electronic structure modifications, which primarily take place on the polycyclic framework of the molecules, exhibiting atypical behavior compared to known donor-stabilized organoboron compounds. Initial reactivity studies, aromaticity evaluations, and photophysical studies show redox-state-dependent trends. While 1+ is luminescent in both the solution and solid states, 1• exhibits boron-centered reactivity and 1- undergoes substitution chemistry on the boraphenalenyl skeleton and serves as a single-electron transfer reductant.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086 Victoria, Australia
| | - Bi Youan E Tra
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086 Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Harimoto T, Sugai Y, Sugawara K, Suzuki T, Ishigaki Y. Double Dynamic Structural Change Enabling Tricolor Chromism by the Realization of Apparent Two-Electron Transfer to Skip the Open-Shell State. Chemistry 2023; 29:e202301476. [PMID: 37311709 DOI: 10.1002/chem.202301476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Most redox systems generally cannot avoid the involvement of open-shell species upon generating multiply charged species, which often reduces reversibility in multi-color electrochromic systems. In this study, we newly synthesized octakis(aminophenyl)-substituted pentacenebisquinodimethane (BQD) derivatives and their hybrids with alkoxyphenyl analogues. Thanks to apparent two-electron transfer accompanied by double dramatic changes in the structure of the arylated quinodimethane skeleton, the dicationic and tetracationic states were generated and isolated quantitatively because of the negligible steady-state concentration of intermediary open-shell species such as monocation or trication radicals. When two electrophores with different donating abilities are attached to the BQD skeleton, a dicationic state with a different color can be isolated in addition to the neutral and tetracationic states. For these tetracations, an interchromophore interaction induces a red-shift of the NIR absorptions, thus realizing tricolor UV/Vis/NIR electrochromic behavior involving only closed-shell states.
Collapse
Affiliation(s)
- Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Yuka Sugai
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Kazuma Sugawara
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| |
Collapse
|
11
|
Dai Y, Xie Z, Bao M, Liu C, Su Y. Multiple stable redox states and tunable ground states via the marriage of viologens and Chichibabin's hydrocarbon †. Chem Sci 2023; 14:3548-3553. [PMID: 37006684 PMCID: PMC10056129 DOI: 10.1039/d3sc00102d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Chichibabin's hydrocarbon and viologens are among the most famous diradicaloids and organic redox systems, respectively. However, each has its own disadvantages: the instability of the former and its charged species, and the closed-shell nature of the neutral species derived from the latter, respectively. Herein, we report that terminal borylation and central distortion of 4,4′-bipyridine allow us to readily isolate the first bis-BN-based analogues (1 and 2) of Chichibabin's hydrocarbon with three stable redox states and tunable ground states. Electrochemically, both compounds exhibit two reversible oxidation processes with wide redox ranges. One- and two-electron chemical oxidations of 1 afford the crystalline radical cation 1˙+ and dication 12+, respectively. Moreover, the ground states of 1 and 2 are tunable with 1 as a closed-shell singlet and the tetramethyl-substituted 2 as an open-shell singlet, the latter of which could be thermally excited to its triplet state because of the small singlet-triplet gap. Herein, we report the isolation of bis-BN-based species 1 and 2 with multiple stable redox states. Their ground states are tunable with 1 as a closed-shell singlet and 2 as an open-shell singlet with a small singlet-triplet gap.![]()
Collapse
Affiliation(s)
- Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Zhuofeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Manling Bao
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Chunmeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
- State Key Laboratory of Coordination Chemistry, Nanjing UniversityNanjing 210023China
| |
Collapse
|
12
|
Ishigaki Y, Fukagawa R, Sugawara K, Harimoto T, Suzuki T. Geometrical and Electronic Structure of Cation Radical Species of Tetraarylanthraquinodimethane: An Intermediate for Unique Electrochromic Behavior. Chem Asian J 2022; 17:e202200914. [DOI: 10.1002/asia.202200914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/13/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Ishigaki
- Hokkaido University: Hokkaido Daigaku department of chemistry JAPAN
| | | | | | | | - Takanori Suzuki
- Hokkaido University: Hokkaido Daigaku Department of Chemistry Hokkaido UniversityNorth 10, West 8, North-ward 060-0810 Sapporo JAPAN
| |
Collapse
|
13
|
Xie Z, Dai Y, Bao M, Feng Z, Wang W, Liu C, Wang X, Su Y. Crystalline radical cations of bis-BN-based analogues of Thiele's hydrocarbon. Chem Commun (Camb) 2022; 58:5391-5394. [PMID: 35412540 DOI: 10.1039/d2cc01254e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two radical cations of bis-BN-based analogues of Thiele's hydrocarbons were facilely synthesized, fully characterized, and theoretically investigated. One-electron oxidation leads to the reduced bond length alternation and NICS values of the central C4N2 rings, suggesting the decreasing antiaromatic character. The spin density of the radical cations is significantly delocalized over the central linkers with a small contribution from two terminal N-heterocyclic boryl units.
Collapse
Affiliation(s)
- Zhuofeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Manling Bao
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Chunmeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China. .,State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
14
|
Harimoto T, Ishigaki Y. Redox‐Active Hydrocarbons: Isolation and Structural Determination of Cationic States toward Advanced Response Systems. Chempluschem 2022; 87:e202200013. [DOI: 10.1002/cplu.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Harimoto
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science JAPAN
| | - Yusuke Ishigaki
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science North 10, West 8, North-ward 060-0810 Sapporo JAPAN
| |
Collapse
|