1
|
Li J, Wang F, Zhang H, Cao D, Guan R. One-pot synthesis of fluorescent nanoprobes based on D-cys-based CDs and quantitative detection of lysine enantiomers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126143. [PMID: 40267581 DOI: 10.1016/j.saa.2025.126143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025]
Abstract
The recognition of amino acid enantiomers is of great significance in drug research and disease diagnosis. However, the similar physical and chemical properties of enantiomers make chiral recognition challenging. Optical characterization is a promising approach to distinguish enantiomers. Carbon dots (CDs) have attracted widespread attention due to their simple synthesis, high economic benefits, and good biocompatibility. Chiral carbon dots, as fluorescent probes, have gradually received more attraction. Here, a fluorescence probe (CYS-CDs + Cu2+) was constructed using D-Cys as chiral source to synthesize chiral carbon dots (CYS-CDs), and Cu2+ as inducer to recognize the chirality of lysine enantiomers(L-/D-Lys). And then, based on the ability of Cu2+ to quench the fluorescence of CYS-CDs and L-Lysine (L-Lys) could restore the fluorescence of the CYS-CDs + Cu2+ probe, so achieve an "on-off-on" detection mode to detect L-Lys. On the contrary, D-Lys cannot restore the fluorescence of CYS-CDs + Cu2+. The probe can distinguish lysine enantiomers not only by fluorescence spectra but also by circular dichroism spectra. And, the probe can be used for the quantitative detection of L-Lys by fluorescence method, of which the detection range is 0-520 μM, and the limit of detection is only 13.70 μM. In addition, a paper-based fluorescent senor was constructed on this basis. This work may be of practical significance to expand the recognition method of amino acid enantiomers.
Collapse
Affiliation(s)
- Jinqiu Li
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Fanghao Wang
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Hao Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Duxia Cao
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Ruifang Guan
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China.
| |
Collapse
|
2
|
Zhu D, Brückner D, Sosniok M, Skiba M, Feliu N, Gallego M, Liu Y, Schulz F, Falkenberg G, Parak WJ, Sanchez-Cano C. Size-dependent penetration depth of colloidal nanoparticles into cell spheroids. Adv Drug Deliv Rev 2025; 222:115593. [PMID: 40339992 DOI: 10.1016/j.addr.2025.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
The penetration of nanoparticle (NP)-based drugs into tissue is essential for their use as nanomedicines. Systematic studies about how different NP properties, such as size, influence NP penetration are helpful for the development of NP-based drugs. An overview of how NPs of different sizes may penetrate three-dimensional cell spheroids is given. In particular different techniques for experimental analysis are compared, including mass spectrometry, flow cytometry, optical fluorescence microscopy, X-ray fluorescence microscopy, and transmission electron microscopy. An experimental data set is supplemented exclusively made for this review, in which the results of different techniques are visualized. Limitations of the analysis techniques for different types of NPs, including carbon-based materials, are discussed.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany; Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121 Zhejiang, China
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Photon Science, 22607 Hamburg, Germany
| | - Martin Sosniok
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany; Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Marvin Skiba
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany
| | - Neus Feliu
- Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Marta Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Yang Liu
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany
| | - Florian Schulz
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Photon Science, 22607 Hamburg, Germany.
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures, University of Hamburg 22761 Hamburg, Germany.
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20018 Donostia-San Sebastian, Spain.
| |
Collapse
|
3
|
Liu J, Deng C, Yang L, Ma H, Gao C, Li S, Zhao J, Yue T. Decoding Chiral Interactions: Molecular Insights into the Selective Binding of Nanoparticles at Biological Interfaces. J Phys Chem Lett 2025:6040-6051. [PMID: 40489245 DOI: 10.1021/acs.jpclett.5c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Chirality is a pivotal attribute of nanoparticles, crucial for biomedical applications. Despite evidence of chiral preferences in biological responses, the molecular origin of chiral selectivity remains unclear. Here, we designed gold nanoparticles (GNPs) with opposite chirality (l/d-GNPs) to unravel chiral selectivity in cell membrane attachment and protein adsorption. All-atom molecular dynamics simulations revealed that l-GNPs preferentially attach to lipid bilayers. This selectivity arises from stereomatching between chiral molecules on GNPs and lipid headgroups, leading to distinct lipid conformations and binding affinity. Anionic lipids show higher chiral preference than zwitterionic lipids due to enhanced electrostatic interactions. Chiral selectivity is diminished for lipids with primary charged groups exposed at the outermost position, as the lowest interaction energy is insensitive to stereomatching. For proteins with diverse residues, stereomatching and other interactions collectively determine chiral preference based on binding modes. Our findings provide molecular insights into chiral selectivity at nano-bio interfaces, advancing chiral nanomedicine.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266110, China
| | - Chaofan Deng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266110, China
| | - Lin Yang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266110, China
| | - Hongxia Ma
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266110, China
| | - Changcheng Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266110, China
| | - Shixin Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jian Zhao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266110, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266110, China
| |
Collapse
|
4
|
Mayordomo NM, Zatarain-Beraza A, Valerio F, Álvarez-Méndez V, Turegano P, Herranz-García L, López de Aguileta A, Cattani N, Álvarez-Alonso A, Fanarraga ML. The Protein Corona Paradox: Challenges in Achieving True Biomimetics in Nanomedicines. Biomimetics (Basel) 2025; 10:276. [PMID: 40422106 DOI: 10.3390/biomimetics10050276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025] Open
Abstract
Nanoparticles introduced into biological environments rapidly acquire a coating of biomolecules, forming a biocorona that dictates their biological fate. Among these biomolecules, proteins play a key role, but their interaction with nanoparticles during the adsorption process often leads to unfolding and functional loss. Evidence suggests that protein denaturation within the biocorona alters cellular recognition, signaling pathways, and immune responses, with significant implications for nanomedicine and nanotoxicology. This review explores the dynamic nature of the protein corona, emphasizing the influence of the local biological milieu on its stability. We synthesize findings from studies examining the physicochemical properties of nanoparticles-such as surface charge, hydrophobicity, and curvature-that contribute to protein structural perturbations. Understanding the factors governing protein stability on nanoparticle surfaces is essential for designing nanomaterials with improved targeting, biocompatibility, and controlled biological interactions. This review underscores the importance of preserving protein conformational integrity in the development of nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Nicole M Mayordomo
- Molecular Biology Department, Universidad de Cantabria, Avda. Herrera Oria s/n, 39011 Santander, Spain
| | - Ane Zatarain-Beraza
- Molecular Biology Department, Universidad de Cantabria, Avda. Herrera Oria s/n, 39011 Santander, Spain
| | - Fabio Valerio
- Molecular Biology Department, Universidad de Cantabria, Avda. Herrera Oria s/n, 39011 Santander, Spain
| | - Victoria Álvarez-Méndez
- Molecular Biology Department, Universidad de Cantabria, Avda. Herrera Oria s/n, 39011 Santander, Spain
| | - Paula Turegano
- Molecular Biology Department, Universidad de Cantabria, Avda. Herrera Oria s/n, 39011 Santander, Spain
| | - Lucía Herranz-García
- Molecular Biology Department, Universidad de Cantabria, Avda. Herrera Oria s/n, 39011 Santander, Spain
| | - Amaia López de Aguileta
- Molecular Biology Department, Universidad de Cantabria, Avda. Herrera Oria s/n, 39011 Santander, Spain
| | - Nicolas Cattani
- Molecular Biology Department, Universidad de Cantabria, Avda. Herrera Oria s/n, 39011 Santander, Spain
| | - Ana Álvarez-Alonso
- Molecular Biology Department, Universidad de Cantabria, Avda. Herrera Oria s/n, 39011 Santander, Spain
| | - Mónica L Fanarraga
- Molecular Biology Department, Universidad de Cantabria, Avda. Herrera Oria s/n, 39011 Santander, Spain
- Grupo de Nanomedicina, Instituto de Investigación Valdecilla-IDIVAL, Avda. Herrera Oria s/n, 39011 Santander, Spain
| |
Collapse
|
5
|
Mate N, Satwani V, Pranav, Mobin SM. Blazing Carbon Dots: Unfolding its Luminescence Mechanism to Photoinduced Biomedical Applications. Chem Asian J 2025; 20:e202401098. [PMID: 39499673 DOI: 10.1002/asia.202401098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/07/2024]
Abstract
Carbon dots (CDs) are carbon-based nanomaterials that have garnered immense attention owing to their exceptional photophysical and optoelectronic properties. They have been employed extensively for biomedical imaging and phototherapy due to their superb water dispersibility, low toxicity, outstanding biocompatibility, and exceptional tissue permeability. This review summarizes the structural classification of CDs, the classification of CDs according to precursor sources, and the luminescence mechanism of CDs. The modification in CDs via various doping routes is comprehensively reviewed, and the effect of such alterations on their photophysical properties, such as absorbance, photoluminescence (PL), and reactive oxygen species generation ability, is also highlighted. This review strives to summarize the role of CDs in cellular imaging and fluorescence lifetime imaging for cellular metabolism. Subsequently, recent advancements and the future potential of CDs as nanotheranostic agents have been discussed. Herein, we have discussed the role of CDs in photothermal, photodynamic, and synergistic therapy of anticancer, antiviral, and antibacterial applications. The overall summary of the review highlights the prospects of CD-based research in bioimaging and biomedicine.
Collapse
Affiliation(s)
- Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Vinita Satwani
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, Vellore, India, 632014
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
6
|
Wang Y, Zhang X, Xie D, Chen C, Huang Z, Li ZA. Chiral Engineered Biomaterials: New Frontiers in Cellular Fate Regulation for Regenerative Medicine. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202419610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/03/2025]
Abstract
AbstractChirality, the property of objects that are nonsuperimposable on their mirror images, plays a crucial role in biological processes and cellular behaviors. Chiral engineered biomaterials have emerged as a promising approach to regulating cellular fate in regenerative medicine. However, few reviews provide a comprehensive examination of recent advancements in chiral biomaterials and their applications in cellular fate regulation. Herein, various fabrication techniques available for chiral biomaterials, including the use of chiral molecules, surface patterning, and self‐assembly are discussed. The mechanisms through which chiral biomaterials influence cellular responses, such as modulation of adhesion receptors, intracellular signaling, and gene expression, are explored. Notably, chiral biomaterials have demonstrated their ability to guide stem cell differentiation and augment tissue‐specific functions. The potential applications of chiral biomaterials in musculoskeletal disorders, neurodegenerative diseases, cardiovascular diseases, and wound healing are highlighted. Challenges and future perspectives, including standardization of fabrication methods and translation to clinical settings, are addressed. In conclusion, chiral engineered biomaterials offer exciting prospects for precisely controlling cellular fate, advancing regenerative medicine, and enabling personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Xin Zhang
- Institute of Sports Medicine Beijing Key Laboratory of Sports Injuries Peking University Third Hospital Beijing 100191 China
| | - Denghui Xie
- Department of Orthopaedic Surgery Center for Orthopaedic Surgery The Third Affiliated Hospital of Southern Medical University Guangzhou 510630 China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases Guangzhou 510630 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety New Cornerstone Science Laboratory National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifeng Huang
- Department of Chemistry The Chinese University of Hong Kong Shatin Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Zhong Alan Li
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shun Hing Institute of Advanced Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shenzhen Research Institute The Chinese University of Hong Kong No.10, 2nd Yuexing Road, Nanshan Shenzhen Guangdong Province 518057 China
| |
Collapse
|
7
|
Maria Vitagliano C, Camilli A, Georgian Moldoveanu V, Di Sabato A, Feroci M, Sturabotti E, Scognamiglio V, Leonelli F, Masi A, Vetica F. Selective Interaction of Chiral Carbon Dots with Nucleic Acids: A Promising Nanosensing Platform. Chemistry 2024; 30:e202402787. [PMID: 39269209 DOI: 10.1002/chem.202402787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Carbon dots (CDs) represent an emerging class of nanomaterials that combine outstanding photoluminescent properties with low toxicity and excellent biocompatibility. These unique features have garnered significant interest for potential applications in sensing as well as nanovectors for bioactive compounds. Within this context, the possibility of synthesizing chiral carbon dots (CCDs) has paved the way for a plethora of bioapplications in their interaction with chiral biomolecules. In this study we report the synthesis and characterization of CCDs with opposite chiralities and their selective interaction with nucleic acids. A systematic study on their interaction with different oligonucleotides (ODNs) using UV-vis, photoluminescence, and circular dichroism analyses highlighted how the chiral surface of the CCDs induces distinct spectroscopic responses in CCDs-ODN conjugates. These findings establish the foundation for innovative applications of CCDs as nanosensors and nanocarriers for nucleic acids. Additionally, the antioxidant properties of CCDs were investigated, highlighting their dual potential as both sensing and preservative nanomaterials for genetic material. Our results suggest significant implications for the development of chiral-specific diagnostic tools, drug delivery systems, and therapeutic agents. Furthermore, these properties open new avenues for the use of CCDs in antibiotic residue detection, fluorescence imaging, and photodynamic therapy.
Collapse
Affiliation(s)
- Chiara Maria Vitagliano
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | - Alessandro Camilli
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | | | - Antonio Di Sabato
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161, Rome, Italy
| | - Elisa Sturabotti
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, 00015, Montelibretti, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | - Annalisa Masi
- Institute of Crystallography, National Research Council, 00015, Montelibretti, Italy
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
8
|
Barz M, Parak WJ, Zentel R. Concepts and Approaches to Reduce or Avoid Protein Corona Formation on Nanoparticles: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402935. [PMID: 38976560 PMCID: PMC11425909 DOI: 10.1002/advs.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Indexed: 07/10/2024]
Abstract
This review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation). Thereby especially the role of grafting density of hydrophilic polymers on the surface of the nanoparticle is discussed to prevent the formation of a protein corona. In this context also the potential of detergents (surfactants) for a temporary modification as well as grafting-to and grafting-from approaches for a permanent modification of the surface are discussed. The review concludes by highlighting several promising avenues. This includes (i) the use of nanoparticles without protein corona for active targeting, (ii) the use of synthetic nanoparticles without protein corona formation to address the immune system, (iii) the recollection of nanoparticles with a defined protein corona after in vivo application to sample the blood proteome and (iv) further concepts to reduce protein corona formation.
Collapse
Affiliation(s)
- Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, NL-2333 CC, Netherlands
| | - Wolfgang J Parak
- Institut für Nanostruktur- und Festkörperphysik, Universität Hamburg, Luruper Chaussee 149, D-22761, Hamburg, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
9
|
Luo JJ, Qin LY, Zan XY, Zou HL, Luo HQ, Li NB, Li BL. Cysteine-Induced Chirality Evolution of Molybdenum Disulfide Nanodots from a Bottom-Up Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14900-14907. [PMID: 38982885 DOI: 10.1021/acs.langmuir.4c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The transfer of chirality from molecules to synthesized nanomaterials has recently attracted significant attention. Although most studies have focused on graphene and plasmonic metal nanostructures, layered transition metal dichalcogenides (TMDs), particularly MoS2, have recently garnered considerable attention due to their semiconducting and electrocatalytic characteristics. Herein, we report a new approach for the synthesis of chiral molybdenum sulfide nanomaterials based on a bottom-up synthesis method in the presence of chiral cysteine enantiomers. In the synthesis process, molybdenum trioxide and sodium hydrosulfide serve as molybdenum and sulfur sources, respectively. In addition, ascorbic acid acts as a reducing agent, resulting in the formation of zero-dimensional MoS2 nanodots. Moreover, the addition of cysteine enantiomers to the growth solutions contributes to the chirality evolution of the MoS2 nanostructures. The chirality is attributed to the cysteine enantiomer-induced preferential folding of the MoS2 planes. The growth mechanism and chiral structure of the nanomaterials are confirmed through a series of characterization techniques. This work combines chirality with the bottom-up synthesis of MoS2 nanodots, thereby expanding the synthetic methods for chiral nanomaterials. This simple synthesis approach provides new insights for the construction of other chiral TMD nanomaterials with emerging structures and properties. More significantly, the as-formed MoS2 nanodots exhibited highly defect-rich structures and chiroptical performance, thereby inspiring a high potential for emerging optical and electronic applications.
Collapse
Affiliation(s)
- Jun Jiang Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ling Yun Qin
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xin Yao Zan
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Lin Zou
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Bang Lin Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
10
|
Wei S, Wang C, Wang Y, Yin X, Hu K, Liu M, Sun G, Lu L. Chiral carbon dots derived from tryptophan and threonine for enantioselective sensing of L/D-Lysine. J Colloid Interface Sci 2024; 662:48-57. [PMID: 38335739 DOI: 10.1016/j.jcis.2024.02.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Presently, most fluorescent probes for amino acid enantiomers detection require metal ions participation, which greatly increases the detection steps and costs, and affects the accuracy of detection results. To solve this problem, a dual pattern recognition sensor of chiral carbon dots (L-Try-Thr-CDs) with a quantum yield of 36.23 % was prepared by a one-step solvothermal method for the highly selective detection of lysine (Lys) enantiomers. Under optimal experimental conditions, the fluorescence and circular dichroism (CD) signals of the obtained L-Try-Thr-CDs could rapidly and effectively responded to L-Lys with limits of detection (LOD) of 16.51 nM and 24.38 nM, respectively, much lower than previously reported sensors. Importantly, the L-Try-Thr-CDs as a dual-mode sensor could not only detect amino acid enantiomers and simplify the steps, but also avoid inaccurate detection results due to unstable metal ions. Furthermore, the L-Try-Thr-CDs could detect L-Lys in living cells via a fluorescence microscope because of their excellent fluorescence characteristics and low toxicity. These results indicated that the dual-mode sensor not only provided a practical strategy for the design of new fluorescent probes, but also possessed outstanding application prospects in the accurate detection of lysine enantiomers.
Collapse
Affiliation(s)
- Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Yuchen Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xiangyu Yin
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Kaixin Hu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Min Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
11
|
Bianco A, Bonchio M, Bonifazi D, Da Ros T, Maggini M, Mateo-Alonso A, Tecilla P. Celebrating Maurizio Prato's Passion, Talent and Imagination. Chemistry 2024; 30:e202400127. [PMID: 38446047 DOI: 10.1002/chem.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/07/2024]
Abstract
This Editorial introduces a Special Collection of papers dedicated to Maurizio Prato, featuring prominent examples of his team's efforts to integrate complex frontier research with pioneering achievements in the field of carbon nanostructures and molecular nanoscience.
Collapse
Affiliation(s)
- Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Davide Bonifazi
- Institut für Organische Chemie, Universität Wien, Währinger Strasse 38, 1090, Wien, Austria
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Michele Maggini
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU Avenida de, Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
12
|
Wang Z, Tian Y, Hao J, Liu Y, Tang J, Xu Z, Liu Y, Tang B, Huang X, Zhu N, Li Z, Hu L, Li L, Wang Y, Jiang G. Chiral Nanoclusters as Alternative Therapeutic Strategies to Confront the Health Threat from Antibiotic-Resistant Pathogens. ACS NANO 2024; 18:7253-7266. [PMID: 38380803 DOI: 10.1021/acsnano.3c13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a drug-resistant Gram-negative pathogen, is listed among the "critical" group of pathogens by the World Health Organization urgently needing efficacious antibiotics in the clinics. Nanomaterials especially silver nanoparticles (AgNPs) due to the broad-spectrum antimicrobial activity are tested in antimicrobial therapeutic applications. Pathogens rapidly develop resistance to AgNPs; however, the health threat from antibiotic-resistant pathogens remains challenging. Here we present a strategy to prevent bacterial resistance to silver nanomaterials through imparting chirality to silver nanoclusters (AgNCs). Nonchiral AgNCs with high efficacy against P. aeruginosa causes heritable resistance, as indicated by a 5.4-fold increase in the minimum inhibitory concentration (MIC) after 9 repeated passages. Whole-genome sequencing identifies a Rhs mutation related to the wall of Gram-negative bacteria that possibly causes morphology changes in resistance compared to susceptible P. aeruginosa. Nevertheless, AgNCs with laevorotary chirality (l-AgNCs) induce negligible resistance even after 40 repeated passages and maintain a superior antibacterial efficiency at the MIC. l-AgNCs also show high cytocompatibility; negligible cytotoxicity to mammalian cells including JB6, H460, HEK293, and RAW264.7 is observed even at 30-fold MIC. l-AgNCs thus are examined as an alternative to levofloxacin in vivo, healing wound infections of P. aeruginosa efficaciously. This work provides a potential opportunity to confront the rising threat of antimicrobial resistance by developing chiral nanoclusters.
Collapse
Affiliation(s)
- Zhe Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijin Tian
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghua Hao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Tang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Biao Tang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiu Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610065, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Yu J, Tang Q, Yin G, Chen W, Lv J, Li L, Zhang C, Ye Y, Song X, Zhao X, Tang T, Zhang C, Zeng L, Xu Z. Uptake, accumulation and toxicity of short chain chlorinated paraffins to wheat (Triticum aestivum L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132954. [PMID: 37972496 DOI: 10.1016/j.jhazmat.2023.132954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are ubiquitous persistent organic pollutants. They have been widely detected in plant-based foods and might cause adverse impacts on humans. Nevertheless, uptake and accumulation mechanisms of SCCPs in plants remain unclear. In this study, the soil culture data indicated that SCCPs were strongly absorbed by roots (root concentration factor, RCF>1) yet limited translocated to shoots (translocation factor<1). The uptake mechanism was explored by hydroponic exposure, showing that hydrophobicity and molecular size influenced the root uptake and translocation of SCCPs. RCFs were significantly correlated with logKow values and molecular weights in a parabolic curve relationship. Besides, it was extremely difficult for SCCPs to translocate from shoots back to roots via phloem. An active energy-dependent process was proposed to be involved in the root uptake of SCCPs, which was supported by the uptake inhibition by the low temperature and metabolic inhibitor. Though SCCPs at environmentally relevant concentrations had no negative impacts on root morphology and chlorophyll contents, it caused obvious changes in cellular ultrastructure of root tip cells and induced a significant increase in superoxide dismutase activity. This information may be beneficial to moderate crop contamination by SCCPs, and to remedy soils polluted by SCCPs with plants.
Collapse
Affiliation(s)
- Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qing Tang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai 200233, China
| | - Weifang Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Chenghao Zhang
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yunxiang Ye
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xijiao Song
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
14
|
Wang J, Fu Y, Gu Z, Pan H, Zhou P, Gan Q, Yuan Y, Liu C. Multifunctional Carbon Dots for Biomedical Applications: Diagnosis, Therapy, and Theranostic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303773. [PMID: 37702145 DOI: 10.1002/smll.202303773] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/27/2023] [Indexed: 09/14/2023]
Abstract
Designing suitable nanomaterials is an ideal strategy to enable early diagnosis and effective treatment of diseases. Carbon dots (CDs) are luminescent carbonaceous nanoparticles that have attracted considerable attention. Through facile synthesis, they process properties including tunable light emission, low toxicity, and light energy transformation, leading to diverse applications as optically functional materials in biomedical fields. Recently, their potentials have been further explored, such as enzyme-like activity and ability to promote osteogenic differentiation. Through refined synthesizing strategies carbon dots, a rich treasure trove for new discoveries, stand a chance to guide significant development in biomedical applications. In this review, the authors start with a brief introduction to CDs. By presenting mechanisms and examples, the authors focus on how they can be used in diagnosing and treating diseases, including bioimaging failure of tissues and cells, biosensing various pathogenic factors and biomarkers, tissue defect repair, anti-inflammation, antibacterial and antiviral, and novel oncology treatment. The introduction of the application of integrated diagnosis and treatment follows closely behind. Furthermore, the challenges and future directions of CDs are discussed. The authors hope this review will provide critical perspectives to inspire new discoveries on CDs and prompt their advances in biomedical applications.
Collapse
Affiliation(s)
- Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, P. R. China
| | - Zhanghao Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Panyu Zhou
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
15
|
Fan X, Ren C, Ning K, Shoala MA, Ke Q, Zhou Y, Wu Y, Qiu R, Liang J, Xiao S. Enantioselective Antiviral Activities of Chiral Zinc Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58251-58259. [PMID: 38053348 DOI: 10.1021/acsami.3c15463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chiral nanoparticles (C-NPs) play a crucial role in biomedical applications, especially in their biological effects on cytotoxicity and metabolism. However, there are rare reports about the antivirus property of C-NPs and their working mechanism. Here, three different types of chiral ZnO NPs (l-ZnO, d-ZnO, and dl-ZnO) were prepared as enantioselective antivirals. Biocompatibility test results showed that the three different chiral ZnO NPs varied significantly in cytotoxicity. Evaluation of their effects against porcine reproductive and respiratory syndrome virus (PRRSV) indicated that compared with d-ZnO and dl-ZnO NPs, l-ZnO NPs exhibited stronger anti-PRRSV activity due to their higher cognate cell adhesion and uptake. Furthermore, the high concentration of l-ZnO NPs can obviously reduce cellular reactive oxygen species (ROS) in MARC-145 cells, thus effectively preventing PRRSV-induced oxidative damage. This study demonstrated the outstanding antiviral properties of l-ZnO NPs, which may facilitate the development and application of C-NPs in antiviral drugs and tissue engineering.
Collapse
Affiliation(s)
- Xiaoxia Fan
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Caifeng Ren
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Keke Ning
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Mohamed A Shoala
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qiyun Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Runhui Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
16
|
Pranav, Ghali ENHK, Chauhan N, Tiwari R, Cabrera M, Chauhan SC, Yallapu MM. One-step simultaneous liquid phase exfoliation-induced chirality in graphene and their chirality-mediated microRNA delivery. MATERIALS ADVANCES 2023; 4:6199-6212. [PMID: 38021466 PMCID: PMC10680132 DOI: 10.1039/d3ma00611e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
Graphene (G) has established itself as an exciting prospect for a broad range of applications owing to its remarkable properties. Recent innovations in chiral nanosystems have led to sensors, drug delivery, catalysis, etc. owing to the stereospecific interactions between various nanosystems and enantiomers. As the molecular structure of G itself is achiral introducing chirality in G by simple attachment of a functional group (a chiral ligand) on the G nanosheet may result in more diverse applications. Herein, we demonstrate direct liquid phase exfoliation and chiral induction in G nanosheets abbreviated as l-graphene and d-graphene in the presence of chiral l-tyrosine and d-tyrosine and by applying high-temperature sonication. The obtained exfoliated nanosheets demonstrated stable chirality confirmed by circular dichroism. Fourier transform infrared (FTIR) spectra, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC) showed functional, structural, morphological, surface, and thermal characteristics of l-graphene and d-graphene. The hemo-compatibility of these chiral graphenes was evaluated for the very first time utilizing human red blood cells. Lastly, for the very first time, an attempt was made to explore enantiomeric binding between chiral l-graphene and d-graphene with microRNA (miR-205) and their possibility towards chirality-mediated gene delivery in prostate cancerous cells.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Eswara N H K Ghali
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Rahul Tiwari
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Marco Cabrera
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| |
Collapse
|
17
|
Shi Y, Su W, Yuan F, Yuan T, Song X, Han Y, Wei S, Zhang Y, Li Y, Li X, Fan L. Carbon Dots for Electroluminescent Light-Emitting Diodes: Recent Progress and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210699. [PMID: 36959751 DOI: 10.1002/adma.202210699] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs), as emerging carbon nanomaterials, have been regarded as promising alternatives for electroluminescent light-emitting diodes (LEDs) owing to their distinct characteristics, such as low toxicity, tuneable photoluminescence, and good photostability. In the last few years, despite remarkable progress achieved in CD-based LEDs, their device performance is still inferior to that of well-developed organic, heavy-metal-based QDs, and perovskite LEDs. To better exploit LED applications and boost device performance, in this review, a comprehensive overview of currently explored CDs is presented, focusing on their key optical characteristics, which are closely related to the structural design of CDs from their carbon core to surface modifications, and to macroscopic structural engineering, including the embedding of CDs in the matrix or spatial arrangement of CDs. The design of CD-based LEDs for display and lighting applications based on the fluorescence, phosphorescence, and delayed fluorescence emission of CDs is also highlighted. Finally, it is concluded with a discussion regarding the key challenges and plausible prospects in this field. It is hoped that this review inspires more extensive research on CDs from a new perspective and promotes practical applications of CD-based LEDs in multiple directions of current and future research.
Collapse
Affiliation(s)
- Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xianzhi Song
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuyi Han
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Shuyan Wei
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
18
|
Budiarta M, Roy S, Katenkamp T, Feliu N, Beck T. Overcoming Non-Specific Interactions for Efficient Encapsulation of Doxorubicin in Ferritin Nanocages for Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205606. [PMID: 36748864 DOI: 10.1002/smll.202205606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/22/2022] [Indexed: 05/25/2023]
Abstract
Due to its beneficial pharmacological properties, ferritin (Ftn) is considered as an interesting drug delivery vehicle to alleviate the cardiotoxicity of doxorubicin (DOX) in chemotherapy. However, the encapsulation of DOX in Ftn suffers from heavy precipitation and low protein recovery yield which limits its full potential. Here, a new DOX encapsulation strategy by cysteine-maleimide conjugation is proposed. In order to demonstrate that this strategy is more efficient compared to the other approaches, DOX is encapsulated in Ftn variants carrying different surface charges. Furthermore, in contrast to the common belief, this data show that DOX molecules are also found to bind non-specifically to the surface of Ftn. This can be circumvented by the use of Tris(2-carboxyethyl)phosphine (TCEP) during encapsulation or by washing with acidic buffer. The biocompatibility studies of the resulting DOX Ftn variants in MCF-7 and MHS cancer cells shows a complex relationship between the cytotoxicity, the DOX loading and the different surface charges of Ftn. Further investigation on the cell uptake mechanism provides reasonable explanations for the cytotoxicity results and reveals that surface charging of Ftn hinders its transferrin receptor 1 (TfR-1) mediated cellular uptake in MCF-7 cells.
Collapse
Affiliation(s)
- Made Budiarta
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Sathi Roy
- Fraunhofer Center for Applied Nanotechnology (CAN), Fraunhofer IAP, Grindelallee 117, 20146, Hamburg, Germany
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607, Hamburg, Germany
| | - Tobias Katenkamp
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Neus Feliu
- Fraunhofer Center for Applied Nanotechnology (CAN), Fraunhofer IAP, Grindelallee 117, 20146, Hamburg, Germany
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607, Hamburg, Germany
| | - Tobias Beck
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
19
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
20
|
Bartolomei B, Prato M. The Importance of the Purification Step and the Characterization of the Products in the Synthesis of Carbon Nanodots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206714. [PMID: 36808805 DOI: 10.1002/smll.202206714] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
In the synthesis of carbon nanodots (CNDs), the critical step of the purification from the starting materials and unwanted side products is faced. In the exciting race toward new and interesting CNDs, this problem is often underestimated, leading to false properties and erroneous reports. In fact, on many occasions, the properties described for novel CNDs derive from impurities not completely eliminated during the purification process. Dialysis, for instance, is not always helpful, especially if the side products are not soluble in water. In this Perspective, the importance of the purification and characterization steps, in order to obtain solid reports and reliable procedures, is emphasized.
Collapse
Affiliation(s)
- Beatrice Bartolomei
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- Center for the Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013, Bilbao, Spain
| |
Collapse
|
21
|
Arezki Y, Delalande F, Schaeffer-Reiss C, Cianférani S, Rapp M, Lebeau L, Pons F, Ronzani C. Surface charge influences protein corona, cell uptake and biological effects of carbon dots. NANOSCALE 2022; 14:14695-14710. [PMID: 36168840 DOI: 10.1039/d2nr03611h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon dots are emerging nanoparticles (NPs) with tremendous applications, especially in the biomedical field. Herein is reported the first quantitative proteomic analysis of the protein corona formed on CDs with different surface charge properties. Four CDs were synthesized from citric acid and various amine group-containing passivation reagents, resulting in cationic NPs with increasing zeta (ζ)-potential and density of positive charges. After CD contact with serum, we show that protein corona identity is influenced by CD surface charge properties, which in turn impacts CD uptake and viability loss in macrophages. In particular, CDs with high ζ-potential (>+30 mV) and charge density (>2 μmol mg-1) are the most highly internalized, and their cell uptake is strongly correlated with a corona enriched in vitronectin, fibulin, fetuin, adiponectin and alpha-glycoprotein. On the contrary, CDs with a lower ζ-potential (+11 mV) and charge density (0.01 μmol mg-1) are poorly internalized, while having a corona with a very different protein signature characterized by a high abundance of apolipoproteins (APOA1, APOB and APOC), albumin and hemoglobin. These data illustrate how corona characterization may contribute to a better understanding of CD cellular fate and biological effects, and provide useful information for the development of CDs for biomedical applications.
Collapse
Affiliation(s)
- Yasmin Arezki
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Mickaël Rapp
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
22
|
Zhang M, Zhang W, Fan X, Ma Y, Huang H, Wang X, Liu Y, Lin H, Li Y, Tian H, Shao M, Kang Z. Chiral Carbon Dots Derived from Serine with Well-Defined Structure and Enantioselective Catalytic Activity. NANO LETTERS 2022; 22:7203-7211. [PMID: 36000894 DOI: 10.1021/acs.nanolett.2c02674] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon dots (C-Dots), with unique properties from tunable photoluminescence to biocompatibility, show wide applications in biotechnology, optoelectronic device and catalysis. Chiral C-Dots are expected to have strongly chirality-dependent biological and catalytic properties. For chiral C-Dots, a clear structure and quantitative structure-property relationship need to be clarified. Here, chiral C-Dots were fabricated by electrooxidation polymerization from serine enantiomers. The oxidized serine has a reversed chiral configuration to serine, which leads to the chiral C-Dots possessing inverse handedness compared with their raw materials. Electron circular dichroism spectrum, together with other diverse characterization techniques and theoretical calculations, confirmed that these chiral C-Dots (2-7 nm) have a well-defined primary structure of polycyclic dipeptide and possess a spatial structure with a c-axis of hexagonal symmetry and two cyclic dipeptides as the spatial structural unit. These chiral C-Dots also show enantioselective catalytic activity on DOPA enantiomers oxidation.
Collapse
Affiliation(s)
- Mengling Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Wanru Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yurong Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiting Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - He Tian
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingwang Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| |
Collapse
|
23
|
Wan J, Zhang X, Jiang Y, Xu S, Li J, Yu M, Zhang K, Su Z. Regulation of multi-color fluorescence of carbonized polymer dots by multiple contributions of effective conjugate size, surface state, and molecular fluorescence. J Mater Chem B 2022; 10:6991-7002. [PMID: 36018256 DOI: 10.1039/d2tb01330d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carbon dots (CDs)-based nanomaterials exhibited promising potential in the fields of biomedicine, bioanalysis, and biosensors. In this work, multi-colored fluorescent carbonized polymer dots (CPDs) ranging from blue to red are obtained using different synthesis methods using citric acid and urea as raw materials, and the controllable synthesis of CPDs with multi-color fluorescence is successfully realized. Then, the photoluminescence (PL) mechanism of CPDs is studied using multiple characterization methods, and the key factors affecting the fluorescence emission wavelength of CPDs are discussed. It is shown that the fluorescence of the CPDs originates from three main components: the carbon nuclei in the intrinsic state, the functional groups in the surface state, and the molecular fluorophores adsorbed on the surface of the CPDs. The reaction temperature and reaction time affect the effective conjugation size of the carbon nuclei, which in turn affects the fluorescence redshift of CPDs; the reaction solvent greatly alters the surface state of CPDs (e.g. surface defects and functional groups), which leads to a significant redshift in the fluorescence of CPDs; the presence of molecular fluorophores facilitates the fluorescence redshift of CPDs. Finally, we have successfully applied the prepared red fluorescent CPDs for in vitro cell imaging. The study on the color regulation mechanism of CPDs is of great significance for the controllable preparation of high-performance fluorescent CDs and their application in the field of biomedicine.
Collapse
Affiliation(s)
- Jiafeng Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Ya Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Shiqing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jing Li
- Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Mengliu Yu
- Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Kai Zhang
- Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
24
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
25
|
Cao J, Yang Q, Jiang J, Dalu T, Kadushkin A, Singh J, Fakhrullin R, Wang F, Cai X, Li R. Coronas of micro/nano plastics: a key determinant in their risk assessments. Part Fibre Toxicol 2022; 19:55. [PMID: 35933442 PMCID: PMC9356472 DOI: 10.1186/s12989-022-00492-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/08/2022] [Indexed: 12/17/2022] Open
Abstract
As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.e.,high surface area and strong binding affinity, which enable extensive interactions between M/NPs and surrounding substances. This results in the formation of coronas, including eco-coronas and bio-coronas, on the plastic surface in different media. In real exposure scenarios, corona formation on M/NPs is inevitable and often displays variable and complex structures. The surface coronas have been found to impact the transportation, uptake, distribution, biotransformation and toxicity of particulates. Different from conventional toxins, packages on M/NPs rather than bare particles are more dangerous. We, therefore, recommend seriously consideration of the role of surface coronas in safety assessments. This review summarizes recent progress on the eco-coronas and bio-coronas of M/NPs, and further discusses the analytical methods to interpret corona structures, highlights the impacts of the corona on toxicity and provides future perspectives.
Collapse
Affiliation(s)
- Jiayu Cao
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Aliaksei Kadushkin
- Department of Biological Chemistry, Belarusian State Medical University, 220116, Minsk, Belarus
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rawil Fakhrullin
- Kazan Federal University, Institute of Fundamental Medicine & Biology, Kreml Uramı 18, Kazan, Republic of Tatarstan, Russian Federation, 420008
| | - Fangjun Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
26
|
Qu S, Jia Q, Li Z, Wang Z, Shang L. Chiral NIR-II fluorescent Ag 2S quantum dots with stereospecific biological interactions and tumor accumulation behaviors. Sci Bull (Beijing) 2022; 67:1274-1283. [PMID: 36546157 DOI: 10.1016/j.scib.2022.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023]
Abstract
Near-infrared II (NIR-II) fluorescent nanoprobes hold great potential for biomedical applications. Elucidating the relationship between surface properties of NIR-II nanoprobes and their biological behaviors is particularly important for future probe design and their performance optimization. Despite the rapid development of NIR-II nanoprobes, the distinct role of surface chirality on their biological fates has rarely been exploited. Herein, chiral NIR-II fluorescent Ag2S quantum dots (QDs) are synthesized to investigate the relationship between their chirality and biological functions at both in vitro and in vivo levels. D-/L-Ag2S QDs exhibit significant differences on their interactions with serum proteins, which further affect the cellular uptake. As a result, D-Ag2S QDs can be internalized with higher efficiency (over 2-fold) than that of L-Ag2S QDs. Moreover, in vivo studies reveal that the chirality determines the primary localization of these chiral QDs, where a more efficient renal elimination of D-Ag2S QDs was observed than that of L-Ag2S QDs. Importantly, D-Ag2S QDs show preferential accumulation in tumor region than that of L-Ag2S QDs in orthotopic kidney tumor model, which points out a new avenue of enhancing targeting capabilities of nanoprobes by engineering their surface chirality.
Collapse
Affiliation(s)
- Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zheng Li
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China; Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China.
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| |
Collapse
|
27
|
Distefano A, Calì F, Gaeta M, Tuccitto N, Auditore A, Licciardello A, D'Urso A, Lee KJ, Monasson O, Peroni E, Grasso G. Carbon dots surface chemistry drives fluorescent properties: New tools to distinguish isobaric peptides. J Colloid Interface Sci 2022; 625:405-414. [PMID: 35724463 DOI: 10.1016/j.jcis.2022.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 10/31/2022]
Abstract
The possibility to design rational carbon dots surface functionalization for specific analytical and bioanalytical applications is hindered by the lack of a full knowledge of the surface chemical features driving fluorescent properties. In this model study, we have synthesized four different peptides, three of which are isobaric and not distinguishable by common MSMS experiments. After having characterized the peptides conformations by CD analyses, we have covalently bonded all four peptides to carbon dots by using different experimental procedures, which produce different functional groups on the carbon dots surface. The peptide orientations obtained on the differently functionalized surface of the nanoparticles were different and produced different fluorescent responses. The reported results indicate the possibility to design amino and carboxyl enriched surface carbon dots to answer specific chemical requirements, paving the way for the use of these nanoparticles as a versatile and useful new chemical and biochemical tool.
Collapse
Affiliation(s)
- Alessia Distefano
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Federico Calì
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Massimiliano Gaeta
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Nunzio Tuccitto
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Alessandro Auditore
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Antonino Licciardello
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Alessandro D'Urso
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Kwang-Jin Lee
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Olivier Monasson
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France; CY Cergy Paris Université, CY PeptLab, 95000 Cergy Pontoise, France
| | - Elisa Peroni
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France; CY Cergy Paris Université, CY PeptLab, 95000 Cergy Pontoise, France
| | - Giuseppe Grasso
- Chemical Sciences Department, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
28
|
Bartolomei B, Bogo A, Amato F, Ragazzon G, Prato M. Nuclear Magnetic Resonance Reveals Molecular Species in Carbon Nanodot Samples Disclosing Flaws. Angew Chem Int Ed Engl 2022; 61:e202200038. [PMID: 35157359 PMCID: PMC9304307 DOI: 10.1002/anie.202200038] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 01/02/2023]
Abstract
Carbon nanodots are currently one of the hot topics in the nanomaterials world, due to their accessible synthesis and promising features. However, the purification of these materials is still a critical aspect, especially for syntheses involving molecular precursors. Indeed, the presence of unreacted species or small organic molecules formed during solvothermal treatments can affect the properties of the synthesized nanomaterials. To illustrate the extreme importance of this issue, we present two case studies in which insufficient purification results in misleading conclusions regarding the chiral and fluorescent properties of the investigated materials. Key to identify molecular species is the use of nuclear magnetic resonance, which proves to be an effective tool. Our work highlights the need to include nuclear magnetic resonance as a standard characterization technique for carbon-based nanomaterials, to minimize the risk of observing properties that arise from molecular species, rather than the target carbon nanodots.
Collapse
Affiliation(s)
- Beatrice Bartolomei
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of Triestevia Licio Giorgieri 134127TriesteItaly
| | - Andrea Bogo
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of Triestevia Licio Giorgieri 134127TriesteItaly
| | - Francesco Amato
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of Triestevia Licio Giorgieri 134127TriesteItaly
| | - Giulio Ragazzon
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of Triestevia Licio Giorgieri 134127TriesteItaly
- Institut de Science et d'Ingénierie Supramoléculaires UMR7006University of Strasbourg, CNRS8 allée Gaspard Monge67000StrasbourgFrance
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of Triestevia Licio Giorgieri 134127TriesteItaly
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramón 19420014Donostia San SebastiánSpain
- Basque Fdn SciIkerbasque48013BilbaoSpain
| |
Collapse
|
29
|
Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200012] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Boyang Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Huijuan Cai
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | | | - Xiaoli Qu
- Erythrocyte Biology Laboratory School of Life Sciences Zhengzhou University Zhengzhou 450001 China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
30
|
Shajhutdinova Z, Pashirova T, Masson P. Kinetic Processes in Enzymatic Nanoreactors for In Vivo Detoxification. Biomedicines 2022; 10:biomedicines10040784. [PMID: 35453533 PMCID: PMC9025091 DOI: 10.3390/biomedicines10040784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Enzymatic nanoreactors are enzyme-encapsulated nanobodies that are capable of performing biosynthetic or catabolic reactions. For this paper, we focused on therapeutic enzyme nanoreactors for the neutralization of toxicants, paying special attention to the inactivation of organophosphorus compounds (OP). Therapeutic enzymes that are capable of detoxifying OPs are known as bioscavengers. The encapsulation of injectable bioscavengers by nanoparticles was first used to prevent fast clearance and the immune response to heterologous enzymes. The aim of enzyme nanoreactors is also to provide a high concentration of the reactive enzyme in stable nanocontainers. Under these conditions, the detoxification reaction takes place inside the compartment, where the enzyme concentration is much higher than in the toxicant diffusing across the nanoreactor membrane. Thus, the determination of the concentration of the encapsulated enzyme is an important issue in nanoreactor biotechnology. The implications of second-order reaction conditions, the nanoreactor’s permeability in terms of substrates, and the reaction products and their possible osmotic, viscosity, and crowding effects are also examined.
Collapse
Affiliation(s)
- Zukhra Shajhutdinova
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str. 18, 420111 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia;
| | - Tatiana Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia;
| | - Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str. 18, 420111 Kazan, Russia;
- Correspondence:
| |
Collapse
|
31
|
Bartolomei B, Bogo A, Amato F, Ragazzon G, Prato M. Nuclear Magnetic Resonance Reveals Molecular Species in Carbon Nanodot Samples Disclosing Flaws. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beatrice Bartolomei
- Department of Chemical and Pharmaceutical Sciences INSTM UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
| | - Andrea Bogo
- Department of Chemical and Pharmaceutical Sciences INSTM UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
| | - Francesco Amato
- Department of Chemical and Pharmaceutical Sciences INSTM UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
| | - Giulio Ragazzon
- Department of Chemical and Pharmaceutical Sciences INSTM UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
- Institut de Science et d'Ingénierie Supramoléculaires UMR7006 University of Strasbourg, CNRS 8 allée Gaspard Monge 67000 Strasbourg France
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences INSTM UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE) Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia San Sebastián Spain
- Basque Fdn Sci Ikerbasque 48013 Bilbao Spain
| |
Collapse
|