1
|
Acharya N, Daniel EA, Dao TP, Niblo JK, Mulvey E, Sukenik S, Kraut DA, Roelofs J, Castañeda CA. STI1 domain dynamically engages transient helices in disordered regions to drive self-association and phase separation of yeast ubiquilin Dsk2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643327. [PMID: 40161686 PMCID: PMC11952510 DOI: 10.1101/2025.03.14.643327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Ubiquitin-binding shuttle proteins are important components of stress-induced biomolecular condensates in cells. Yeast Dsk2 scaffolds proteasome-containing condensates via multivalent interactions with proteasomes and ubiquitinated substrates under azide-induced mitochondrial stress or extended growth conditions. However, the molecular mechanisms underlying how these shuttle proteins work are unknown. Here, we identify that the middle chaperone-binding STI1 domain is the main driver of Dsk2 self-association and phase separation in vitro . Using NMR spectroscopy and computational simulations, we find that the STI1 domain interacts with three transient amphipathic helices within the intrinsically-disordered regions of Dsk2. Removal of either the STI1 domain or these helices significantly reduces the propensity for Dsk2 to phase separate. In vivo , removal of the STI1 domain in Dsk2 has the opposite effect, resulting in an increase of proteasome-containing condensates due to an accumulation of polyubiquitinated substrates. Modeling of STI1-helix interactions reveals a binding mode that is reminiscent of interactions between chaperone STI1/DP2 domains and client proteins containing amphipathic or transmembrane helices. Our findings support a model whereby STI1-helix interactions important for Dsk2 condensate formation can be replaced by STI1-client interactions for downstream chaperone or other protein quality control outcomes. Highlights The intrinsically disordered regions of Dsk2 harbor transient helices that regulate protein properties via interactions with the STI1 domain. The STI1 domain is a significant driver of Dsk2 self-association and phase separation in vitro . Dsk2 colocalizes with ubiquitinated substrates and proteasome in reconstituted condensates.Absence of Dsk2 STI1 domain in stressed yeast cells promotes formation of proteasome condensates coupled with upregulation of polyubiquitinated substrates.
Collapse
|
2
|
Chen J, Qiu F, Shi J, Huang W, Zhao C, Han Q. PDRN prevents SIRT1 degradation by attenuating autophagy during skin aging. PLoS One 2025; 20:e0321005. [PMID: 40343916 PMCID: PMC12063799 DOI: 10.1371/journal.pone.0321005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/27/2025] [Indexed: 05/11/2025] Open
Abstract
Polydeoxyribonucleotide (PDRN) is a low molecular weight linear polyribonucleotide fragment derived from salmon sperm, known for its potential in tissue regeneration and anti-inflammatory applications. However, its specific function in cellular senescence is yet to be fully understood. Silent information regulator 1 (SIRT1), an NAD + -dependent deacetylase, plays a crucial role in regulating cellular aging and tumorigenesis. Notably, SIRT1 levels decrease with age in both mice and during cellular senescence, highlighting its significance in anti-aging processes. This study assessed the effects of PDRN on cellular aging induced by ultraviolet B (UVB) or hydrogen peroxide (H2O2) and investigated the mechanisms of its protective effects against aging at the cellular level. Our data demonstrated that PDRN treatment mitigated the decline in cell viability and inhibited cell aging when exposed to UVB or H2O2. Furthermore, PDRN ameliorated UVB-induced epidermal thickening in mouse skin. Mechanically, we found that PDRN treatment led to a reduction in nuclear autophagy and the formation of cytoplasmic stress granules by preventing the accumulation of damaged LC3 in the nuclear and inhibiting the degradation of SIRT1 and p62 in the cytoplasm during cellular senescence. In conclusion, PDRN exhibits antioxidant and anti-aging properties by diminishing autophagy and enhancing SIRT1 expression. These results suggest that PDRN has potential as a therapeutic compound for reducing skin aging induced by UVB or H2O2 through the modulation of SIRT1 levels.
Collapse
Affiliation(s)
- Jingjing Chen
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
- National Institutes for Food and Drug Control, Beijing, China
| | - Fanshan Qiu
- National Institutes for Food and Drug Control, Beijing, China
| | - Jianfeng Shi
- National Institutes for Food and Drug Control, Beijing, China
| | - Wei Huang
- Beijing Stomatological Hospital, Emergency Department, Beijing, China
| | - Chenyu Zhao
- National Institutes for Food and Drug Control, Beijing, China
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
3
|
Butcher C, VanderVen K, Li J. Proteasome condensates repeatedly "contact and release" at the nuclear periphery during dissolution. MICROPUBLICATION BIOLOGY 2025; 2025. [PMID: 40110474 PMCID: PMC11920827 DOI: 10.17912/micropub.biology.001553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Stress-induced proteasome condensates have been identified in both yeast and mammalian cells. The biochemical properties and dynamics of proteasome condensates mainly depend on the specific stress conditions. In the budding yeast Saccharomyces cerevisiae , cytoplasmic proteasome condensates assemble from the nuclear proteasomes under glucose starvation conditions. Proteasome condensates rapidly dissipate, and proteasomes reimport to the nucleus within minutes upon glucose recovery. We characterize the kinetics and dynamics of proteasome condensates after glucose recovery. Proteasome condensates transiently associate nuclear membranes with a repetitive "contact and release" movement during dissolution. Our study provides new insight into the events leading to biomolecular condensate dissolution.
Collapse
Affiliation(s)
- Conner Butcher
- Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, United States
| | - Kyle VanderVen
- Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, United States
| | - Jianhui Li
- Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, United States
| |
Collapse
|
4
|
Enenkel C, Ernst OP. Proteasome dynamics in response to metabolic changes. Front Cell Dev Biol 2025; 13:1523382. [PMID: 40099196 PMCID: PMC11911490 DOI: 10.3389/fcell.2025.1523382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Proteasomes, essential protease complexes in protein homeostasis, adapt to metabolic changes through intracellular movements. As the executive arm of the ubiquitin-proteasome system, they selectively degrade poly-ubiquitinated proteins in an ATP-dependent process. The primary proteasome configuration involved in this degradation is the 26S proteasome, which is composed of a proteolytically active core particle flanked by two regulatory particles. In metabolically active cells, such as proliferating yeast and mammalian cancer cells, 26S proteasomes are predominantly nuclear and actively engaged in protein degradation. However, during nutrient deprivation or stress-induced quiescence, proteasome localization changes. In quiescent yeast, proteasomes initially accumulate at the nuclear envelope. During prolonged quiescence with decreased ATP levels, proteasomes exit the nucleus and are sequestered into cytoplasmic membraneless organelles, so-called proteasome storage granules (PSGs). In mammalian cells, starvation and stress trigger formation of membraneless organelles containing proteasomes and poly-ubiquitinated substrates. The proteasome condensates are motile, reversible, and contribute to stress resistance and improved fitness during aging. Proteasome condensation may involve liquid-liquid phase separation, a mechanism underlying the assembly of membraneless organelles.
Collapse
Affiliation(s)
- Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Oliver P. Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Rajendran A, Castañeda CA. Protein quality control machinery: regulators of condensate architecture and functionality. Trends Biochem Sci 2025; 50:106-120. [PMID: 39755440 PMCID: PMC11805624 DOI: 10.1016/j.tibs.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates. Here, we discuss how the PQC machinery can form their own condensates and also be recruited to known condensates under physiological or stress-induced conditions. We present molecular insights into how the multivalent architecture of polyUb chains, Ub-binding adaptor proteins, and other PQC machinery contribute to condensate assembly, leading to the regulation of downstream PQC outcomes and therapeutic potential.
Collapse
Affiliation(s)
- Anitha Rajendran
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Carlos A Castañeda
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
6
|
Sheikh S, Fu CJ, Brown MW, Baldauf SL. The Acrasis kona genome and developmental transcriptomes reveal deep origins of eukaryotic multicellular pathways. Nat Commun 2024; 15:10197. [PMID: 39587099 PMCID: PMC11589745 DOI: 10.1038/s41467-024-54029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Acrasids are amoebae with the capacity to form multicellular fruiting bodies in a process known as aggregative multicellularity (AGM). This makes acrasids the only known example of multicellularity among the earliest branches of eukaryotes (the former Excavata). Here, we report the Acrasis kona genome sequence plus transcriptomes from pre-, mid- and post-developmental stages. The genome is rich in novelty and genes with strong signatures of horizontal transfer, and multigene families encode nearly half of the amoeba's predicted proteome. Development in A. kona appears molecularly simple relative to the AGM model, Dictyostelium discoideum. However, the acrasid also differs from the dictyostelid in that it does not appear to be starving during development. Instead, developing A. kona appears to be very metabolically active, does not induce autophagy and does not up-regulate its proteasomal genes. Together, these observations strongly suggest that starvation is not essential for AGM development. Nonetheless, development in the two amoebae appears to employ remarkably similar pathways for signaling, motility and, potentially, construction of an extracellular matrix surrounding the developing cell mass. Much of this similarity is also shared with animal development, suggesting that much of the basic tool kit for multicellular development arose early in eukaryote evolution.
Collapse
Affiliation(s)
- Sanea Sheikh
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Section of Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cheng-Jie Fu
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Olink, Division of Thermo Fisher Scientific, Uppsala, Sweden
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Sandra L Baldauf
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Xie Z, Zhao S, Tu Y, Liu E, Li Y, Wang X, Chen C, Zhai S, Qi J, Wu C, Wu H, Zhou M, Wang W. Proteasome resides in and dismantles plant heat stress granules constitutively. Mol Cell 2024; 84:3320-3335.e7. [PMID: 39173636 DOI: 10.1016/j.molcel.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.
Collapse
Affiliation(s)
- Zhouli Xie
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China; Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhao
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Yuchen Tu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Enhui Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Ying Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Changtian Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Shuwei Zhai
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Qi
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengyun Wu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Honghong Wu
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
8
|
Bartolome A, Heiby JC, Di Fraia D, Heinze I, Knaudt H, Spaeth E, Omrani O, Minetti A, Hofmann M, Kirkpatrick JM, Dau T, Ori A. Quantitative mapping of proteasome interactomes and substrates using ProteasomeID. eLife 2024; 13:RP93256. [PMID: 39230574 PMCID: PMC11374303 DOI: 10.7554/elife.93256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Proteasomes are essential molecular machines responsible for the degradation of proteins in eukaryotic cells. Altered proteasome activity has been linked to neurodegeneration, auto-immune disorders and cancer. Despite the relevance for human disease and drug development, no method currently exists to monitor proteasome composition and interactions in vivo in animal models. To fill this gap, we developed a strategy based on tagging of proteasomes with promiscuous biotin ligases and generated a new mouse model enabling the quantification of proteasome interactions by mass spectrometry. We show that biotin ligases can be incorporated in fully assembled proteasomes without negative impact on their activity. We demonstrate the utility of our method by identifying novel proteasome-interacting proteins, charting interactomes across mouse organs, and showing that proximity-labeling enables the identification of both endogenous and small-molecule-induced proteasome substrates.
Collapse
Affiliation(s)
| | - Julia C Heiby
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | | - Ivonne Heinze
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Hannah Knaudt
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Ellen Spaeth
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Omid Omrani
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alberto Minetti
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Maleen Hofmann
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | | - Therese Dau
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
9
|
Valentino IM, Llivicota-Guaman JG, Dao TP, Mulvey EO, Lehman AM, Galagedera SKK, Mallon EL, Castañeda CA, Kraut DA. Phase separation of polyubiquitinated proteins in UBQLN2 condensates controls substrate fate. Proc Natl Acad Sci U S A 2024; 121:e2405964121. [PMID: 39121161 PMCID: PMC11331126 DOI: 10.1073/pnas.2405964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/26/2024] [Indexed: 08/11/2024] Open
Abstract
Ubiquitination is one of the most common posttranslational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity toward K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage-dependent manner, thus serving as an interpreter of the ubiquitin code.
Collapse
Affiliation(s)
| | | | - Thuy P. Dao
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
| | - Erin O. Mulvey
- Department of Chemistry, Villanova University, Villanova, PA19085
| | - Andrew M. Lehman
- Department of Chemistry, Villanova University, Villanova, PA19085
| | - Sarasi K. K. Galagedera
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
| | - Erica L. Mallon
- Department of Chemistry, Villanova University, Villanova, PA19085
| | - Carlos A. Castañeda
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
| | - Daniel A. Kraut
- Department of Chemistry, Villanova University, Villanova, PA19085
| |
Collapse
|
10
|
Yin L, Yuan L, Li J, Jiang B. The liquid-liquid phase separation in programmed cell death. Cell Signal 2024; 120:111215. [PMID: 38740235 DOI: 10.1016/j.cellsig.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
In recent years, the physical phenomenon of liquid-liquid phase separation has been widely introduced into biological research. Membrane-free organelles have been found to exist in cells that were driven by liquid-liquid phase separation. Intermolecular multivalent interactions can drive liquid-liquid phase separation to form condensates that are independent of other substances in the environment and thus can play an effective role in regulating multiple biological processes in the cell. The way of cell death has also long been a focus in multiple research. In the face of various stresses, cell death-related mechanisms are crucial for maintaining cellular homeostasis and regulating cell fate. With the in-depth study of cell death pathways, it has been found that the process of cell death was also accompanied by the regulation of liquid-liquid phase separation and played a key role. Therefore, this review summarized the roles of liquid-liquid phase separation in various cell death pathways, and explored the regulation of cell fate by liquid-liquid phase separation, with the expectation that the exploration of the mechanism of liquid-liquid phase separation would provide new insights into the treatment of diseases caused by regulated cell death.
Collapse
Affiliation(s)
- Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410078, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China.
| | - Ludong Yuan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410078, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Jing Li
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410078, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan 410078, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, PR China.
| |
Collapse
|
11
|
Wang A, Shi S, Ma Y, Li S, Gui W. Insights into the role of FoxL2 in tebuconazole-induced male- biased sex differentiation of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174543. [PMID: 38977095 DOI: 10.1016/j.scitotenv.2024.174543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Tebuconazole (TEB) is a commonly used fungicide that inhibits the aromatase Cyp19A and downregulates the transcription factor forkhead box L2 (FoxL2), leading to male-biased sex differentiation in zebrafish larvae. However, the specific mechanism by which FoxL2 functions following TEB exposure remains unclear. In this study, the phosphorylation sites and kinase-specific residues in zebrafish FoxL2 protein (zFoxL2) were predicted. Subsequently, recombinant zFoxL2 was prepared via prokaryotic expression, and a polyclonal rabbit-anti-zFoxL2 antibody was generated. Zebrafish fibroblast (ZF4) cells were exposed to 100-μM TEB alone for 8 h, after which changes in the expression of genes involved in the foxl2 regulatory pathway (akt1, pi3k, cyp19a1b, c/ebpb and sox9a) were detected. When co-exposed to 1-μM estradiol and 100-μM TEB, the expression of these key genes tended to be restored. Interestingly, TEB did not affect the expression of the foxl2 gene or protein but it significantly suppressed the phosphorylation of FoxL2 (pFoxL2) at serine 238 (decreased by 43.64 %, p = 0.009). Co-immunoprecipitation assays showed that, following exposure to 100-μM TEB, the total precipitated proteins in ZF4 cells decreased by 17.02 % (p = 0.029) and 31.39 % (p = 0.027) in the anti-zFoxL2 antibody group and anti-pFoxL2 (ser238) antibody group, respectively, indicating that TEB suppressed the capacity of the FoxL2 protein to bind to other proteins via repression of its own phosphorylation. The pull-down assay confirmed this conclusion. This study preliminarily elucidated that the foxl2 gene functions via post-translational regulation through hypophosphorylation of its encoded protein during TEB-induced male-biased sex differentiation.
Collapse
Affiliation(s)
- Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shiyao Shi
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China.
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
12
|
Valentino IM, Llivicota-Guaman JG, Dao TP, Mulvey EO, Lehman AM, Galagedera SKK, Mallon EL, Castañeda CA, Kraut DA. Phase separation of polyubiquitinated proteins in UBQLN2 condensates controls substrate fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585243. [PMID: 38559018 PMCID: PMC10980000 DOI: 10.1101/2024.03.15.585243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ubiquitination is one of the most common post-translational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity towards K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage dependent manner, thus serving as an interpreter of the ubiquitin code.
Collapse
Affiliation(s)
| | | | - Thuy P. Dao
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244
| | - Erin O. Mulvey
- Department of Chemistry, Villanova University, Villanova, PA 19085
| | - Andrew M. Lehman
- Department of Chemistry, Villanova University, Villanova, PA 19085
| | - Sarasi K. K. Galagedera
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244
| | - Erica L. Mallon
- Department of Chemistry, Villanova University, Villanova, PA 19085
| | - Carlos A. Castañeda
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244
| | - Daniel A. Kraut
- Department of Chemistry, Villanova University, Villanova, PA 19085
| |
Collapse
|
13
|
Burov A, Grigorieva E, Lebedev T, Vedernikova V, Popenko V, Astakhova T, Leonova O, Spirin P, Prassolov V, Karpov V, Morozov A. Multikinase inhibitors modulate non-constitutive proteasome expression in colorectal cancer cells. Front Mol Biosci 2024; 11:1351641. [PMID: 38774235 PMCID: PMC11106389 DOI: 10.3389/fmolb.2024.1351641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction: Proteasomes are multi-subunit protein complexes responsible for protein degradation in cells. Immunoproteasomes and intermediate proteasomes (together non-constitutive proteasomes) are specific forms of proteasomes frequently associated with immune response, antigen presentation, inflammation and stress. Expression of non-constitutive proteasome subunits has a prognostic value in several types of cancer. Thus, factors that modulate non-constitutive proteasome expression in tumors are of particular interest. Multikinase inhibitors (MKIs) demonstrate promising results in treatment of cancer. At the same time, their immunomodulatory properties and effects on non-constitutive proteasome expression in colorectal cancer cells are poorly investigated. Methods: Proteasome subunit expression in colorectal cancer was evaluated by bioinformatic analysis of available datasets. Two colorectal cancer cell lines, expressing fluorescent non-constitutive proteasomes were treated with multikinase inhibitors: regorafenib and sorafenib. The proteasome subunit expression was assessed by real-time PCR, Western blotting and flow cytometry. The proteasome activity was studied using proteasome activity-based probe and fluorescent substrates. Intracellular proteasome localization was revealed by confocal microscopy. Reactive oxygen species levels following treatment were determined in cells. Combined effect of proteasome inhibition and treatment with MKIs on viability of cells was estimated. Results: Expression of non-constitutive proteasomes is increased in BRAF-mutant colorectal tumors. Regorafenib and sorafenib stimulated the activity and synthesis of non-constitutive proteasomes in examined cell lines. MKIs induced oxidative stress and redistribution of proteasomes within cells. Sorafenib stimulated formation of cytoplasmic aggregates, containing proteolyticaly active non-constitutive proteasomes, while regorafenib had no such effect. MKIs caused no synergistic action when were combined with the proteasome inhibitor. Discussion: Obtained results indicate that MKIs might affect the crosstalk between cancer cells and immune cells via modulation of intracellular proteasome pool. Observed phenomenon should be considered when MKI-based therapy is applied.
Collapse
Affiliation(s)
- Alexander Burov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grigorieva
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria Vedernikova
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Astakhova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Karpov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
15
|
Waite KA, Vontz G, Lee SY, Roelofs J. Proteasome condensate formation is driven by multivalent interactions with shuttle factors and ubiquitin chains. Proc Natl Acad Sci U S A 2024; 121:e2310756121. [PMID: 38408252 PMCID: PMC10927584 DOI: 10.1073/pnas.2310756121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Stress conditions can cause the relocalization of proteasomes to condensates in yeast and mammalian cells. The interactions that facilitate the formation of proteasome condensates, however, are unclear. Here, we show that the formation of proteasome condensates in yeast depends on ubiquitin chains together with the proteasome shuttle factors Rad23 and Dsk2. These shuttle factors colocalize to these condensates. Strains deleted for the third shuttle factor gene, DDI1, show proteasome condensates in the absence of cellular stress, consistent with the accumulation of substrates with long K48-linked ubiquitin chains that accumulate in this mutant. We propose a model where the long K48-linked ubiquitin chains function as a scaffold for the ubiquitin-binding domains of the shuttle factors and the proteasome, allowing for the multivalent interactions that further drive condensate formation. Indeed, we determined different intrinsic ubiquitin receptors of the proteasome-Rpn1, Rpn10, and Rpn13-and the Ubl domains of Rad23 and Dsk2 are critical under different condensate-inducing conditions. In all, our data support a model where the cellular accumulation of substrates with long ubiquitin chains, potentially due to reduced cellular energy, allows for proteasome condensate formation. This suggests that proteasome condensates are not simply for proteasome storage, but function to sequester soluble ubiquitinated substrates together with inactive proteasomes.
Collapse
Affiliation(s)
- Kenrick A. Waite
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| | - Gabrielle Vontz
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| | - Stella Y. Lee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
16
|
Matthaei A, Joecks S, Frauenstein A, Bruening J, Bankwitz D, Friesland M, Gerold G, Vieyres G, Kaderali L, Meissner F, Pietschmann T. Landscape of protein-protein interactions during hepatitis C virus assembly and release. Microbiol Spectr 2024; 12:e0256222. [PMID: 38230952 PMCID: PMC10846047 DOI: 10.1128/spectrum.02562-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/11/2023] [Indexed: 01/18/2024] Open
Abstract
Assembly of infectious hepatitis C virus (HCV) particles requires multiple cellular proteins including for instance apolipoprotein E (ApoE). To describe these protein-protein interactions, we performed an affinity purification mass spectrometry screen of HCV-infected cells. We used functional viral constructs with epitope-tagged envelope protein 2 (E2), protein (p) 7, or nonstructural protein 4B (NS4B) as well as cells expressing a tagged variant of ApoE. We also evaluated assembly stage-dependent remodeling of protein complexes by using viral mutants carrying point mutations abrogating particle production at distinct steps of the HCV particle production cascade. Five ApoE binding proteins, 12 p7 binders, 7 primary E2 interactors, and 24 proteins interacting with NS4B were detected. Cell-derived PREB, STT3B, and SPCS2 as well as viral NS2 interacted with both p7 and E2. Only GTF3C3 interacted with E2 and NS4B, highlighting that HCV assembly and replication complexes exhibit largely distinct interactomes. An HCV core protein mutation, preventing core protein decoration of lipid droplets, profoundly altered the E2 interactome. In cells replicating this mutant, E2 interactions with HSPA5, STT3A/B, RAD23A/B, and ZNF860 were significantly enhanced, suggesting that E2 protein interactions partly depend on core protein functions. Bioinformatic and functional studies including STRING network analyses, RNA interference, and ectopic expression support a role of Rad23A and Rad23B in facilitating HCV infectious virus production. Both Rad23A and Rad23B are involved in the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Collectively, our results provide a map of host proteins interacting with HCV assembly proteins, and they give evidence for the involvement of ER protein folding machineries and the ERAD pathway in the late stages of the HCV replication cycle.IMPORTANCEHepatitis C virus (HCV) establishes chronic infections in the majority of exposed individuals. This capacity likely depends on viral immune evasion strategies. One feature likely contributing to persistence is the formation of so-called lipo-viro particles. These peculiar virions consist of viral structural proteins and cellular lipids and lipoproteins, the latter of which aid in viral attachment and cell entry and likely antibody escape. To learn about how lipo-viro particles are coined, here, we provide a comprehensive overview of protein-protein interactions in virus-producing cells. We identify numerous novel and specific HCV E2, p7, and cellular apolipoprotein E-interacting proteins. Pathway analyses of these interactors show that proteins participating in processes such as endoplasmic reticulum (ER) protein folding, ER-associated protein degradation, and glycosylation are heavily engaged in virus production. Moreover, we find that the proteome of HCV replication sites is distinct from the assembly proteome, suggesting that transport process likely shuttles viral RNA to assembly sites.
Collapse
Affiliation(s)
- Alina Matthaei
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Lower Saxony, Germany
| | - Sebastian Joecks
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Lower Saxony, Germany
| | - Annika Frauenstein
- RG Experimental Systems Immunology, Max-Planck Institute for Biochemistry, Planegg, Bavaria, Germany
| | - Janina Bruening
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Lower Saxony, Germany
| | - Dorothea Bankwitz
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Lower Saxony, Germany
| | - Martina Friesland
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Lower Saxony, Germany
| | - Gisa Gerold
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Lower Saxony, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Gabrielle Vieyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Lower Saxony, Germany
- Junior Research Group “Cell Biology of RNA Viruses,” Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Felix Meissner
- RG Experimental Systems Immunology, Max-Planck Institute for Biochemistry, Planegg, Bavaria, Germany
- Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Lower Saxony, Germany
| |
Collapse
|
17
|
Nguyet VTA, Ando R, Furutani N, Izawa S. Severe ethanol stress inhibits yeast proteasome activity at moderate temperatures but not at low temperatures. Genes Cells 2023; 28:736-745. [PMID: 37550872 DOI: 10.1111/gtc.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Since yeast research under laboratory conditions is usually conducted at 25-30°C (moderate temperature range), most of the findings on yeast physiology are based on analyses in this temperature range. Due to inefficiencies in cultivation and analysis, insufficient information is available on yeast physiology in the low-temperature range, although alcoholic beverage production is often conducted at relatively low temperatures (around 15°C). Recently, we reported that severe ethanol stress (10% v/v) inhibits proteasomal proteolysis in yeast cells under laboratory conditions at 28°C. In this study, proteasomal proteolysis at a low temperature (15°C) was evaluated using cycloheximide chase analysis of a short-lived protein (Gic2-3HA), an auxin-inducible degron system (Paf1-AID*-6FLAG), and Spe1-3HA, which is degraded ubiquitin-independently by the proteasome. At 15°C, proteasomal proteolysis was not inhibited under severe ethanol stress, and sufficient proteasomal activity was maintained. These results provide novel insights into the effects of low temperature and ethanol on yeast physiology.
Collapse
Affiliation(s)
- Vo Thi Anh Nguyet
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Ryoko Ando
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Noboru Furutani
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
18
|
Iriki T, Iio H, Yasuda S, Masuta S, Kato M, Kosako H, Hirayama S, Endo A, Ohtake F, Kamiya M, Urano Y, Saeki Y, Hamazaki J, Murata S. Senescent cells form nuclear foci that contain the 26S proteasome. Cell Rep 2023; 42:112880. [PMID: 37541257 DOI: 10.1016/j.celrep.2023.112880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023] Open
Abstract
The proteasome plays a central role in intracellular protein degradation. Age-dependent decline in proteasome activity is associated with cellular senescence and organismal aging; however, the mechanism by which the proteasome plays a role in senescent cells remains elusive. Here, we show that nuclear foci that contain the proteasome and exhibit liquid-like properties are formed in senescent cells. The formation of senescence-associated nuclear proteasome foci (SANPs) is dependent on ubiquitination and RAD23B, similar to previously known nuclear proteasome foci, but also requires proteasome activity. RAD23B knockdown suppresses SANP formation and increases mitochondrial activity, leading to reactive oxygen species production without affecting other senescence traits such as cell-cycle arrest and cell morphology. These findings suggest that SANPs are an important feature of senescent cells and uncover a mechanism by which the proteasome plays a role in senescent cells.
Collapse
Affiliation(s)
- Tomohiro Iriki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Hiroaki Iio
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shu Yasuda
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 1088641, Japan
| | - Shun Masuta
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Masakazu Kato
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo 1648530, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Kuramoto-cho, Tokushima 7708503, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Akinori Endo
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 1568506, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo 1428501, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 2268501, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan; Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Yasushi Saeki
- Division of Protein Metabolism, the Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo 1088639, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan.
| |
Collapse
|
19
|
Guo G, Wang X, Zhang Y, Li T. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1119-1132. [PMID: 37464880 PMCID: PMC10423696 DOI: 10.3724/abbs.2023131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Phase separation (PS) is an important mechanism underlying the formation of biomolecular condensates. Physiological condensates are associated with numerous biological processes, such as transcription, immunity, signaling, and synaptic transmission. Changes in particular amino acids or segments can disturb the protein's phase behavior and interactions with other biomolecules in condensates. It is thus presumed that variations in the phase-separating-prone domains can significantly impact the properties and functions of condensates. The dysfunction of condensates contributes to a number of pathological processes. Pharmacological perturbation of these condensates is proposed as a promising way to restore physiological states. In this review, we characterize the variations observed in PS proteins that lead to aberrant biomolecular compartmentalization. We also showcase recent advancements in bioinformatics of membraneless organelles (MLOs), focusing on available databases useful for screening PS proteins and describing endogenous condensates, guiding researchers to seek the underlying pathogenic mechanisms of biomolecular condensates.
Collapse
Affiliation(s)
- Gaigai Guo
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Xinxin Wang
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Yi Zhang
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Tingting Li
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- Key Laboratory for NeuroscienceMinistry of Education/National Health Commission of ChinaPeking UniversityBeijing100191China
| |
Collapse
|
20
|
Choi WH, Yun Y, Byun I, Kim S, Lee S, Sim J, Levi S, Park SH, Jun J, Kleifeld O, Kim KP, Han D, Chiba T, Seok C, Kwon YT, Glickman MH, Lee MJ. ECPAS/Ecm29-mediated 26S proteasome disassembly is an adaptive response to glucose starvation. Cell Rep 2023; 42:112701. [PMID: 37384533 DOI: 10.1016/j.celrep.2023.112701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/07/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
The 26S proteasome comprises 20S catalytic and 19S regulatory complexes. Approximately half of the proteasomes in cells exist as free 20S complexes; however, our mechanistic understanding of what determines the ratio of 26S to 20S species remains incomplete. Here, we show that glucose starvation uncouples 26S holoenzymes into 20S and 19S subcomplexes. Subcomplex affinity purification and quantitative mass spectrometry reveal that Ecm29 proteasome adaptor and scaffold (ECPAS) mediates this structural remodeling. The loss of ECPAS abrogates 26S dissociation, reducing degradation of 20S proteasome substrates, including puromycylated polypeptides. In silico modeling suggests that ECPAS conformational changes commence the disassembly process. ECPAS is also essential for endoplasmic reticulum stress response and cell survival during glucose starvation. In vivo xenograft model analysis reveals elevated 20S proteasome levels in glucose-deprived tumors. Our results demonstrate that the 20S-19S disassembly is a mechanism adapting global proteolysis to physiological needs and countering proteotoxic stress.
Collapse
Affiliation(s)
- Won Hoon Choi
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yejin Yun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Sumin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Seho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jiho Sim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Shahar Levi
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Seo Hyeong Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Jeongmoo Jun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Oded Kleifeld
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Tomoki Chiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Yong Tae Kwon
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Ischemic/Hypoxic Disease Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Ischemic/Hypoxic Disease Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
21
|
Waite KA, Vontz G, Lee SY, Roelofs J. Proteasome condensate formation is driven by multivalent interactions with shuttle factors and K48-linked ubiquitin chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546446. [PMID: 37425862 PMCID: PMC10326979 DOI: 10.1101/2023.06.25.546446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Stress conditions can cause the relocalization of proteasomes to condensates in yeast and mammalian cells. The interactions that facilitate the formation of proteasome condensates, however, are unclear. Here, we show that the formation of proteasome condensates in yeast depends on long K48-linked ubiquitin chains together with the proteasome shuttle factors Rad23 and Dsk2. These shuttle factors colocalize to these condensates. Strains deleted for the third shuttle factor gene, DDI1 , show proteasome condensates in the absence of cellular stress, consistent with the accumulation of substrates with long K48-linked ubiquitin chains that accumulate in this mutant. We propose a model where the long K48-linked ubiquitin chains function as a scaffold for the ubiquitin binding domains of the shuttle factors and the proteasome, allowing for the multivalent interactions that further drive condensate formation. Indeed, we determined different intrinsic ubiquitin receptors of the proteasome (Rpn1, Rpn10, and Rpn13) are critical under different condensate inducing conditions. In all, our data support a model where the cellular accumulation of substrates with long ubiquitin chains, potentially due to reduced cellular energy, allows for proteasome condensate formation. This suggests that proteasome condensates are not simply for proteasome storage, but function to sequester soluble ubiquitinated substrates together with inactive proteasomes. Significance Stress conditions can cause the relocalization of proteasomes to condensates in yeast as well as mammalian cells. Our work shows that the formation of proteasome condensates in yeast depends on long K48-linked ubiquitin chains, the proteasome binding shuttle factors Rad23 and Dsk2 and proteasome intrinsic ubiquitin receptors. Here, different receptors are critical for different condensate inducers. These results indicate distinct condensates can form with specific functionality. Our identification of key factors involved in the process is crucial for understanding the function of proteasome relocalization to condensates. We propose that cellular accumulation of substrates with long ubiquitin chains results in the formation of condensates comprising those ubiquitinated substrates, proteasomes, and proteasome shuttle factors, where the ubiquitin chains serve as the scaffold for condensate formation.
Collapse
|
22
|
Steinberger S, Adler J, Shaul Y. Method of Monitoring 26S Proteasome in Cells Revealed the Crucial Role of PSMA3 C-Terminus in 26S Integrity. Biomolecules 2023; 13:992. [PMID: 37371572 DOI: 10.3390/biom13060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Proteasomes critically regulate proteostasis via protein degradation. Proteasomes are multi-subunit complexes composed of the 20S proteolytic core particle (20S CP) that, in association with one or two 19S regulatory particles (19S RPs), generates the 26S proteasome, which is the major proteasomal complex in cells. Native gel protocols are used to investigate the 26S/20S ratio. However, a simple method for detecting these proteasome complexes in cells is missing. To this end, using CRISPR technology, we YFP-tagged the endogenous PSMB6 (β1) gene, a 20S CP subunit, and co-tagged endogenous PSMD6 (Rpn7), a 19S RP subunit, with the mScarlet fluorescent protein. We observed the colocalization of the YFP and mScarlet fluorescent proteins in the cells, with higher nuclear accumulation. Nuclear proteasomal granules are formed under osmotic stress, and all were positive for YFP and mScarlet. Previously, we have reported that PSMD1 knockdown, one of the 19 RP subunits, gives rise to a high level of "free" 20S CPs. Intriguingly, under this condition, the 20S-YFP remained nuclear, whereas the PSMD6-mScarlet was mostly in cytoplasm, demonstrating the distinct subcellular distribution of uncapped 20S CPs. Lately, we have shown that the PSMA3 (α7) C-terminus, a 20S CP subunit, binds multiple intrinsically disordered proteins (IDPs). Remarkably, the truncation of the PSMA3 C-terminus is phenotypically reminiscent of PSMD1 knockdown. These data suggest that the PSMA3 C-terminal region is critical for 26S proteasome integrity.
Collapse
Affiliation(s)
- Shirel Steinberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Buel GR, Chen X, Myint W, Kayode O, Folimonova V, Cruz A, Skorupka KA, Matsuo H, Walters KJ. E6AP AZUL interaction with UBQLN1/2 in cells, condensates, and an AlphaFold-NMR integrated structure. Structure 2023; 31:395-410.e6. [PMID: 36827983 PMCID: PMC10081965 DOI: 10.1016/j.str.2023.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
The E3 ligase E6AP/UBE3A has a dedicated binding site in the 26S proteasome provided by the RAZUL domain of substrate receptor hRpn10/S5a/PSMD4. Guided by RAZUL sequence similarity, we test and demonstrate here that the E6AP AZUL binds transiently to the UBA of proteasomal shuttle factor UBQLN1/2. Despite a weak binding affinity, E6AP AZUL is recruited to UBQLN2 biomolecular condensates in vitro and E6AP interacts with UBQLN1/2 in cellulo. Steady-state and transfer nuclear Overhauser effect (NOE) experiments indicate direct interaction of AZUL with UBQLN1 UBA. Intermolecular contacts identified by NOE spectroscopy (NOESY) data were combined with AlphaFold2-Multimer predictions to yield an AZUL:UBA model structure. We additionally identify an oligomerization domain directly adjacent to UBQLN1/2 UBA (UBA adjacent [UBAA]) that is α-helical and allosterically reconfigured by AZUL binding to UBA. These data lead to a model of E6AP recruitment to UBQLN1/2 by AZUL:UBA interaction and provide fundamental information on binding requirements for interactions in condensates and cells.
Collapse
Affiliation(s)
- Gwen R Buel
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiang Chen
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Wazo Myint
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Olumide Kayode
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Varvara Folimonova
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Anthony Cruz
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Katarzyna A Skorupka
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
24
|
Buneeva OA, Kopylov AT, Medvedev AE. Proteasome Interactome and Its Role in the Mechanisms of Brain Plasticity. BIOCHEMISTRY (MOSCOW) 2023; 88:319-336. [PMID: 37076280 DOI: 10.1134/s0006297923030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Abstract
Proteasomes are highly conserved multienzyme complexes responsible for proteolytic degradation of the short-lived, regulatory, misfolded, and damaged proteins. They play an important role in the processes of brain plasticity, and decrease in their function is accompanied by the development of neurodegenerative pathology. Studies performed in different laboratories both on cultured mammalian and human cells and on preparations of the rat and rabbit brain cortex revealed a large number of proteasome-associated proteins. Since the identified proteins belong to certain metabolic pathways, multiple enrichment of the proteasome fraction with these proteins indicates their important role in proteasome functioning. Extrapolation of the experimental data, obtained on various biological objects, to the human brain suggests that the proteasome-associated proteins account for at least 28% of the human brain proteome. The proteasome interactome of the brain contains a large number of proteins involved in the assembly of these supramolecular complexes, regulation of their functioning, and intracellular localization, which could be changed under different conditions (for example, during oxidative stress) or in different phases of the cell cycle. In the context of molecular functions of the Gene Ontology (GO) Pathways, the proteins of the proteasome interactome mediate cross-talk between components of more than 30 metabolic pathways annotated in terms of GO. The main result of these interactions is binding of adenine and guanine nucleotides, crucial for realization of the nucleotide-dependent functions of the 26S and 20S proteasomes. Since the development of neurodegenerative pathology is often associated with regioselective decrease in the functional activity of proteasomes, a positive therapeutic effect would be obviously provided by the factors increasing proteasomal activity. In any case, pharmacological regulation of the brain proteasomes seems to be realized through the changes in composition and/or activity of the proteins associated with proteasomes (deubiquitinase, PKA, CaMKIIα, etc.).
Collapse
Affiliation(s)
- Olga A Buneeva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | | | | |
Collapse
|
25
|
Grønbæk-Thygesen M, Kampmeyer C, Hofmann K, Hartmann-Petersen R. The moonlighting of RAD23 in DNA repair and protein degradation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194925. [PMID: 36863450 DOI: 10.1016/j.bbagrm.2023.194925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
A moonlighting protein is one, which carries out multiple, often wholly unrelated, functions. The RAD23 protein is a fascinating example of this, where the same polypeptide and the embedded domains function independently in both nucleotide excision repair (NER) and protein degradation via the ubiquitin-proteasome system (UPS). Hence, through direct binding to the central NER component XPC, RAD23 stabilizes XPC and contributes to DNA damage recognition. Conversely, RAD23 also interacts directly with the 26S proteasome and ubiquitylated substrates to mediate proteasomal substrate recognition. In this function, RAD23 activates the proteolytic activity of the proteasome and engages specifically in well-characterized degradation pathways through direct interactions with E3 ubiquitin-protein ligases and other UPS components. Here, we summarize the past 40 years of research into the roles of RAD23 in NER and the UPS.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| | - Caroline Kampmeyer
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Germany
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
26
|
Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival. Int J Mol Sci 2023; 24:ijms24043422. [PMID: 36834832 PMCID: PMC9961632 DOI: 10.3390/ijms24043422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Proteases are the group of enzymes that carry out proteolysis in all forms of life and play an essential role in cell survival. By acting on specific functional proteins, proteases affect the transcriptional and post-translational pathways in a cell. Lon, FtsH, HslVU and the Clp family are among the ATP-dependent proteases responsible for intracellular proteolysis in bacteria. In bacteria, Lon protease acts as a global regulator, governs an array of important functions such as DNA replication and repair, virulence factors, stress response and biofilm formation, among others. Moreover, Lon is involved in the regulation of bacterial metabolism and toxin-antitoxin systems. Hence, understanding the contribution and mechanisms of Lon as a global regulator in bacterial pathogenesis is crucial. In this review, we discuss the structure and substrate specificity of the bacterial Lon protease, as well as its ability to regulate bacterial pathogenesis.
Collapse
|
27
|
Thirunavukkarasu S, Santhekadur PK. Editorial: Congruities between cancer and infectious diseases: Lessons to be learned from these distinct yet analogous fields. Front Cell Infect Microbiol 2022; 12:1072022. [PMID: 36569201 PMCID: PMC9768586 DOI: 10.3389/fcimb.2022.1072022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shyamala Thirunavukkarasu
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Prasanna K. Santhekadur
- Department of Biochemistry, Center of Excellence in Molecular Biology & Regenerative Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India,*Correspondence: Prasanna K. Santhekadur,
| |
Collapse
|
28
|
Osei-Amponsa V, Walters KJ. Proteasome substrate receptors and their therapeutic potential. Trends Biochem Sci 2022; 47:950-964. [PMID: 35817651 PMCID: PMC9588529 DOI: 10.1016/j.tibs.2022.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
The ubiquitin-proteasome system (UPS) is critical for protein quality control and regulating protein lifespans. Following ubiquitination, UPS substrates bind multidomain receptors that, in addition to ubiquitin-binding sites, contain functional domains that bind to deubiquitinating enzymes (DUBs) or the E3 ligase E6AP/UBE3A. We provide an overview of the proteasome, focusing on its receptors and DUBs. We highlight the key role of dynamics and importance of the substrate receptors having domains for both binding and processing ubiquitin chains. The UPS is rich with therapeutic opportunities, with proteasome inhibitors used clinically and ongoing development of small molecule proteolysis targeting chimeras (PROTACs) for the degradation of disease-associated proteins. We discuss the therapeutic potential of proteasome receptors, including hRpn13, for which PROTACs have been developed.
Collapse
Affiliation(s)
- Vasty Osei-Amponsa
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
29
|
Waite KA, Roelofs J. Proteasome granule formation is regulated through mitochondrial respiration and kinase signaling. J Cell Sci 2022; 135:jcs259778. [PMID: 35975718 PMCID: PMC9482347 DOI: 10.1242/jcs.259778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, proteasomes are enriched in cell nuclei, in which they execute important cellular functions. Nutrient stress can change this localization, indicating that proteasomes respond to the metabolic state of the cell. However, the signals that connect these processes remain poorly understood. Carbon starvation triggers a reversible translocation of proteasomes to cytosolic condensates known as proteasome storage granules. Surprisingly, we observed strongly reduced levels of proteasome granules when cells had active cellular respiration prior to starvation. This suggests that the mitochondrial activity of cells is a determining factor in the response of proteasomes to carbon starvation. Consistent with this, upon inhibition of mitochondrial function, we observed that proteasomes relocalize to granules. These links between proteasomes and metabolism involve specific signaling pathways, as we identified a mitogen-activated protein kinase (MAPK) cascade that is critical to the formation of proteasome granules after respiratory growth but not following glycolytic growth. Furthermore, the yeast homolog of AMP kinase, Snf1, is important for proteasome granule formation induced by mitochondrial inhibitors, but it is dispensable for granule formation following carbon starvation. We propose a model in which mitochondrial activity promotes nuclear localization of the proteasome. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., HLSIC 1077, Kansas City, KS 66160-7421, USA
| |
Collapse
|
30
|
Jin Q, Li J, Chen GY, Wu ZY, Liu XY, Liu Y, Chen L, Wu XY, Liu Y, Zhao X, Song YH. Network and Experimental Pharmacology to Decode the Action of Wendan Decoction Against Generalized Anxiety Disorder. Drug Des Devel Ther 2022; 16:3297-3314. [PMID: 36193286 PMCID: PMC9526509 DOI: 10.2147/dddt.s367871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Qi Jin
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Jie Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Guang-Yao Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Zi-Yu Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, People’s Republic of China
| | - Xiao-Yu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yi Liu
- Humanities School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Lin Chen
- Qihuang School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xin-Yi Wu
- Qihuang School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xin Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- Correspondence: Xin Zhao; Yue-Han Song, Email ;
| | - Yue-Han Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
31
|
Regulation of Life & Death by REGγ. Cells 2022; 11:cells11152281. [PMID: 35892577 PMCID: PMC9330691 DOI: 10.3390/cells11152281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
REGγ, a proteasome activator belonging to the 11S (otherwise known as REG, PA28, or PSME) proteasome activator family, is widely present in many eukaryotes. By binding to the 20S catalytic core particle, REGγ acts as a molecular sieve to selectively target proteins for degradation in an ATP- and ubiquitin-independent manner. This non-canonical proteasome pathway directly regulates seemingly unrelated cellular processes including cell growth and proliferation, apoptosis, DNA damage response, immune response, and metabolism. By affecting different pathways, REGγ plays a vital role in the regulation of cellular life and death through the maintenance of protein homeostasis. As a promoter of cellular growth and a key regulator of several tumor suppressors, many recent studies have linked REGγ overexpression with tumor formation and suggested the REGγ-proteasome as a potential target of new cancer-drug development. This review will present an overview of the major functions of REGγ as it relates to the regulation of cellular life and death, along with new mechanistic insights into the regulation of REGγ.
Collapse
|
32
|
Enenkel C, Kang RW, Wilfling F, Ernst OP. Intracellular localization of the proteasome in response to stress conditions. J Biol Chem 2022; 298:102083. [PMID: 35636514 PMCID: PMC9218506 DOI: 10.1016/j.jbc.2022.102083] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin–proteasome system fulfills an essential role in regulating protein homeostasis by spatially and temporally controlling proteolysis in an ATP- and ubiquitin-dependent manner. However, the localization of proteasomes is highly variable under diverse cellular conditions. In yeast, newly synthesized proteasomes are primarily localized to the nucleus during cell proliferation. Yeast proteasomes are transported into the nucleus through the nuclear pore either as immature subcomplexes or as mature enzymes via adapter proteins Sts1 and Blm10, while in mammalian cells, postmitotic uptake of proteasomes into the nucleus is mediated by AKIRIN2, an adapter protein essentially required for nuclear protein degradation. Stressful growth conditions and the reversible halt of proliferation, that is quiescence, are associated with a decline in ATP and the reorganization of proteasome localization. Cellular stress leads to proteasome accumulation in membraneless granules either in the nucleus or in the cytoplasm. In quiescence, yeast proteasomes are sequestered in an ubiquitin-dependent manner into motile and reversible proteasome storage granules in the cytoplasm. In cancer cells, upon amino acid deprivation, heat shock, osmotic stress, oxidative stress, or the inhibition of either proteasome activity or nuclear export, reversible proteasome foci containing polyubiquitinated substrates are formed by liquid–liquid phase separation in the nucleus. In this review, we summarize recent literature revealing new links between nuclear transport, ubiquitin signaling, and the intracellular organization of proteasomes during cellular stress conditions.
Collapse
Affiliation(s)
- Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Ryu Won Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Igelmann S, Lessard F, Ferbeyre G. Liquid-Liquid Phase Separation in Cancer Signaling, Metabolism and Anticancer Therapy. Cancers (Basel) 2022; 14:cancers14071830. [PMID: 35406602 PMCID: PMC8997759 DOI: 10.3390/cancers14071830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023] Open
Abstract
The cancer state is thought to be maintained by genetic and epigenetic changes that drive a cancer-promoting gene expression program. However, recent results show that cellular states can be also stably maintained by the reorganization of cell structure leading to the formation of biological condensates via the process of liquid-liquid phase separation. Here, we review the data showing cancer-specific biological condensates initiated by mutant oncoproteins, RNA-binding proteins, or lincRNAs that regulate oncogenic gene expression programs and cancer metabolism. Effective anticancer drugs may specifically partition into oncogenic biological condensates (OBC).
Collapse
Affiliation(s)
- Sebastian Igelmann
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada;
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC G1R 2J6, Canada;
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada;
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Correspondence: ; Tel.: +1-514-343-7571
| |
Collapse
|
34
|
Spatial sequestration of misfolded proteins in neurodegenerative diseases. Biochem Soc Trans 2022; 50:759-771. [PMID: 35311889 DOI: 10.1042/bst20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Properly folded, functional proteins are essential for cell health. Cells sustain protein homeostasis, or proteostasis, via protein quality control (PQC) mechanisms. It is currently hypothesized that a breakdown in proteostasis during ageing leads to the accumulation of protein aggregates in the cell and disease. Sequestration of misfolded proteins into PQC compartments represents one branch of the PQC network. In neurodegenerative diseases, certain proteins form abnormal protein deposits. Which PQC compartments house misfolded proteins associated with neurodegenerative diseases is still being investigated. It remains unclear if sequestration of these misfolded proteins is toxic or protective to the cell. Here, we review the current knowledge on various PQC compartments that form in the cell, the kinds of protein aggregates found in neurodegenerative diseases, and what is known about their sequestration. Understanding how protein sequestration occurs can shed light on why aggregates are toxic to the cell and are linked to neurodegenerative diseases like Huntington's, Alzheimer's, and Parkinson's diseases.
Collapse
|
35
|
Guo X. Localized Proteasomal Degradation: From the Nucleus to Cell Periphery. Biomolecules 2022; 12:biom12020229. [PMID: 35204730 PMCID: PMC8961600 DOI: 10.3390/biom12020229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
The proteasome is responsible for selective degradation of most cellular proteins. Abundantly present in the cell, proteasomes not only diffuse in the cytoplasm and the nucleus but also associate with the chromatin, cytoskeleton, various membranes and membraneless organelles/condensates. How and why the proteasome gets to these specific subcellular compartments remains poorly understood, although increasing evidence supports the hypothesis that intracellular localization may have profound impacts on the activity, substrate accessibility and stability/integrity of the proteasome. In this short review, I summarize recent advances on the functions, regulations and targeting mechanisms of proteasomes, especially those localized to the nuclear condensates and membrane structures of the cell, and I discuss the biological significance thereof in mediating compartmentalized protein degradation.
Collapse
Affiliation(s)
- Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| |
Collapse
|