1
|
Prates LHF, Aumann RA, Sievers I, Rehling T, Schetelig MF. Functional validation of a white pupae minimal gene construct in Ceratitis capitata (Diptera: Tephritidae). INSECT SCIENCE 2025. [PMID: 40351024 DOI: 10.1111/1744-7917.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 05/14/2025]
Abstract
Genetic sexing strains (GSS) are important tools for the sterile insect technique (SIT), an environmentally friendly and species-specific insect pest control method. GSS feature sex-specific phenotypes, enabling sex sorting in mass-rearing facilities and male-only releases, which significantly improve the cost-effectiveness and efficiency of SIT programs. In classical GSS, sex linkage of marker gene(s), such as white pupae (wp), is achieved through an irradiation-induced translocation between the marker-carrying autosome and the Y chromosome. However, this approach may render GSS males semisterile. The recently proposed neo-classical GSS concept suggests using genome editing to achieve sex linkage by directly inserting the wild-type marker allele onto the Y chromosome, potentially yielding GSS males with higher fertility. In this study, we examined the Ceratitis capitata wp gene as a genetic marker for the neo-classical GSS concept and developed a minimal, intronless version of this gene, termed mini-wp. We demonstrate that a single copy of mini-wp is sufficient to restore the wild-type brown puparium phenotype and is functional when integrated at various positions within the C. capitata genome, including the X chromosome. Due to its smaller size (4689 bp, including 2000 bp of putative promoter region) relative to the full wild-type wp allele (20868 bp), mini-wp may facilitate its precise insertion into the Y chromosome, representing an important step toward realizing neo-classical GSS. Furthermore, the methodology developed for designing and testing mini-wp in medfly may be adapted to other Tephritid species with an identified wp gene.
Collapse
Affiliation(s)
| | - Roswitha A Aumann
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, Giessen, Germany
| | - Inga Sievers
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, Giessen, Germany
| | - Tanja Rehling
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, Giessen, Germany
| | - Marc F Schetelig
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Davydova S, Yu D, Meccariello A. Genetic engineering for SIT application: a fruit fly-focused review. INSECT SCIENCE 2025. [PMID: 40195546 DOI: 10.1111/1744-7917.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
Sterile insect technique (SIT) has become a key component of efficient pest control. Fruit fly pests from the Drosophilidae and Tephritidae families pose a substantial and overwhelmingly increasing threat to the agricultural industry, aggravated by climate change and globalization among other contributors. In this review, we discuss the advances in genetic engineering aimed to improve the SIT-mediated fruit fly pest control. This includes SIT enhancement strategies such as novel genetic sexing strain and female lethality approaches. Self-pervasive X-shredding and X-poisoning sex distorters, alongside gene drive varieties are also reviewed. The self-limiting precision-guided SIT, which aims to tackle female removal and male fertility via CRISPR/Cas9, is additionally introduced. By using examples of existing genetic tools in the fruit fly pests of interest, as well as model species, we illustrate that the population control intensity may be modulated depending on strategy selection.
Collapse
Affiliation(s)
- Serafima Davydova
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Danheng Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Liu G, Peng Y, Li Z, Zhu X, Sun H, Chen G, Zuo Q, Niu Y, Song J, Han W, Wei W, Li B, Jin K. An Inducible CYP19A1 Excision Model for Sexual Differentiation in Chicken ( Gallus gallus) via the CRISPR/Cas9 System. Vet Sci 2025; 12:296. [PMID: 40284798 PMCID: PMC12031565 DOI: 10.3390/vetsci12040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Aromatase, a crucial enzyme for estrogen synthesis, plays a vital role in gender determination and differentiation. This study aimed to establish an inducible knockout model of the chicken CYP19A1 gene, which encodes aromatase, to support gender control in chickens. We selected the most efficient sgRNA target site and constructed an inducible knockout model based on the Tet-on system. The knockout efficiency reached 80% with 20 μg/mL DOX induction in vitro. The encapsulation of the plasmid with PEI and injection into eggs achieved a knockout efficiency of 45% in ovo. qRT-PCR analysis revealed a significant downregulation of female-related genes (CYP19A1, FOXL2, ESR1) and upregulation of male-related genes (DMRT1, SOX9, AMH) in female chicken embryos after induction. Western blotting showed decreased protein expression of CYP19A1 and FOXL2, and increased SOX9 expression in female embryos post-DOX induction. Elisa detection further confirmed lower estradiol levels in the gonads of induced female embryos compared to normal and non-induced females. These findings demonstrate the successful establishment of an inducible knockout system for the CYP19A1 gene in chickens, providing theoretical and technical support for the creation of new breeding materials for gender control.
Collapse
Affiliation(s)
- Guangzheng Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yixiu Peng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| | - Wei Han
- Jiangsu Institute of Poultry Sciences/Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225003, China;
| | - Wanhong Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.L.); (Y.P.); (Z.L.); (X.Z.); (H.S.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Jiangsu Institute of Poultry Sciences/Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225003, China;
| |
Collapse
|
4
|
Tolosana I, Willis K, Gribble M, Phillimore L, Burt A, Nolan T, Crisanti A, Bernardini F. A Y chromosome-linked genome editor for efficient population suppression in the malaria vector Anopheles gambiae. Nat Commun 2025; 16:206. [PMID: 39747012 PMCID: PMC11696527 DOI: 10.1038/s41467-024-55391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Genetic control - the deliberate introduction of genetic traits to control a pest or vector population - offers a powerful tool to augment conventional mosquito control tools that have been successful in reducing malaria burden but that are compromised by a range of operational challenges. Self-sustaining genetic control strategies have shown great potential in laboratory settings, but hesitancy due to their invasive and persistent nature may delay their implementation. Here, instead, we describe a self-limiting strategy, designed to have geographically and temporally restricted effect, based on a Y chromosome-linked genome editor (YLE). The YLE comprises a CRISPR-Cas9 construct that is always inherited by males yet generates an autosomal dominant mutation that is transmitted to over 90% of the offspring and results in female-specific sterility. To our knowledge, our system represents a pioneering approach in the engineering of the Y chromosome to generate a genetic control strain for mosquitoes. Mathematical modelling shows that this YLE technology is up to seven times more efficient for population suppression than optimal versions of other self-limiting strategies, such as the widely used Sterile Insect Technique or the Release of Insects carrying a Dominant Lethal gene.
Collapse
Affiliation(s)
- Ignacio Tolosana
- Department of Life Sciences, Imperial College London, London, UK
| | - Katie Willis
- Department of Life Sciences, Imperial College London, London, UK
| | - Matthew Gribble
- Department of Life Sciences, Imperial College London, London, UK
| | - Lee Phillimore
- Department of Life Sciences, Imperial College London, London, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, UK
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, UK
| | | |
Collapse
|
5
|
Lawler CD, Nuñez AKP, Hernandes N, Bhide S, Lohrey I, Baxter S, Robin C. The haplolethal gene wupA of Drosophila exhibits potential as a target for an X-poisoning gene drive. G3 (BETHESDA, MD.) 2024; 14:jkae025. [PMID: 38306583 PMCID: PMC10989859 DOI: 10.1093/g3journal/jkae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/23/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
A synthetic gene drive that targets haplolethal genes on the X chromosome can skew the sex ratio toward males. Like an "X-shredder," it does not involve "homing," and that has advantages including the reduction of gene drive resistance allele formation. We examine this "X-poisoning" strategy by targeting 4 of the 11 known X-linked haplolethal/haplosterile genes of Drosophila melanogaster with CRISPR/Cas9. We find that targeting the wupA gene during spermatogenesis skews the sex ratio so fewer than 14% of progeny are daughters. That is unless we cross the mutagenic males to X^XY female flies that bear attached-X chromosomes, which reverses the inheritance of the poisoned X chromosome so that sons inherit it from their father, in which case only 2% of the progeny are sons. These sex ratio biases suggest that most of the CRISPR/Cas9 mutants we induced in the wupA gene are haplolethal but some are recessive lethal. The males generating wupA mutants do not suffer from reduced fertility; rather, the haplolethal mutants arrest development in the late stages of embryogenesis well after fertilized eggs have been laid. This provides a distinct advantage over genetic manipulation strategies involving sterility which can be countered by the remating of females. We also find that wupA mutants that destroy the nuclear localization signal of shorter isoforms are not haplolethal as long as the open reading frame remains intact. Like D. melanogaster, wupA orthologs of Drosophila suzukii and Anopheles mosquitos are found on X chromosomes making wupA a viable X-poisoning target in multiple species.
Collapse
Affiliation(s)
- Clancy D Lawler
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | | | - Natalia Hernandes
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | - Soumitra Bhide
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | - Isabelle Lohrey
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | - Simon Baxter
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
6
|
Filipović I, Marshall JM, Rašić G. Finding divergent sequences of homomorphic sex chromosomes via diploidized nanopore-based assembly from a single male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582759. [PMID: 38464271 PMCID: PMC10925256 DOI: 10.1101/2024.02.29.582759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although homomorphic sex chromosomes can have non-recombining regions with elevated sequence divergence between its complements, such divergence signals can be difficult to detect bioinformatically. If found in genomes of e.g. insect pests, these sequences could be targeted by the engineered genetic sexing and control systems. Here, we report an approach that can leverage long-read nanopore sequencing of a single XY male to identify divergent regions of homomorphic sex chromosomes. Long-read data are used for de novo genome assembly that is diploidized in a way that maximizes sex-specific differences between its haploid complements. We show that the correct assembly phasing is supported by the mapping of nanopore reads from the male's haploid Y-bearing sperm cells. The approach revealed a highly divergent region (HDR) near the centromere of the homomorphic sex chromosome of Aedes aegypti, the most important arboviral vector, for which there is a great interest in creating new genetic control tools. HDR is located ~5Mb downstream of the known male-determining locus on chromosome 1 and is significantly enriched for ovary-biased genes. While recombination in HDR ceased relatively recently (~1.4 MYA), HDR gametologs have divergent exons and introns of protein coding genes, and most lncRNA genes became X-specific. Megabases of previously invisible sex-linked sequences provide new putative targets for engineering the genetic systems to control this deadly mosquito. Broadly, our approach expands the toolbox for studying cryptic structure of sex chromosomes.
Collapse
Affiliation(s)
- Igor Filipović
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
- The University of Queensland, School of Biological Sciences, St Lucia, QLD, Australia
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
| |
Collapse
|
7
|
Liu J, Rayes D, Akbari OS. A Fluorescent Sex-Sorting Technique for Insects with the Demonstration in Drosophila melanogaster. GEN BIOTECHNOLOGY 2024; 3:35-44. [PMID: 38415050 PMCID: PMC10895710 DOI: 10.1089/genbio.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
Recent advances in insect genetic engineering offer alternative genetic biocontrol solutions to control populations of pests and disease vectors. While success has been achieved, sex-sorting remains problematic for scaling many genetic biocontrol interventions. Here, we describe the development of a genetically stable sex-sorting technique for female and male selection with a proof of concept in Drosophila melanogaster termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter). This elegant approach utilizes dominantly expressed fluorescent proteins and differentially spliced introns to ensure sex-specific expression. The system has the potential for adaptability to various insect species and application for high-throughput insect sex-sorting.
Collapse
Affiliation(s)
- Junru Liu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Danny Rayes
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Omar S. Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
9
|
Pinto-Pinho P, Ferreira AF, Pinto-Leite R, Fardilha M, Colaço B. The History and Prospects of Rabbit Sperm Sexing. Vet Sci 2023; 10:509. [PMID: 37624296 PMCID: PMC10459625 DOI: 10.3390/vetsci10080509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Sperm sex selection is a longstanding challenge in the field of animal reproduction. The cuniculture industry, in particular producers of males or females for breeding purposes, would greatly benefit from the pre-selection of the offspring's sex. This review article overviews the current and future developments in rabbit sperm sexing technologies, as well as the implications of implementing these methodologies in cuniculture. The first attempts of sperm sexing were performed in rabbits; however, a both efficient and cost-effective methodology was not yet developed for this species. Those included sperm sexing according to differences in sperm density, surface electric charge, pH susceptibility, antisera reaction, and flow cytometry. Separation by flow cytometry has proven to be efficient in rabbits, yielding fractions with approximately 81% and 86% purity for X- and Y-sperm, respectively. However, it is not cost-effective for cuniculture and decreases sperm quality. The advantages, limitations, and practical considerations of each method are presented, highlighting their applicability and efficiency. Furthermore, herein we explore the potential of immunological-based techniques that overcome some of the limitations of earlier methods, as well as recent advancements in sperm sexing technologies in other animal models, which could be applied to rabbits. Finally, the challenges associated with the development and widespread implementation of rabbit sperm sexing technologies are addressed. By understanding the advantages and limitations of existing and emerging methods, researchers can direct their efforts towards the most promising directions, ultimately contributing to a more efficient, profitable, and sustainable cuniculture.
Collapse
Affiliation(s)
- Patrícia Pinto-Pinho
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Laboratory of Signal Transduction, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Laboratory of Genetics and Andrology, Hospital Center of Trás-os-Montes and Alto Douro, E.P.E, 5000-508 Vila Real, Portugal;
- Experimental Pathology and Terapeutics Group, IPO Porto Research Center, Portuguese Institute of Oncology of Porto Francisco Gentil, E.P.E., 4200-072 Porto, Portugal
| | - Ana F. Ferreira
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| | - Rosário Pinto-Leite
- Laboratory of Genetics and Andrology, Hospital Center of Trás-os-Montes and Alto Douro, E.P.E, 5000-508 Vila Real, Portugal;
- Experimental Pathology and Terapeutics Group, IPO Porto Research Center, Portuguese Institute of Oncology of Porto Francisco Gentil, E.P.E., 4200-072 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| |
Collapse
|
10
|
Geci R, Willis K, Burt A. Gene drive designs for efficient and localisable population suppression using Y-linked editors. PLoS Genet 2022; 18:e1010550. [PMID: 36574454 PMCID: PMC9829173 DOI: 10.1371/journal.pgen.1010550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/09/2023] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
The sterile insect technique (SIT) has been successful in controlling some pest species but is not practicable for many others due to the large number of individuals that need to be reared and released. Previous computer modelling has demonstrated that the release of males carrying a Y-linked editor that kills or sterilises female descendants could be orders of magnitude more efficient than SIT while still remaining spatially restricted, particularly if combined with an autosomal sex distorter. In principle, further gains in efficiency could be achieved by using a self-propagating double drive design, in which each of the two components (the Y-linked editor and the sex ratio distorter) boosted the transmission of the other. To better understand the expected dynamics and impact of releasing constructs of this new design we have analysed a deterministic population genetic and population dynamic model. Our modelling demonstrates that this design can suppress a population from very low release rates, with no invasion threshold. Importantly, the design can work even if homing rates are low and sex chromosomes are silenced at meiosis, potentially expanding the range of species amenable to such control. Moreover, the predicted dynamics and impacts can be exquisitely sensitive to relatively small (e.g., 25%) changes in allele frequencies in the target population, which could be exploited for sequence-based population targeting. Analysis of published Anopheles gambiae genome sequences indicates that even for weakly differentiated populations with an FST of 0.02 there may be thousands of suitably differentiated genomic sites that could be used to restrict the spread and impact of a release. Our proposed design, which extends an already promising development pathway based on Y-linked editors, is therefore a potentially useful addition to the menu of options for genetic biocontrol.
Collapse
Affiliation(s)
- René Geci
- Dept. of Life Sciences, Imperial College London, Silwood Park, United Kingdom
| | - Katie Willis
- Dept. of Life Sciences, Imperial College London, Silwood Park, United Kingdom
| | - Austin Burt
- Dept. of Life Sciences, Imperial College London, Silwood Park, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Kojin BB, Compton A, Adelman ZN, Tu Z. Selective targeting of biting females to control mosquito-borne infectious diseases. Trends Parasitol 2022; 38:791-804. [PMID: 35952630 PMCID: PMC9372635 DOI: 10.1016/j.pt.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mosquitoes are vectors for a number of infectious diseases. Only females feed on blood to provision for their embryos and, in doing so, transmit pathogens to the associated vertebrate hosts. Therefore, sex is an important phenotype in the context of genetic control programs, both for sex separation in the rearing facilities to avoid releasing biting females and for ways to distort the sex ratio towards nonbiting males. We review recent progress in the fundamental knowledge of sex determination and sex chromosomes in mosquitoes and discuss new methods to achieve sex separation and sex ratio distortion to help control mosquito-borne infectious diseases. We conclude by suggesting a few critical areas for future research.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
12
|
Siddall A, Harvey-Samuel T, Chapman T, Leftwich PT. Manipulating Insect Sex Determination Pathways for Genetic Pest Management: Opportunities and Challenges. Front Bioeng Biotechnol 2022; 10:867851. [PMID: 35837548 PMCID: PMC9274970 DOI: 10.3389/fbioe.2022.867851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Sex determination pathways in insects are generally characterised by an upstream primary signal, which is highly variable across species, and that regulates the splicing of a suite of downstream but highly-conserved genes (transformer, doublesex and fruitless). In turn, these downstream genes then regulate the expression of sex-specific characteristics in males and females. Identification of sex determination pathways has and continues to be, a critical component of insect population suppression technologies. For example, "first-generation" transgenic technologies such as fsRIDL (Female-Specific Release of Insects carrying Dominant Lethals) enabled efficient selective removal of females from a target population as a significant improvement on the sterile insect technique (SIT). Second-generation technologies such as CRISPR/Cas9 homing gene drives and precision-guided SIT (pgSIT) have used gene editing technologies to manipulate sex determination genes in vivo. The development of future, third-generation control technologies, such as Y-linked drives, (female to male) sex-reversal, or X-shredding, will require additional knowledge of aspects of sexual development, including a deeper understanding of the nature of primary signals and dosage compensation. This review shows how knowledge of sex determination in target pest species is fundamental to all phases of the development of control technologies.
Collapse
Affiliation(s)
- Alex Siddall
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tim Harvey-Samuel
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|